
A MUMPS-BASED RELATIONAL DATA BASE SYSTEM (MRDB)

Georges S. Nicolas and John W. Lewis

Department of Electrical Engineering and
Division of Laboratory Medicine

Washington University, St. Louis, Missouri 63130

A relational database management system has been implemented in the MUMPS language using a binary
tree structure for storage of relations. Several examples are given to i l lustrate the available
functions and commands. Some details of the data structure are given, and tradeoffs discussed. The
system was intended for teaching and research and no attempt was made to optimize performance.
Nevertheless, timing measurements are presented to show that the use of a MUMPS-like tree structure
for relational database system i~Dlementation can yield performance which varies with the size of the
operand relations in a manner similar to previously reported relational database implementations.

I. INTRODUCTION

Among the most significant current concepts in
data base technology is the relational model of
data base management. The theory has been dis-
cussed by Codd [I-3~ and several other authors

[4, 6,.8] . The advantages of the relational
moOel of data include simplicity, symmetry, data
independence, and semantic completeness. Several
implementations of the relational model have been
reported in the l i terature ~4,8] . The Data Ma-
nipulation Languages (DML) used in these implemen-
tations can be classified into six major groups:
(l) Algebraic, (2) Relational Calculus, (3) Map-
ping-oriented, (4) Element-by-element, (5) Natural
language, and (6) Graphic oriented. Because of
i ts relative ease of understanding and use, a re-
lational algebra DML was chosen for the present
implementation. Although certain kinds of infor-
mation structures cannot readily be represented
as trees, i t is shown here that the MUMPS* binary
tree structure is suitable for the implementation
of a relational database management system.

Within MUMPS, binary-tree structured f i les are re-
ferred to symbolically as multiply-subscripted ar-
rays, known as global arrays, or simply 91obals.
These globa]s (trees) are dynamic and sparse, i .e.
the only nodes which are created are those to
which a value is exp l ic i t ly assigned or those
which must be created in order to provide a path
from the root to a node which has been assigned a
value. Any node may contain either numeric or
string data of variable types and lengths. Some
MUMPS systems have fac i l i t ies for preventing dead-
locks and insuring error free concurrent access to
the shared data base represented by the appropri-
ate set Of globals [5, lO~

The choice of MUMPS globals as the supporting
structure for the MRDB system was motivated princi-
pally by the avai labi l i ty of a MUMPS system, the
anticipated ease of implementation, and the inter-

*Massachusetts General Hospital U_tility M_ulti-Ero-
gramming S_~ystem

est in such work among the growing community of
MUMPS users.

In the rest of the paper, we describe a prototype
re!a~ional system implemented in DEC MUMPS-f1

L5J , on a PDP-II computer. Examples of opera-
t i ons~11~ven ,and ~mingmeasurements presented.

2. OVERVIEW

I t wi l l be assumed in this paper that the reader is
familiar with the basic concepts of relational al-
gebra (References ~I-4~ should be helpfu l) .

As viewed by the user, the database consists of a
collection of named relations in normal form. ~ese
time-varying relations are ofassorted degrees;and as
time progresses, each n-ary relation m~besubjectto
transformation, extraction, deletion, insertion, and
alteration of some orall of i ts existing n-tuples.

For every data base there is a corresponding~ork-
space of variable size. This workspace is intended
to fac i l i ta te the user's manipulation of the data-
base by providing him with a temporary storage
space for an arbitrary number of transient or in-
termediate relations.

Both database and workspace gmwandshrinkdynamically
as needed. They interact with each other~well as
with the user~rough a set ofcommands, operators, and
special functions which~ll be described~ater.

The MRDB Management system hasthe~quSredfacilities
to insure a modest level of security and integri ty
of the stored data. I t can be used as a stand-alone
system or as a data management fac i l i t y for the
MUMPS language, with a f lexible interface. The user
interacts with the MRDB system through an algebra-
based DML which wi l l be described next.

3. The DML

324

In i t s present state, the MRDB system operates e i -
ther on individual queries or on a sequence of
queries, as determined by the user and his appl i -
cation. Each query is made out of a series of
commands and/or functions separated by the del imi-
ter semicolon (;) . Within the command i t s e l f , ar-
guments are separated by the de l imi ter colon (:) .
The dol lar sign ($) is the f i r s t of four charac-
ters that make up every funct ion 's name. Func-
t ions with arguments, and operators within com-
mands, have the i r arguments enclosed within paren-
theses. These arguments are re la t ions ' names and/
or the associated domains' names, separated by e i -
ther the del imi ter (,) or the del imi ter (.) as
w i l l be described la ter . See f ig . I .

abreviated by the i r f i r s t three le t te rs in the DML
of the MRDB system.

Every operator operates on i t s arguments to pro-
duce a resul tant re la t ion , and then stores th is re-
la t ion in the workspace under the associated name
Rj. Any one of the resul tant re lat ions may be used
as a part of the argument(s) of any subsequent op-
erators under the same GET command, or other fo l -
lowing commands and/or functions. Table I. b r ie f -
ly summarizes the role played by the "OPR(ARG)" in
the GET command.

B. Some of the more commonly used functions in
database queries have been implemented in the

MRDB sytem.

~ost L a n g u a g e ~
Interface ~,,~

Workspace] PI~.~ ~ .]

L FUNCTIONS

Fig . 1 - A s i m p l i f i e d view o f I n t e r a c t i O n s

Let theL, character represent the blank character,
and Rj represent any re la t ion which exists in the
database and/or the workspace for j=1,2,3 Let
Dji represent any domain's name in re la t ion Rj for
i=1,2,3 and l e t
O~ I N , : , < , > , (= < , < :) , (: > , > =) , (< > , > <)] .

A. The f ive major DML commands have the fol lowing
general forms:

CREATE~-~RI:R2:R3:---
DELETE~RI:R2:R3:---
DISPLAY~RI:R2:R3:---
PUT~RI:R2:R3:-- -
GET~RI~OPR(ARG):R2wOPR(ARG):R3~OPR(ARG):---

a) The CREATE Command allows the user to enter,
from the terminal into the workspace, re lat ions
under the names RI, R2,.. .

b) The DELETE command w i l l delete the named re la-
t ions from the workspace and/or the database,
i f such re lat ions ex is t .

c) The DISPLAY command, upon execution, w i l l d is-
play on the terminal the named re lat ions in the
respective order and in tabular form. Any of
these re lat ions may be in e i ther the workspace
or the database at the time of execution.

d) The PUT command w i l l store the named re lat ions
in the database. These re lat ions are assumed
to ex is t current ly in the workspace.

e) In the GET command, OPR and ARG stand for oper-
ator and argument(s) respect ively. The opera-
tors are those defined by Codd [3] , and are

These functions return the i r out-
puts to, or take the i r inputs
from, a set of preassigned global
arrays and/or variables, enabling
a MUMPS appl icat ion program to
manipulate the given re lat ions
d i rec t l y i f desired. The re la-
t ions in the arguments of the

Database functions are assumed to be in
the workspace and/or the database
at execution time. Table 2 gives
a b r ie f descript ion of the cur-
rent ly ex ist ing functions. Fi-
na l ly , we mention that those com-
mands and functions which involve
the a l te ra t ion of data in the
database w i l l be prevented from
being carr ied out by unauthorized
users. In turn, authorized users
are prevented from carrying out
operations which would v io late
any of the system in teg r i t y con-

s t ra ints (see the appendix for examples).

4. IMPLEMENTATION

Each re lat ional database is represented by a MUMPS
global as shown in f i g . 3. I t is seen that the
tabular form of a re la t ion (f ig . 2) is mapped into
a sub-tree. In addit ion to the above structure,
re lat ions resul t ing from certain operations could
be stored so that each tuple in the given re lat ion
would be d i r ec t l y addressable by means of a hash-
ing function which transformed the tuple number
(global index) into a unique re la t i ve address on
the disk. This randomly addressable structure
would be a useful adjunct to the normal tuple stow
age scheme in speeding up some of the re lat ional
operators.

No ordering among tuples, or among data items in a
domain, is assumed.

The general implementation technique of MUMPS glo~
als is to map logical information at a given sub-
scr ip t level of a given array into groups of f ixed
size blocks chained together l i near l y to contain
a l l the data values stored at that subscript level
and a l l the pointers which point to the headers of
the chained blocks at the next lower subscript
level . Logical ly , the global looks l i ke an n-ary
t ree, but the physical implementation is that of a
binary t ree, with one real pointer from a parent
node to the f i r s t descendent. In the fo l lowing, a

325

Table 1 - Relational operators as used by the MRDB system
SYNTAX OF OPR(ARG) CORRESPONDING MEANING

I. CAR(RI,R2)
2. UNI(RI,R2)
3. INT(RI,R2)
4. DIF(RI,R2)
5. PRO(Rj.DjI.Dj2.Dj3.---)

6. JOIg(RI.DIi,R2.D2j)
7. RESg(Rj.DjI.Dj2)
8. DIV(RI.DII,DI2,DI3.---,

R2.D21.D22.D23...)

I. The cartesian product of relations R1 and R2
2. The union Of relations Rl and R2
3. The intersection of relations Rl and R2
4. The set difference of relation R2 from Rl
5. Projection of Rj over Dj i 's. Dj i 's could be in

any order. Redundant tuples wi l l be removed from
resultant relation.

6. R] is g-joined on domain Dli with R2 on domain D2j.
7. Relation Rj is g-restricted on domain Djl and Dj2.
8. Division of Rl on domains Dll,Dl2,Dl3, by R2

on domains D21, D22, D23, I f RI is empty, the
resultant relation wil l be empty t o o ,

simple timing analysis for some relational opera-
tions wi l l be carried out.

Given three memory buffers, b l , b 2, and b 3, each
capable of storing one disk block, assume that the
highest g~obal level (level 1 of f ig. 3) is small
enough to be stored in main memory. Let Ti,Di,Ki
for i=l,2 be the number of tuples, the number
of domains, and the average number of data items
of relation Ri that can be stored in one disk block
Let Nj be the number of disk blocks to be accessed
in order to execute a command, an operator or a
function; and let that Nj(j=],2) be our measure of
the speed of response to queries, i .e. the smaller
the Nj, the faster the response to the given query.
Almost all MUMPS applications systems are disk-
bound, and thus Nj is a real is t ic measure of system
speed.

feature reduces the I/O
time (Nj), at the ex-
pense of extra storage
and more system overhead
(Kj*~Kj) , by allowing
only the necessary data
(required domains) to be
transferred between the
disk and main memory.
In the rest of this sec-
tion the performance of
type l and type 2 struc-
tures for some relation-
al operations wil l be
br ief ly compared.

Consider f i r s t the DISPLAY and CREATE commands.
Since these commands require the transfer of a '~
whole relation to and from the memory buffers,
the minimum possible values of Nj are N~=DiTi/Kiand
N2=DiTi/Ki* for type l and type 2 respectively.

EMP: NAME SALARY- P~ANAGER CODE
John 20,000 Jones J25

FGeorges 3,000 Thomas Gl6 Since we con-
Lee 7,260 Susie L22 sidered l~e l

1 of f i g 3 to
Fig. 2 - A tabular f o r m o f ~ l a t i o n ~ P be in main

memory, we
find that deletion of a whole relation (by the
DELETE command) requires no disk access, i .e. Nl=O.
This is very fast, because all that is required'is
deletion of a single pointer.

Table 2 - The MRDB system special functions
FUNCTIONS SYNTAX MEANING

a. SMAX(Rj.Dji) Returns maximum value in domain Dji df Rj.
b. SMAS(RjoDji) Returns longest data item in domain Dji of Rj.
c. SMIN(Rj.Dji)
d. SMIS(Rj.Dji)
e. $CNT(Rj.Dji)

f. $TOT(Rj.Dji)
g. SAVR(Rj.Dji)
h. $ORA(Rj.Dji)

i . $ORD(Rj.Dji)
j . $CNW(RI,R2)
k. $CND(RI,R2)
1. $NOC(Rj)
m. $NOR(Rj)
n. $LOD(Rj)

o. $STR(Rj)
p. SFDD

q. $FDW

Returns minimum value in domain Dji of Rj.
Returns shortest datum in domain Dji of Rj
Returns the number of dist inct data items in
domain Dji of relation Rj.
Returns the sum of data items in Dji of Rj.
The average value of data items in Dji of Rj.
Orders the tuples of Rj in ascending order
on domain Dji.
Same as $ORA but in descending order.
Changes the name of a workspace R2 to Rl.
Changes the name of a database R2 to Rl.
Returns the number of domains of Rj.
Returns the current number of tuples of Rj.
Extracts Rj from database/workspace and return
i t to a designated global as in Fig. 3 when
the MRDB is used as a sub-system to MUMPS.
Works in the opposite way of SLOD(Rj).
Returns a formatted l i s t of currently available
relations in the database with their associated
domains.
Does the same thing for workspace,as in $FDD.

Many current relational database implementations
treat the tuple as being the smallest retrievable
unit of data in a stored relation. These struc-
tures wi l l be referred to below as type 2. Let
Ki* be the average number of data items of a rela-
tion Ri that could be stored in one disk block for
a type 2 implementation.

In addition to retrieving data by tuples, the MRDB
system implementation (referred to below as type l)
offers the capability of accessing relations by do-
mains and/or data items selectively. This extra

I t should be mentioned that, in theory,
the PUT Command should require no more
than a single pointer change, and thus
N]=O. However, because of the way glo~
als are implemented in the present DEC
MUMPS-II system, the PUT Command re-
quires the reconstruction of an entire
sub-tree.

Finally, we show, through simple formu-
las, the amount of time needed to carry
out some of the functions from table 2
and the PRO, JOIg, and RES@ operators.

4.1 Functions

For a type 1 implementation i t takes
[Di/2Ki I (fx] means the smallest in-

teger M@x) blocks to locate the given
domain and rTi/Ki~ blocks to transfer
all data items in the selected domain.

Nl:F(Di+2Ki)/2Ki l

For type 2 implementations, i t takes
N2: I 'D iT i /K i *] blocks to carry out the
the function.

NI/N2~((Di+2Ki)/2Ki)(Ki*/DiTi)
I t we assume Ki* = O(Ki (I < ~ 2) and DiwC<2Ti

NI/N 2 : ~ / D i which says that response with a
type l structure wil l be Di/2 to Di times faster
than with a type 2 structure.

4.2 Projection (PRO)

To carry out the projection operation, all that is
necessary is to cut the links leading to the de-
scendent nodes (of the appropriate domains) from

326

L -~

r'-- Leve l 2.
I
I
I

I

, F -

b l o c k c h a i n

I

1 - - - t J b l o c k .,,"~ '1
I I c h a i r J [
' I / J I

L" , L--

N.B_~RRRRRRRRRRRRRR~. 1 ViJ refers tO data item £n tuple i and domain J
for £ " 1,2, --- p and J - 1,2. ---k

I
I
I

i I block
J J c h a i n

A block chain consists of one or more disk
blocks linked by continuation pointers.

Fig. 3 - ROB Structure in MUMPS Global form

the parent node (the operand relation). This re-
quires retrieval of the appropriate blocks, era-
sure of the pointers, and storage back on the disk
Thus, the value of N] is in the range
2~NI~FDi/Ki ~ +l depending on the number of pFo-
jectdd domains and their locations. This is very
fast in comparison with other implementations[8].

4.3 Join (JOlO)

Let S be the number of tuples of the result re-
lation.

NI--<rDI/2K.]I + FD2/2K21 + f(TI/KI)(T2/K2)I + S
In the typlcal case, Ti>~Di, we can ignore the
f i r s t two terms, since they will be negligible
compared with the values of the last two terms.
I t is easily seen that N2=~'DITID2T2/KI*K2*]
=ImNl/N2 = (TITp+KIK2S)KI*K2*/DID2KIK2TIT2 "
I f we assume Rl~ = ~IKI and K2* =~(2K 2, then
NI/N2 : I /P : ~(IW2(TIT2+KIK2S)/DID2TIT2
This says that as long as
KIK2S<(DID2 -WI~2)TIT2/WIW 2 is t rue , the Join
operat ion with a type 1 s t ruc ture is P times fas-
te r than wi th a type 2 s t ruc tu re .

As a simple example, l e t DI=IO, D2=12, TI :200,
T2:150, Kl=14, KI*=20, K2:8, K2":14, and S=70.
We see that the Join operat ion is about 38 times
fas te r when using a type I s t ruc ture .

4.4 Res t r i c t ion (RESO)

I t can be shown here that N I ~ D i / 2 K i I + F 2 T i / K ~ + S
using the same reasoning as in -sec t ion 4.3, we can
neglect the f i r s t term in t he previous formula.
For type 2, we have N2 = [T i D i / K i *] .

=~NI/N 2 = I/P : (2Ti+KiS)~/TiDi; which says that,
as long as KiS<(Di-2)Ti/O(, the Restriction opera-
tor when using a type l structure is faster by P
times than when using a type 2 structure.

For example, for the values Ti=400, Ki=lO, S:60,
Di=lO, and(~=l.5, we get P~2.

4.5 Measurements

Finally, table 3 displays a comparison between the
measured and predicted relative speeds for certain
operations. Note that the time units have been nor-
malized in order to show the change in speed with
changes in the size of the relations.

Table 3.a - Functions operating on relations with a
fixed number of tuples

number of domains| 1 2 3 4 5 6 7 8
measured time" I l l 1.121.371.371.5 1.6 1.75.
predicted time l l l.l 1.2 1.25 1.4 1.5 1.58

Table 3.b - Functions operat ing on re la t ions of a
f i xed degree

number of tuplesI5 lO
measured time Jl 1.33
predicted time I 1 1.3

1 5 20 25 30 35 40
1.55 1.77 2 2.55 P.77 R.33
1.5 1.8 2 ~-3 2,6 R.15

Table 3.c - PR8 operat ion on a re l a t i on of degree 9
wi th 30 tuples

number of projected domainsJl 2 3 4 5 6 7 8
measured time JlA61d61.31J51~5 I~7 1 1
predicted time JlA IA 1.351351~ I~5 1 1

327

Table 3.d - RES8 operation on relations with vary-
ing degrees and a fixed number of
tuples.

number of domainsl2
me---ea-s-ur-ed--t~ me ~ l

3 4 5 6 7 8 9
1.25 1.37 1.62 I~7 2 2.25 Z25
12 1.35 1.6 I~2-2 2.3 2-35

5. CONCLUSIONS

An algebra based, relational database management
system implemented with hierarchical (binary tree)
f i les has been presented. The available opera-
tions have been discussed, and the retrieval/up-
date fac i l i t ies demonstrated through a set of sim-
ple examples. The implementation has been briefly
discussed, and some experimental measurements com-
pared to predicted values for speed of response.

The system is adequate for educational purposes,
and capable of yielding useful data on f i le struc-
ture performance. Further use of the system pre-
sented here for the investigation of f i le struc-
tures in relational database management systems is
planned. In Particular, the present MRDB system
will be used to test a parameterized theoretical
model of DBMS performance.

APPENDIX

In order to familiarize the reader with the MRDB
system, we are going to work out in this appendix
a few simple examples. Each example will consist
of a request, worded in English, and a correspond-
ing solution, expressed by the DML queries. Each
solution will be underlined.

First, assume that we have information stored a-
bout suppliers, parts, and projects as expressed
by the following four relat ions [4] •

S(S#,SNAME,ClTY,STATUS)
P(P#,PNAME,COLOR,WEIGHT)
J(J#,JNAME,CITY)
SPJ(S#,P#,J#,QTY)

where a tuple in relation S gives information a-
bout a supplier with a given unique ID, his name,
location, and status. A tuple in relation P t~Is
us the part number, name, color, and weight. A
tuple in relation J tel ls us the project number,
i ts name, and location. Finally, the significance
of an SPJ tuple is that the specified supplier (S#)
supplies the specified part (P#) to the specified
project (J#) in the specified quantity (QTY).

The examples follow (refer to fig. 4 for relations
Cl, C2, C3, C4, C5 and C6).

Rl: Display ful l details of all projects. Add some
new tuples, update the J relation, then store
i t in the data base.

Sl: DISPLAY~J;CREATE~NEW;GETwJ~
UNI(J,NEW);PUT~S

R2: Get full details of all projects in London,
then display ful l details of all projects that
are not in London.

$2: CREATE~CI;GET~IN~JOIN(J.CITY,CI.A):OUT~
DI_F(j,IN);_DISPLAY~OUT

R3: Get S# values for suppliers who supp)y project
JI, then the supplier with the shortest name.

$3: CREATE~C2~GET~W~JOI=(SPJ.J#~C2.A):W~-~.

,~RO(W~S#[):;~41S(S:.SNAME)
R4: Display a formatted l i s t of all currently e~ist-

ing relations, then get S# values for suppliers
who supply project Jl with part Pl.

$4: $FDD;$FDW;GET~M~PRO(SPJ.S#.P#.J#):G~
DIV(M.P#.j#~£3.P#.J#)

R5: Get P# values for parts supplied to any pro~ct
in London.

$5: GET~K~JOIN(J.CITY,CI.A):CITY~.~
JOIN(K.J#,SPJ.J#):R~PRO(CITY.P#)

R6: Display P# values for parts supplied to all
projects in London.

$6: GET~K,~PRO(K.J#):D~PRO(SPJ.P#.J#):W4~
DIV(D.J#,K.J#);DISPLAY~W4

R7: Display the J# values for projects supplied~th
at least all parts supplied by supplier Sl,then
change the name of relation S to SSS.

$7: I. GETL.WI~JOIN(SPJ.S#,CS.A):W2~PRO(WI.P#):D~
PRO(D.J#.P#)

Z GET~W4~DIV(D.P#,W2.P#);DISPLAY~.~
W4;$CND(SSS,S)

R8: Get S# values for suppliers who supply the same
part to all projects.

$8: GET~M~PRO(SPJ.S#.P#.J#):A~PRO(J.J#):B~-~
DIV(M.J#,A.J#):Bw~PRO(B.S#)

R9: Destroy some of the unneeded relations, then get
S# values for suppliers who supply both projects
Jl and J2.

S9:DELETE~W4:W5:SSS;GET~TY~
PRO(SPJ.S#.J#):QTY~DIV(QTY.J#,C6.J#)

CI(A) ; C2(A); C3(P# J#); C4(A); C5(A); C6(J#)
London Jl P-i~JI Red S1 Jl

J2
Fig. 4 , Supplementary Relations.

REFERENCES

[~Codd, E.F., A Relational Model of Data for Large
Shared Data Banks, Communication of the ACM, vol.
13, no. 6, June, 1970.

[2}Codd, E.F., Normalized Data Base Structure: A
Brief Tutorial, proc. of the ACM-SIGFIDET Work-
shop on Data Description, Access and Control,1971.

[3]Codd, E.F., Relational Completeness of Data Base
Sublanguages, Data Base Systems, Courant Computer
Science Symposia Series, vol.6, Prentice-Hall,
Englewood Cl i f fs, N.J., 1972.

C~Date, C.J., An Introduction to Data Base Systems,
Addison-Wesley, Reading, Massachusetts, 1975.

[5]Digital Equipment Corp., MUMPS-II Programmer's
Guide, DEC-II MMPGA-C-D, Maynard, Mass., Nov.1974

[6~Held, Gerald Davis, Storage Structure for Rela-
tional Data Base Management Systems, Electronics
Research Laboratory memorandum no. ERL-M533, the
University of California, Berkeley, August, 1975.

{7~Knuth, D.E., The Art of Com~uter Programming: vol.
3, Sorting and Searching, Addison-Wesley, Readin~
Mass., 1973.

{8~Pecherer, Robert., Efficient Retrieval in Rela-
tional Data Base Systems, Electronics Research
Laboratory memorandum no. ERL-M547, the Universi-
ty of California, Berkeley, October, 1975.

[9]Rotwitt,Theodore et.al.,Storage Optimization of
the Tree Structured Files Representing Describtor
Sets, proc.of the ACM-SIGFIDET Workshop on Data

~, Description, Access and Control, 1971.
~Wasserman,A.I.et.al., MUMPS Globals and their Im-

plementations, Available from the National Bureau
of Standards, Room A-247, Building 225, Washing-
ton, D.C. 20234

328

