
A MUMPS-BASED RELATIONAL DATA BASE SYSTEM (MRDB) 

Georges S. Nicolas and John W. Lewis 

Department of Electrical Engineering and 
Division of Laboratory Medicine 

Washington University, St. Louis, Missouri 63130 

A relational database management system has been implemented in the MUMPS language using a binary 
tree structure for storage of relations. Several examples are given to i l lustrate the available 
functions and commands. Some details of the data structure are given, and tradeoffs discussed. The 
system was intended for teaching and research and no attempt was made to optimize performance. 
Nevertheless, timing measurements are presented to show that the use of a MUMPS-like tree structure 
for relational database system i~Dlementation can yield performance which varies with the size of the 
operand relations in a manner similar to previously reported relational database implementations. 

I. INTRODUCTION 

Among the most significant current concepts in 
data base technology is the relational model of 
data base management. The theory has been dis- 
cussed by Codd [I-3~ and several other authors 

[4, 6,.8] . The advantages of the relational 
moOel of data include simplicity, symmetry, data 
independence, and semantic completeness. Several 
implementations of the relational model have been 
reported in the l i terature ~4,8] . The Data Ma- 
nipulation Languages (DML) used in these implemen- 
tations can be classified into six major groups: 
( l )  Algebraic, (2) Relational Calculus, (3) Map- 
ping-oriented, (4) Element-by-element, (5) Natural 
language, and (6) Graphic oriented. Because of 
i ts relative ease of understanding and use, a re- 
lational algebra DML was chosen for the present 
implementation. Although certain kinds of infor- 
mation structures cannot readily be represented 
as trees, i t  is shown here that the MUMPS* binary 
tree structure is suitable for the implementation 
of a relational database management system. 

Within MUMPS, binary-tree structured f i les are re- 
ferred to symbolically as multiply-subscripted ar- 
rays, known as global arrays, or simply 91obals. 
These globa]s (trees) are dynamic and sparse, i .e. 
the only nodes which are created are those to 
which a value is exp l ic i t ly  assigned or those 
which must be created in order to provide a path 
from the root to a node which has been assigned a 
value. Any node may contain either numeric or 
string data of variable types and lengths. Some 
MUMPS systems have fac i l i t ies  for preventing dead- 
locks and insuring error free concurrent access to 
the shared data base represented by the appropri- 
ate set Of globals [5,  lO~ 

The choice of MUMPS globals as the supporting 
structure for the MRDB system was motivated princi- 
pally by the avai labi l i ty  of a MUMPS system, the 
anticipated ease of implementation, and the inter- 

*Massachusetts General Hospital U_tility M_ulti-Ero- 
gramming S_~ystem 

est in such work among the growing community of 
MUMPS users. 

In the rest of the paper, we describe a prototype 
re!a~ional system implemented in DEC MUMPS-f1 

L5J , on a PDP-II computer. Examples of opera- 
t i ons~11~ven ,and  ~mingmeasurements presented. 

2. OVERVIEW 

I t  wi l l  be assumed in this paper that the reader is 
familiar with the basic concepts of relational al- 
gebra (References ~I-4~ should be helpfu l ) .  

As viewed by the user, the database consists of a 
collection of named relations in normal form. ~ese 
time-varying relations are ofassorted degrees;and as 
time progresses, each n-ary relation m~besubjectto 
transformation, extraction, deletion, insertion, and 
alteration of some orall of i ts existing n-tuples. 

For every data base there is a corresponding~ork- 
space of variable size. This workspace is intended 
to fac i l i ta te  the user's manipulation of the data- 
base by providing him with a temporary storage 
space for an arbitrary number of transient or in- 
termediate relations. 

Both database and workspace gmwandshrinkdynamically 
as needed. They interact with each other~well as 
with the user~rough a set ofcommands, operators, and 
special functions which~ll be described~ater. 

The MRDB Management system hasthe~quSredfacilities 
to insure a modest level of security and integri ty 
of the stored data. I t  can be used as a stand-alone 
system or as a data management fac i l i t y  for the 
MUMPS language, with a f lexible interface. The user 
interacts with the MRDB system through an algebra- 
based DML which wi l l  be described next. 

3. The DML 
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In i t s  present state,  the MRDB system operates e i -  
ther on individual queries or on a sequence of 
queries, as determined by the user and his appl i -  
cation. Each query is made out of a series of 
commands and/or functions separated by the del imi- 
ter semicolon ( ; ) .  Within the command i t s e l f ,  ar- 
guments are separated by the de l imi ter  colon ( : ) .  
The dol lar  sign ($) is the f i r s t  of four charac- 
ters that make up every funct ion 's  name. Func- 
t ions with arguments, and operators within com- 
mands, have the i r  arguments enclosed within paren- 
theses. These arguments are re la t ions '  names and/ 
or the associated domains' names, separated by e i -  
ther the del imi ter  ( , )  or the del imi ter  ( . )  as 
w i l l  be described la ter .  See f ig .  I .  

abreviated by the i r  f i r s t  three le t te rs  in the DML 
of the MRDB system. 

Every operator operates on i t s  arguments to pro- 
duce a resul tant  re la t ion ,  and then stores th is  re- 
la t ion in the workspace under the associated name 
Rj. Any one of the resul tant  re lat ions may be used 
as a part of the argument(s) of any subsequent op- 
erators under the same GET command, or other fo l -  
lowing commands and/or functions. Table I.  b r ie f -  
ly  summarizes the role played by the "OPR(ARG)" in 
the GET command. 

B. Some of the more commonly used functions in 
database queries have been implemented in the 

MRDB sytem. 

~ost L a n g u a g e ~  
Interface ~,,~ 

Workspace ] PI~.~ ~ . ]  

L FUNCTIONS 

Fig .  1 - A s i m p l i f i e d  view o f  I n t e r a c t i O n s  

Let theL,  character represent the blank character, 
and Rj represent any re la t ion which exists in the 
database and/or the workspace for  j=1,2,3 . . . .  Let 
Dji represent any domain's name in re la t ion Rj for  
i=1,2,3 . . . .  and l e t  
O~ I N , : , < , > , ( = < , < : ) , ( : > , > = ) , ( < > , > < ) ]  . 

A. The f ive major DML commands have the fol lowing 
general forms: 

CREATE~-~RI:R2:R3:--- 
DELETE~RI:R2:R3:--- 
DISPLAY~RI:R2:R3:--- 
PUT~RI:R2:R3:-- -  
GET~RI~OPR(ARG):R2wOPR(ARG):R3~OPR(ARG):--- 

a) The CREATE Command allows the user to enter,  
from the terminal into the workspace, re lat ions 
under the names RI, R2,.. .  

b) The DELETE command w i l l  delete the named re la-  
t ions from the workspace and/or the database, 
i f  such re lat ions ex is t .  

c) The DISPLAY command, upon execution, w i l l  d is-  
play on the terminal the named re lat ions in the 
respective order and in tabular form. Any of 
these re lat ions may be in e i ther  the workspace 
or the database at the time of execution. 

d) The PUT command w i l l  store the named re lat ions 
in the database. These re lat ions are assumed 
to ex is t  current ly  in the workspace. 

e) In the GET command, OPR and ARG stand for  oper- 
ator and argument(s) respect ively.  The opera- 
tors are those defined by Codd [3 ]  , and are 

These functions return the i r  out- 
puts to, or take the i r  inputs 
from, a set of preassigned global 
arrays and/or variables, enabling 
a MUMPS appl icat ion program to 
manipulate the given re lat ions 
d i rec t l y  i f  desired. The re la-  
t ions in the arguments of the 

Database functions are assumed to be in 
the workspace and/or the database 
at execution time. Table 2 gives 
a b r ie f  descript ion of the cur- 
rent ly  ex ist ing functions. Fi- 
na l ly ,  we mention that those com- 
mands and functions which involve 
the a l te ra t ion  of data in the 
database w i l l  be prevented from 
being carr ied out by unauthorized 
users. In turn, authorized users 
are prevented from carrying out 
operations which would v io late 
any of the system in teg r i t y  con- 

s t ra ints  (see the appendix for  examples). 

4. IMPLEMENTATION 

Each re lat ional  database is represented by a MUMPS 
global as shown in f i g .  3. I t  is seen that the 
tabular form of a re la t ion ( f ig .  2) is mapped into 
a sub-tree. In addit ion to the above structure,  
re lat ions resul t ing from certain operations could 
be stored so that each tuple in the given re lat ion 
would be d i r ec t l y  addressable by means of a hash- 
ing function which transformed the tuple number 
(global index) into a unique re la t i ve  address on 
the disk. This randomly addressable structure 
would be a useful adjunct to the normal tuple stow 
age scheme in speeding up some of the re lat ional  
operators. 

No ordering among tuples, or among data items in a 
domain, is assumed. 

The general implementation technique of MUMPS glo~ 
als is to map logical information at a given sub- 
scr ip t  level of a given array into groups of f ixed 
size blocks chained together l i near l y  to contain 
a l l  the data values stored at that subscript level 
and a l l  the pointers which point to the headers of 
the chained blocks at the next lower subscript 
level .  Logical ly ,  the global looks l i ke  an n-ary 
t ree,  but the physical implementation is that of a 
binary t ree,  with one real pointer from a parent 
node to the f i r s t  descendent. In the fo l lowing,  a 
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Table 1 - Relational operators as used by the MRDB system 
SYNTAX OF OPR(ARG) CORRESPONDING MEANING 

I. CAR(RI,R2) 
2. UNI(RI,R2) 
3. INT(RI,R2) 
4. DIF(RI,R2) 
5. PRO(Rj.DjI.Dj2.Dj3.---) 

6. JOIg(RI.DIi,R2.D2j) 
7. RESg(Rj.DjI.Dj2) 
8. DIV(RI.DII,DI2,DI3.---, 

R2.D21.D22.D23...) 

I. The cartesian product of relations R1 and R2 
2. The union Of relations Rl and R2 
3. The intersection of relations Rl and R2 
4. The set difference of relation R2 from Rl 
5. Projection of Rj over Dj i 's.  Dj i 's could be in 

any order. Redundant tuples wi l l  be removed from 
resultant relation. 

6. R] is g-joined on domain Dli with R2 on domain D2j. 
7. Relation Rj is g-restricted on domain Djl and Dj2. 
8. Division of Rl on domains Dll,Dl2,Dl3, by R2 

on domains D21, D22, D23, I f  RI is empty, the 
resultant relation wil l  be empty t o o ,  

simple timing analysis for some relational opera- 
tions wi l l  be carried out. 

Given three memory buffers, b l ,  b 2, and b 3, each 
capable of storing one disk block, assume that the 
highest g~obal level (level 1 of f ig. 3) is small 
enough to be stored in main memory. Let Ti,Di,Ki 
for i=l,2 . . . .  be the number of tuples, the number 
of domains, and the average number of data items 
of relation Ri that can be stored in one disk block 
Let Nj be the number of disk blocks to be accessed 
in order to execute a command, an operator or a 
function; and let  that Nj(j=],2) be our measure of 
the speed of response to queries, i .e. the smaller 
the Nj, the faster the response to the given query. 
Almost all MUMPS applications systems are disk- 
bound, and thus Nj is a real is t ic  measure of system 
speed. 

feature reduces the I/O 
time (Nj), at the ex- 
pense of extra storage 
and more system overhead 
(Kj*~Kj) ,  by allowing 
only the necessary data 
(required domains) to be 
transferred between the 
disk and main memory. 
In the rest of this sec- 
tion the performance of 
type l and type 2 struc- 
tures for some relation- 
al operations wil l  be 
br ief ly compared. 

Consider f i r s t  the DISPLAY and CREATE commands. 
Since these commands require the transfer of a '~ 
whole relation to and from the memory buffers, 
the minimum possible values of Nj are N~=DiTi/Kiand 
N2=DiTi/Ki* for type l and type 2 respectively. 

EMP: NAME SALARY- P~ANAGER CODE 
John 20,000 Jones J25 

FGeorges 3,000 Thomas Gl6 Since we con- 
Lee 7,260 Susie L22 sidered l~e l  

1 of f i g  3 to  
Fig. 2 - A tabular f o r m o f ~ l a t i o n ~ P  be in main 

memory, we 
find that deletion of a whole relation (by the 
DELETE command) requires no disk access, i .e. Nl=O. 
This is very fast, because all that is required'is 
deletion of a single pointer. 

Table 2 - The MRDB system special functions 
FUNCTIONS SYNTAX MEANING 

a. SMAX(Rj.Dji) Returns maximum value in domain Dji df Rj. 
b. SMAS(RjoDji) Returns longest data item in domain Dji of Rj. 
c. SMIN(Rj.Dji) 
d. SMIS(Rj.Dji) 
e. $CNT(Rj.Dji) 

f. $TOT(Rj.Dji) 
g. SAVR(Rj.Dji) 
h. $ORA(Rj.Dji) 

i .  $ORD(Rj.Dji) 
j .  $CNW(RI,R2) 
k. $CND(RI,R2) 
1. $NOC(Rj) 
m. $NOR(Rj) 
n. $LOD(Rj) 

o. $STR(Rj) 
p. SFDD 

q. $FDW 

Returns minimum value in domain Dji of Rj. 
Returns shortest datum in domain Dji of Rj 
Returns the number of dist inct data items in 
domain Dji of relation Rj. 
Returns the sum of data items in Dji of Rj. 
The average value of data items in Dji of Rj. 
Orders the tuples of Rj in ascending order 
on domain Dji. 
Same as $ORA but in descending order. 
Changes the name of a workspace R2 to Rl. 
Changes the name of a database R2 to Rl. 
Returns the number of domains of Rj. 
Returns the current number of tuples of Rj. 
Extracts Rj from database/workspace and return 
i t  to a designated global as in Fig. 3 when 
the MRDB is used as a sub-system to MUMPS. 
Works in the opposite way of SLOD(Rj). 
Returns a formatted l i s t  of currently available 
relations in the database with their associated 
domains. 
Does the same thing for workspace,as in $FDD. 

Many current relational database implementations 
treat the tuple as being the smallest retrievable 
unit of data in a stored relation. These struc- 
tures wi l l  be referred to below as type 2. Let 
Ki* be the average number of data items of a rela- 
tion Ri that could be stored in one disk block for 
a type 2 implementation. 

In addition to retrieving data by tuples, the MRDB 
system implementation (referred to below as type l) 
offers the capability of accessing relations by do- 
mains and/or data items selectively. This extra 

I t  should be mentioned that, in theory, 
the PUT Command should require no more 
than a single pointer change, and thus 
N]=O. However, because of the way glo~ 
als are implemented in the present DEC 
MUMPS-II system, the PUT Command re- 
quires the reconstruction of an entire 
sub-tree. 

Finally, we show, through simple formu- 
las, the amount of time needed to carry 
out some of the functions from table 2 
and the PRO, JOIg, and RES@ operators. 

4.1 Functions 

For a type 1 implementation i t  takes 
[Di/2Ki I ( fx] means the smallest in- 

teger M@x) blocks to locate the given 
domain and rTi/Ki~ blocks to transfer 
all data items in the selected domain. 

Nl:F(Di+2Ki)/2Ki l 

For type 2 implementations, i t  takes 
N2: I 'D iT i /K i *  ] blocks to carry out the 
the function. 

NI/N2~((Di+2Ki)/2Ki)(Ki*/DiTi) 
I t  we assume Ki* = O(Ki ( I < ~ 2 )  and DiwC<2Ti 

NI/N 2 : ~ / D i  which says that response with a 
type l structure wil l  be Di/2 to Di times faster 
than with a type 2 structure. 

4.2 Projection (PRO) 

To carry out the projection operation, all that is 
necessary is to cut the links leading to the de- 
scendent nodes (of the appropriate domains) from 
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I 

i I block 
J J c h a i n  

A block chain consists of one or more disk 
blocks linked by continuation pointers. 

Fig. 3 - ROB Structure in MUMPS Global form 

the parent node (the operand relation). This re- 
quires retrieval of the appropriate blocks, era- 
sure of the pointers, and storage back on the disk 
Thus, the value of N] is in the range 
2~NI~FDi/Ki ~ +l depending on the number of pFo- 
jectdd domains and their locations. This is very 
fast in comparison with other implementations[8]. 

4.3 Join (JOlO) 

Let S be the number of tuples of the result re- 
lation. 

NI--<rDI/2K. ]I + FD2/2K21 + f(TI/KI)(T2/K2)I + S 
In the typlcal case, Ti>~Di, we can ignore the 
f i r s t  two terms, since they will be negligible 
compared with the values of the last two terms. 
I t  is easily seen that N2=~'DITID2T2/KI*K2*] 
=ImNl/N2 = (TITp+KIK2S)KI*K2*/DID2KIK2TIT2 " 
I f  we assume Rl~ = ~IKI  and K2* =~(2K 2, then 
NI/N2 : I /P : ~(IW2(TIT2+KIK2S)/DID2TIT2 
This says that  as long as 
KIK2S<(DID2 -WI~2)TIT2/WIW 2 is t rue ,  the Join 
operat ion with a type 1 s t ruc ture  is P times fas- 
te r  than wi th a type 2 s t ruc tu re .  

As a simple example, l e t  DI=IO, D2=12, TI :200, 
T2:150, Kl=14, KI*=20, K2:8, K2":14, and S=70. 
We see that  the Join operat ion is about 38 times 
fas te r  when using a type I s t ruc ture .  

4.4 Res t r i c t ion  (RESO) 

I t  can be shown here that  N I ~ D i / 2 K i I + F 2 T i / K ~ +  S 
using the same reasoning as in -sec t ion  4.3,  we can 
neglect  the f i r s t  term in t he  previous formula. 
For type 2, we have N2 = [ T i D i / K i * ]  . 

=~NI/N 2 = I/P : (2Ti+KiS)~/TiDi; which says that, 
as long as KiS<(Di-2)Ti/O(, the Restriction opera- 
tor when using a type l structure is faster by P 
times than when using a type 2 structure. 

For example, for the values Ti=400, Ki=lO, S:60, 
Di=lO, and(~=l.5, we get P~2. 

4.5 Measurements 

Finally, table 3 displays a comparison between the 
measured and predicted relative speeds for certain 
operations. Note that the time units have been nor- 
malized in order to show the change in speed with 
changes in the size of the relations. 

Table 3.a - Functions operating on relations with a 
fixed number of tuples 

number of domains| 1 2 3 4 5 6 7 8 
measured time" I l l 1.121.371.371.5 1.6 1.75. 
predicted time l l l.l 1.2 1.25 1.4 1.5 1.58 

Table 3.b - Functions operat ing on re la t ions  of  a 
f i xed degree 

number of tuplesI5 lO 
measured time Jl 1.33 
predicted time I 1 1.3 

1 5  20 25 30 35 40 
1.55 1.77 2 2.55 P.77 R.33 
1.5 1.8 2 ~-3 2,6 R.15 

Table 3.c - PR8 operat ion on a re l a t i on  of  degree 9 
wi th 30 tuples 

number of  projected domainsJl 2 3 4 5 6 7 8 
measured time JlA61d61.31J51~5 I~7 1 1 
predicted time JlA IA 1.351351~ I~5 1 1 
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Table 3.d - RES8 operation on relations with vary- 
ing degrees and a fixed number of 
tuples. 

number of domainsl2 
me---ea-s-ur-ed--t~ me ~ l 

3 4 5 6 7 8 9 
1.25 1.37 1.62 I~7 2 2.25 Z25 
12 1.35 1.6 I~2-2 2.3 2-35 

5. CONCLUSIONS 

An algebra based, relational database management 
system implemented with hierarchical (binary tree) 
f i les has been presented. The available opera- 
tions have been discussed, and the retrieval/up- 
date fac i l i t ies demonstrated through a set of sim- 
ple examples. The implementation has been briefly 
discussed, and some experimental measurements com- 
pared to predicted values for speed of response. 

The system is adequate for educational purposes, 
and capable of yielding useful data on f i le  struc- 
ture performance. Further use of the system pre- 
sented here for the investigation of f i le  struc- 
tures in relational database management systems is 
planned. In Particular, the present MRDB system 
will be used to test a parameterized theoretical 
model of DBMS performance. 

APPENDIX 

In order to familiarize the reader with the MRDB 
system, we are going to work out in this appendix 
a few simple examples. Each example will consist 
of a request, worded in English, and a correspond- 
ing solution, expressed by the DML queries. Each 
solution will be underlined. 

First, assume that we have information stored a- 
bout suppliers, parts, and projects as expressed 
by the following four relat ions [ 4 ]  • 

S(S#,SNAME,ClTY,STATUS) 
P(P#,PNAME,COLOR,WEIGHT) 
J(J#,JNAME,CITY) 
SPJ(S#,P#,J#,QTY) 

where a tuple in relation S gives information a- 
bout a supplier with a given unique ID, his name, 
location, and status. A tuple in relation P t~Is 
us the part number, name, color, and weight. A 
tuple in relation J tel ls us the project number, 
i ts name, and location. Finally, the significance 
of an SPJ tuple is that the specified supplier (S#) 
supplies the specified part (P#) to the specified 
project (J#) in the specified quantity (QTY). 

The examples follow (refer to fig. 4 for relations 
Cl, C2, C3, C4, C5 and C6). 

Rl: Display ful l  details of all projects. Add some 
new tuples, update the J relation, then store 
i t  in the data base. 

Sl: DISPLAY~J;CREATE~NEW;GETwJ~ 
UNI(J,NEW);PUT~S 

R2: Get full details of all projects in London, 
then display ful l  details of all projects that 
are not in London. 

$2: CREATE~CI;GET~IN~JOIN(J.CITY,CI.A):OUT~ 
DI_F(j,IN);_DISPLAY~OUT 

R3: Get S# values for suppliers who supp)y project 
JI, then the supplier with the shortest name. 

$3: CREATE~C2~GET~W~JOI=(SPJ.J#~C2.A):W~-~. 

,~RO(W~S#[):;~41S(S:.SNAME ) 
R4: Display a formatted l i s t  of all currently e~ist- 

ing relations, then get S# values for suppliers 
who supply project Jl with part Pl. 

$4: $FDD;$FDW;GET~M~PRO(SPJ.S#.P#.J#):G~ 
DIV(M.P#.j#~£3.P#.J#) 

R5: Get P# values for parts supplied to any pro~ct 
in London. 

$5: GET~K~JOIN(J.CITY,CI.A):CITY~.~ 
JOIN(K.J#,SPJ.J#):R~PRO(CITY.P#) 

R6: Display P# values for parts supplied to all 
projects in London. 

$6: GET~K,~PRO(K.J#):D~PRO(SPJ.P#.J#):W4~ 
DIV(D.J#,K.J#);DISPLAY~W4 

R7: Display the J# values for projects supplied~th 
at least all parts supplied by supplier Sl,then 
change the name of relation S to SSS. 

$7: I. GETL.WI~JOIN(SPJ.S#,CS.A):W2~PRO(WI.P#):D~ 
PRO(D.J#.P#) 

Z GET~W4~DIV(D.P#,W2.P#);DISPLAY~.~ 
W4;$CND(SSS,S) 

R8: Get S# values for suppliers who supply the same 
part to all projects. 

$8: GET~M~PRO(SPJ.S#.P#.J#):A~PRO(J.J#):B~-~ 
DIV(M.J#,A.J#):Bw~PRO(B.S#) 

R9: Destroy some of the unneeded relations, then get 
S# values for suppliers who supply both projects 
Jl and J2. 

S9:DELETE~W4:W5:SSS;GET~TY~ 
PRO(SPJ.S#.J#):QTY~DIV(QTY.J#,C6.J#) 

CI(A) ; C2(A); C3(P# J#); C4(A); C5(A); C6(J#) 
London Jl P-i~JI Red S1 Jl 

J2 
Fig. 4 , Supplementary Relations. 
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