
Benchmarking Linux Filesystems Threeen1f Results Page 1 of 7

Benchmarking Linux Filesystems for Database Performance Using the 3n+1 Problem

K.S. Bhaskar
Senior Vice President, FIS
ks.bhaskar@fisglobal.com

+1 (610) 578-4265

Summary
This reports the results of an apples to apples comparison of several
Linux file systems using the free / open source FIS GT.M™
transaction processing database engine driven by an update intensive
workload and highly random access.

Unsurprisingly, the best performance was observed on ext2 and the
worst on btrfs.

Background

As the developers of FIS GT.M (http://fis-gtm.com), a database engine
that is used in mission-critical applications at large health care and
financial institutions we are extremely interested in file system
performance for transaction processing database applications. To a
first approximation, the fraction of database accesses that are updates
is much higher in a transaction processing application than with other
database applications.

We previously developed and released io_thrash
(http://sourceforge.net/projects/fis-
gtm/files/Benchmarking/io_thrash/io_thrash_20081110.tgz) as a
workload simulating a transaction processing database application
against a POSIX API to compare disparate systems. io_thrash remains
a useful tool, especially on systems without a GT.M port.

More recently, to evaluate the performance of the GT.M engine on a
variety of file systems, we conducted a benchmark of several Linux
file systems under an identical GT.M workload. This benchmark is
also freely available.

FIS GT.M

FIS GT.M is a hierarchical (multidimensional key-value, “NoSQL”)
database engine. Unlike better-known database engines, GT.M uses a
daemonless architecture in which application processes accessing the
database cooperate with one another to manage the database.
Processes run with normal user and group ids, and are able to access a
database file only if access is permitted by file ownership and access
permissions. Instead of routing database accesses through a small
number of daemon processes, a large number of user processes
(potentially thousands at large sites) concurrently access the database.

A database consists of a number of regions, each of which contains a
current journal file and a database file. When committing an update
to the database, a process writes to the journal file sequentially (each
process performs a seek to and write at the end of the journal file),
followed by updates to database blocks cached in a shared memory
segment. Randomly selected processes flush blocks in the cache to
disk to avoid stale blocks or buffer full conditions. Periodically (every
300 seconds by default), some process ensures no dirty blocks remain
and fsync's to create a checkpoint called an epoch. The first update of

October 14, 2010 K.S. Bhaskar

mailto:ks.bhaskar@fisglobal.com
http://sourceforge.net/projects/fis-gtm/files/Benchmarking/io_thrash/io_thrash_20081110.tgz
http://sourceforge.net/projects/fis-gtm/files/Benchmarking/io_thrash/io_thrash_20081110.tgz
http://fis-gtm.com/

Benchmarking Linux Filesystems Threeen1f Results Page 2 of 7

a block after an epoch places a before image record of that block in its
pre-modification state in the journal file. In the event of a system
crash, GT.M can recover the database from the journal file using
backward recovery – using the before image records in the journal file
to roll the database back to the last epoch then applying the updates in
the journal file to restore the database state to that at the time of the
crash.

When an updating process finds a journal file has reached its
maximum size (typically 4GB), the process renames the file (with a
time-stamp affixed to the file name) and creates a new current journal
file with a back-pointer to the predecessor journal file. The bulk of the
IO is journal IO – for example, on the jfs test, the database grew to
5.3GB, but there were 15 prior generation journal files of 4GB each,
and one current journal file of 1.2GB. Note that slower file systems
generate more journal records, since a before image record is
generated when a block is first updated in an epoch, and longer
running tests have more epochs. When the longest benchmarks were
run on the slowest file systems, prior generation journal files had to be
deleted with the benchmark underway in order to avoid filling up the
available file system with journal files. The impact of this was not
material, since the tests in question ran for tens of thousands of
seconds, and the file deletion took no more than tens of seconds.

In this benchmark, we configured the database with just one region,
with a database block size of 4KB, and a shared memory cache with
room for 65,536 blocks. We left all other database parameters at their
defaults.

The GT.M version was the 64-bit executable of V5.4-001 for Linux on
x86 architectures downloadable from Source Forge
(http://sf.net/projects/fis-gtm).

3n+1 sequence

The 3n+1 sequence for a positive integer is the number of steps in the
following sequence that it takes to reach 1:

• if the number is even, divide it by 2, and

• if the number is odd, multiply it by 3 and add 1.

The as yet unproven Collatz conjecture
(http://en.wikipedia.org/wiki/Collatz_conjecture) holds that for every
integer, the 3n+1 sequence reaches 1 after a finite number of steps. In
the benchmark, a number of parallel worker processes cooperate using
a database to find the longest 3n+1 sequence starting with any integer
in a range, as well as the largest integer encountered in the course of
calculating those sequences. The benchmark divides the range of
starting integers into sub-ranges of numbers and each worker process
computes the sequence for each number in one sub-range at a time – of
course, this will take it to numbers outside the sub-range. If the
database contains an answer to the sequence length for a number the
process moves on to the next number. After the last number in its sub-
range, it works on the next sub-range of numbers not yet claimed by
another worker process. If the database does not contain an answer to
the sequence length for a number, the process stacks the number,
computes the next number in the sequence and checks the database for
that number's sequence, continuing till it finds a number whose
sequence length is in the database or till it encounters 1 (whose
sequence length is zero). Then it pops its stack of numbers one by
one, and enters the sequence length for each number in the database,
the sequence length for each number being one more than that of the
previous number popped. Each process tracks its counts of logical
reads and writes, and contributes to the maximum number value
handled in the course of the benchmark. When all worker processes

October 14, 2010 K.S. Bhaskar

http://en.wikipedia.org/wiki/Collatz_conjecture
http://sf.net/projects/fis-gtm

Benchmarking Linux Filesystems Threeen1f Results Page 3 of 7

terminate, the parent process prints the results and then reads the next
line of input and kicks off the processing it specifies. The journaling
configuration ensures that, should the system crashes at any point in
the benchmark, GT.M can recover the database, and resume the
computation by restarting the program with the same input range it
was working on at the time of the crash. The resumed computation
would use results computed and stored in the database from before the
crash.

A complete functional specification for the program can be found at
http://ksbhaskar.blogspot.com/2010/06/3n1-nosqlkey-valueschema-
freesche.html and the actual program used can be found at
http://sourceforge.net/projects/fis-
gtm/files/Benchmarking/threeen1/threeen1f.tgz

Instructions for you to run the program yourself can be found at
https://docs.google.com/document/pub?
id=1OO2TG4pAuW3MrEPSlzv1zAkIlsADq9PpI46DilM5lQ8

The input file used for the benchmark was:

1 100000 8 5000
1 1000000 8 50000
1 10000000 8 50000
1 20000000 8 50000
1 40000000 8 50000

Regardless of the number of worker processes, block size, elapsed
time, total number of database accesses or accesses per second, the
following results demonstrate functional correctness:

The number of reads and number of updates varied slightly between
runs – with multiple parallel worker processes, it is quite possible for
more than one process to compute the length of the 3n+1 sequence for

an integer. The standard deviation as a percentage of the average in
the number of reads ranged from 0.16% to 0.005%, and that for the
number of updates ranged from 0.28% to 0.001%, with the largest
percentages for the runs with the smallest final integer. So, any
variation was not material.

October 14, 2010 K.S. Bhaskar

Start Finish
1 1,000,000 524 56,991,483,520
1 10,000,000 685 60,342,610,919,632
1 20,000,000 704 306,296,925,203,752
1 40,000,000 744 474,637,698,851,092

Longest
sequence

Largest number
encountered

https://docs.google.com/document/pub?id=1OO2TG4pAuW3MrEPSlzv1zAkIlsADq9PpI46DilM5lQ8
https://docs.google.com/document/pub?id=1OO2TG4pAuW3MrEPSlzv1zAkIlsADq9PpI46DilM5lQ8
http://sourceforge.net/projects/fis-gtm/files/Benchmarking/threeen1/threeen1f.tgz
http://sourceforge.net/projects/fis-gtm/files/Benchmarking/threeen1/threeen1f.tgz
http://ksbhaskar.blogspot.com/2010/06/3n1-nosqlkey-valueschema-freesche.html
http://ksbhaskar.blogspot.com/2010/06/3n1-nosqlkey-valueschema-freesche.html

Benchmarking Linux Filesystems Threeen1f Results Page 4 of 7

Computer system

• CPU – Quad Core AMD Phenom™ 9850 at 2500MHz

• Cache – L1: 128KBx4; L2: 512KBx4; L3: 2MBx1

• RAM – 4GB DDR2 800

• Disks – Twin Samsung HD103SJ 1TB 3Gbps SATA. Each
had four partitions. Root occupied one partition on one drive
(/dev/sda1). A volume group was built from one 705GB
partition on each drive (/dev/sda3 and /dev/sdb3). Other
partitions were mounted but not accessed during the
benchmark.

• OS – 64-bit Ubuntu 10.04.1 (desktop) with Linux kernel
2.6.32-25.

• Benchmark file systems – from the volume group, multiple
100GB file systems, one for each type tested, were created,
each striped across the two drives. All file systems were
created with default settings.

A complete hwinfo report on the system is available on request –
please e-mail the author.

Results

When monitoring the runs with atop (http://www.atoptool.nl), the runs
were all CPU limited for the first line (through 1,000,000). During the
second (10,000,000), the system would start CPU limited, and
transition to IO limited (avio times in the small number of
milliseconds, disks “red-lined” and usually more than 80% busy and
most of the time more than 95% busy). The third and fourth would
spend virtually all of their time IO limited.

The btrfs run with a final integer of 40,000,000 was terminated after
more than a day and a half when it was estimated to be only about
80% through the run.

October 14, 2010 K.S. Bhaskar

http://www.atoptool.nl/

Benchmarking Linux Filesystems Threeen1f Results Page 5 of 7

Elapsed time

The elapsed times in seconds for each file system are:

Elapsed times are graphed below:

Read Rate

The read rates for each file system were:

The read rates are graphed below:

October 14, 2010 K.S. Bhaskar

0 50,000,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Elapsed Times

ext4
ext3
ext2
jfs
btrfs
xfs

Last integer in range

S
e

co
n

d
s

0 50,000,000

0

50,000

100,000

150,000

200,000

250,000

300,000

Read Rates

ext4
ext3
ext2
jfs
btrfs
xfs

Last integer in range

R
e

a
d

s
 /

s
e

co
n

d

Finish ext4 ext3 ext2
1,000,000 15 14 13 13 15 14

10,000,000 319 5,312 177 374 3,571 220
20,000,000 2,213 16,323 1,680 2,484 28,667 2,834
40,000,000 41,087 64,016 35,989 50,378 47,571

jfs btrfs xfs Finish ext4 ext3 ext2
1,000,000 211,365 226,421 243,805 243,870 211,341 226,581

10,000,000 99,479 5,974 179,277 84,845 8,886 144,271
20,000,000 28,675 3,888 37,773 25,547 2,214 22,392
40,000,000 3,089 1,983 3,526 2,519 2,668

jfs btrfs xfs

Benchmarking Linux Filesystems Threeen1f Results Page 6 of 7

Update Rates

The update rates per file system were:

The update rates graphed are:

Discussion

It comes as no surprise that ext2, as a non-journaled file system,
consistently outperforms all the other file systems. The performance
of btrfs, as a copy-on-write file system, is probably also to be
expected. That the performance of ext4 beats ext3 is perhaps also to
be expected, given the file systems' lineage.

jfs, ext4 and xfs were in the middle, with ext4 leading the other two.

October 14, 2010 K.S. Bhaskar

0 50,000,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

Update Rates

ext4
ext3
ext2
jfs
btrfs
xfs

Last integer in range

U
p

d
a

te
s

 /
s

e
co

n
d

Finish ext4 ext3 ext2
1,000,000 144,698 154,992 166,882 166,947 144,674 155,152

10,000,000 68,131 4,091 122,779 58,107 6,086 98,816
20,000,000 19,638 2,662 25,868 17,495 1,516 15,335
40,000,000 2,115 1,358 2,415 1,725 1,827

jfs btrfs xfs

Benchmarking Linux Filesystems Threeen1f Results Page 7 of 7

Future Work

In the future, we plan to continue the benchmark to look at other types
of IO subsystems. For example, below are elapsed times with the
benchmark on a jfs file system on an SSD.

This is not an apples to apples comparison because the CPU, cache
and RAM differ between this system and the one reported on earlier.
Nevertheless, the fact that the CPU-limited smaller runs have the same
elapsed times suggests that they are broadly comparable. But the disk-
limited largest run is dramatically faster on the solid state disk.

We also intend to look at the impact of filesystem, database and
journal tuning parameters as well. GT.M has a sync_io flag, which
when used causes processes to open the journal file with O_DIRECT
and O_DSYNC. The environment variable $gtm_fullblockwrites
causes a GT.M process to write database blocks that are an integer
number of filesystem blocks, at an offset within the file that is also a
multiple of that size. The idea is that such a write when a database
block is not full, even if the extraneous data written is not meaningful,
may permit the underlying IO subsystem to perform just a write
operation rather than a read-modify-write operation. Below is a
comparison of the effect of these flags on elapsed times for ext4 and
jfs on a 1 to 20,000,000 run.

It it interesting that both these speed up jfs – almost to ext2 speeds, but
not quite – whereas sync_io slows ext4 and $gtm_fullblockwrites has
only a slightly beneficial effect. There are a small number of other
parameters as well within GT.M, although not too many: part of our
philosophy over the years has been that if we create a tuning
parameter, we should also endeavor to tune it automatically and
dynamically.

October 14, 2010 K.S. Bhaskar

Finish Magnetic SSD Ratio
1,000,000 13 9 1.4

10,000,000 374 193 1.9
20,000,000 2,484 631 3.9
40,000,000 50,378 2,341 21.5

No No 2,484 100%
Yes No 1,733 143%
No Yes 2,273 109%
Yes Yes 1,743 143%

ext4 No No 2,213 100%
ext4 Yes No 3,137 71%
ext4 No Yes 2,122 104%
ext4 Yes Yes 3,050 73%

File
system Sync io

Full block
writes

Elapsed
times

Relative
Speed

jfs
jfs
jfs
jfs

	Benchmarking Linux Filesystems for Database Performance Using the 3n+1 Problem
	Summary
	Background
	Computer system
	Results
	Discussion
	Future Work

