
 Copyright 2001 Sanchez Computer Associates, Inc. Revised February 14, 2001

GT.M includes a robust, high
performance, multi-paradigm,
open-architecture database.
Relational, object-oriented and
hierarchical conceptual models
can be simultaneously applied to
the same data which is accessible
to concurrent host-based and
client-server applications via
C/C++, SQL and M.

The GT.M data store’s underlying data is typeless (simply, an unstructured array of bytes). Relationships
can be described equally correctly as:

• hierarchical

• multi-dimensional sparse arrays

• content-associative memory

Programmatically, the contents are accessed by name as persistent global variables. Relational, object-
oriented and navigational database models all map well onto the GT.M database; thus the most suitable
model can be chosen for each application or situation. Furthermore, multiple models can be applied at
the same time to the same data, for mixed-mode (hybrid) concurrent access.

 Consider a simple example:

• Products are assembled from parts or subsystems

• Subsystems are assembled from parts or other (smaller) subsystems

• Parts are purchased from vendors; each part has a different delivery time from each vendor which
offers that part

GT.M
Database

Robust high
performance
flexible data

store

Optional custom API wrapper

C/C++ program

M program

SQL Engine

Microsoft Windows
ODBC client access

Local SQL procedures

ODBC connectivity

GT.CM open server

Open client access

GT.M™ Database Architecture Page 2 of 5

 Copyright 2001 Sanchez Computer Associates, Inc. Revised February 14, 2001

In a relational database, this might be represented by the tables Assemblies, Parts and Vendors:

An equivalent GT.M hierarchy is shown to
the right. Access from C/C++ or M is
available via two persistent global variables,
Assemblies and Parts. The multi-
dimensional sparse array view of the three
dimensional array Assemblies is shown
below (the four dimensional array Parts is
not easily depicted on two dimensional
paper).

The object oriented paradigm is fulfilled by
considering Assemblies and Parts to be
classes, with four instances of each. Since
the data is typeless, binary information, such
as stream of bytes to be fed to an interpreter or loader at run time, can also be stored.

Using SQL engine, the GT.M database can be mapped, accessed and manipulated and accessed using the
relational tables shown. If access is desired from a PC client, relational access is available via ODBC.
Thus, applications created with popular tools such as Visual Basic and PowerBuilder can access and
update GT.M databases.

Assemblies Parts Vendors
Item Product Item Contains Part Vendor Delivery

Go-cart Yes Go-cart Seat Seat Goodrear 5
Mower Yes Go-cart Drivetrain Cutters Sharpe 9

Drivetrain No Mower Drivetrain Fasteners Acme 4
Motor No Mower Cutters Block Wright 7

 Drivetrain Motor Block Irons 3
 Drivetrain Fasteners
 Motor Fasteners
 Motor Block

Assemblies

Motor

Product=No

Components

Block

Fasteners

Go-cart

Product=Yes

Components

Drivetrain

Seat

Drivetrain

Product=No

Components

Fasteners

Motor

Mower

Product=Yes

Components

Cutters

Drivetrain

Parts
Block

Vendors

Irons

Delivery=3

Cutters

Vendors

Sharpe

Delivery=9

Wright

Delivery=7

Fastener

Vendors

Acme

Delivery=4
Seat

Vendors

Goodrear

Delivery=5

Drivetra in

No

No

Product Components

Block

Fasteners

Fasteners

Motor

Mower

Motor

G o-cart

Yes

Yes

Cutters

Drivetra in

Drivetra in

Seat

Assemblies

GT.M™ Database Architecture Page 3 of 5

 Copyright 2001 Sanchez Computer Associates, Inc. Revised February 14, 2001

The global variables in a database file are shared by all processes accessing a database file with both
automatic and programmatic interlocking to prevent race conditions.

Benefits of flexible modeling

The support of efficient access to the data means that the most appropriate model can be chosen on a case
by case basis for each type of access to the database. For example:

• The most full featured report writers exist on the Windows/PC platform and support the
relational model. Thus, it is the appropriate model for most client-server applications and for
export.

• The hierarchical model allows a natural solution for a number of problems
that degenerate into pathological cases in the relational model. For
example, consider the query to report worst-case (maximum) delivery time
for any component in the manufacturing of any product.1 While
straightforward in GT.M, this would require the proverbial “n way join
from hell” in a traditional relational database.

• The object-oriented model can be used to implement “compute on demand” for data that is
expensive to compute and not routinely accessed, or for data that must always be computed
afresh.

Mixed mode hybrid access can be exploited to use the capabilities of one mode to overcome limitations
of another. For example, the pathological SQL query for the worst case delivery time can be overcome
in SQL engine by the insertion of executable code to exploit the hierarchical nature of the database and
the fact that the database can store code as well as data. Thus, to a relational client, Max_deliveries can
look just like another table, but one that need not actually exist in the database.

Other benefits

• Compactness Because of the database structure, and the use of key compression, GT.M
databases are often a fraction of the size of equivalent databases relational databases on industry-
standard SQL servers.

• Capability GT.M supports features such as application level transactions via “transaction start”
and “transaction commit” markers.

• Speed GT.M databases are often much faster for transaction processing (mixed reading and
writing activity) than typical relational databases. This advantage is often even more pronounced
under heavy loads, because the compactness of GT.M databases reduces I/O activity, sometimes
a greater bottleneck than the CPU.

• Robustness GT.M comes with features such as exception handling, journaling and recovery for
implementing robust and resilient applications.

1 Notice that the maximum delivery time for Go-cart comes from 5 for Seat, since Delivery for Block should be 3, based on Irons.

Max_deliveries
Product Delivery
Go-cart 5
Mower 9

GT.M™ Database Architecture Page 4 of 5

 Copyright 2001 Sanchez Computer Associates, Inc. Revised February 14, 2001

Configuration Flexibility

GT.M provides flexibility in database configuration by allowing each process to distribute its logically
monolithic global variable name space across an arbitrary number of database files with the aid of a
global directory file, either in its working directory or specified via a logical name (OpenVMS) or
environment variable (Unix). A global directory file maps a region (a range of global variable names) to
a segment (a file name or a file specified indirectly via a logical name or environment variable).

People

Accounts,
Transactions

Log name /
env var 1

Log name /
env var 3

DEFAULT Log name /
env var 4

Regions Segment
Database

file 1

Database
file 2

Database
file 4

Log
name /
env var 5

People, Accounts,
Transactions

G loba l directory file 1

G loba l directory file 2

Segment Regions

Log
name /
env var 2

DEFAULT

Database
file 3

Log name / env var 6

Production
Process 1

Production
Process 2

Development Process

In the example, two executing images share the same global directory file, and direct their People,
Accounts and Transactions globals into the production database file. This mapping is defined by Global
directory file 2, which is indirectly accessed through an environment variable / logical name (so that, in
the event of operational need, the production processes can be redirected to a different global directory
file). At the same time, a development process uses a different database file for its Accounts and
Transactions variables. However, to facilitate testing, it is using the production database for People to
which it has read-only access. Its global directory file merely resides in its current working directory,
there being no need to direct it through a logical name / environment variable.

Executing processes can change global directories on the fly, or even force a specific database access to
use a specific global directory other than its current global directory. Two global directories can map
segments (either the same global variables or different global variables) to the same database file.

Database Summary

Format Data is stored as high-performance B* trees in Sanchez’ proprietary format.

Configuration Global directories specify the relationship between global names or ranges of
global names and database regions.

Logical Names The global directory itself as well all regions specified by a global directory may
be logical names / environment variables, allowing run-time reconfiguration of

GT.M™ Database Architecture Page 5 of 5

 Copyright 2001 Sanchez Computer Associates, Inc. Revised February 14, 2001

the database or a portion of the database without invading application programs.

Dynamic Global
Directory
Specification

Any database access can force the use of a specific global directory. The current
global directory can be changed at any time.

Access Methods The standard access method (Buffered Globals) provides database access using a
caching system optimized for high performance database operation. For even
more speed, the optional Mapped Memory access method allows entire database
regions to be mapped into virtual address space.

For extraordinary throughput on selected platforms, the database is mapped into
virtual memory accessed with 64-bit pointers (VLM).

Application
Transactions

“Transaction start” and “transaction commit” markers can implement application
program level transactions.

Journaling and
Recovery

Database updates may be journaled. Two types of journaling are available, one
of which stores update information as well as the prior contents of database file
disk blocks, and the other storing only update information. A utility restores a
journaled database to a consistent state established immediately prior to a system
failure. By including transaction marker commands, an application can extend
consistency to logical transactions. Update information can also be converted
into an ASCII form.

Security GT.M supports the security mechanisms of the underlying operating system for
controlling access.

Shutdown Shutdown consists of running a utility to ensure that all GT.M processes are
terminated, and all shared memory is released. Database regions automatically
become inactive when no user references them.

Database Limits

String length to 32,508 bytes

Numerics 18 digit precision in the range 10-43 to 10+46

Variables No GT.M limit on size or number; individual segments are subject to underlying
computer system limits on file size

Key size to 255 bytes

Node size to 32K bytes for the sum of subscripts + data for a single M node

Block size user specified by region from 512 to 65,024 bytes in multiples of 512

	GT.M(Database Architecture
	Benefits of flexible modeling
	Other benefits
	Configuration Flexibility
	Database Summary
	Database Limits

