|— l S V6.1-000

GT.M

Administration and Operations Guide

UNIX Edition

GT.M Administration and Operations Guide

Publication date September 04, 2014
Copyright © 2011-2014 Fidelity Information Services, Inc. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts.

GT.M™ s a trademark of Fidelity Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that comprise the system. This document
does not contain any commitment of FIS. FIS believes the information in this publication is accurate as of its publication date; such information is subject
to change without notice. FIS is not responsible for any errors or defects.

Revision History

Revision V6.1-000/1 04 September 2014 * In Chapter 2: “Installing GT.M” (page
4), added a new section called “Reference
Implementation Plugin - Shared Library
Dependencies” (page 8).

* In Chapter 7: “Database Replication” (page
173) and under the “Procedures ” (page
203) section, corrected the downloadable
scripts example (msr_proc2.tar.gz) for setting
up an A->P replication configuration.

Revision V6.1-000 01 August 2014 + Updated Chapter 3: “Basic

Operations” (page 12), Chapter 4:

“Global Directory Editor” (page

32), Chapter 5: “General Database
Management” (page 67), and Chapter 7:
“Database Replication” (page 173) for
V6.1-000. For chapter specific changes, refer to
the chapter-level revision history.

Revision V6.0-003/1 19 February 2014 » Added a new appendix called Appendix G:
“Packaging GT.M Applications” (page
441).

« In “REORG ” (page 102), added a caution
note on running successive REORGs.

« In “Environment Variables” (page
17), improved the description of the
gtm_nocenable environment variable.

« In “File Header Data Elements ” [266],
updated the descriptions for V6.0-003.

Revision V6.0-003 27 January 2014 * In Chapter 3: “Basic Operations” (page

12), added the -help and -? command line
options for the gtm script and the descriptions
of gtm_ipv4_only and gtm_etrap environment
variables.

* In Chapter 4: “Global Directory
Editor” (page 32), corrected the
syntax of [NO]JSTDNULLCOLL and -
COLLATION_DEFAULT and added a

http://www.gnu.org/licenses/fdl.txt

paragraph about what happens when
database file with automatic extension
disabled (EXTENSION_COUNT=0) starts to
get full.

In Chapter 5: “General Database
Management” (page 67), added the -
MUTEX_SLOTs qualifier for MUPIP SET and -
OVERRIDE qualifier for MUPIP RUNDOWN.

In Chapter 7: “Database Replication” (page
173), added downloadable script examples

for A->B and A->P replication scenarios,
information about the ACTIVE_REQUESTED
mode, PASSIVE_REQUESTED mode, and IPv6
support.

In Chapter 9: “GT.M Database
Structure(GDS)” (page 265),corrected the
description of block header fields.

Revision V6.0-001/2

10 April 2013

In Chapter 5: “General Database
Management” (page 67), added a planning/
preparation checklist that can be used before
starting a MUPIP BACKUP.

In Appendix F: “GTMPCAT - GT.M Process/
Core Analysis Tool ” (page 437), added
information about the --cmdfile option.

Revision V6.0-001/1

22 March 2013

In Chapter 5: “General Database
Management” (page 67), Chapter 6: “GT.M
Journaling” (page 130), and Chapter 7:
“Database Replication” (page 173),
improved the formatting all command
syntaxes.

In “SET Object Identifying Qualifiers

” (page 141), added the descriptions of -
repl_state={on|off} and -dbfilename=filename
qualifiers of -jnlfile.

Revision V6.0-001

27 February 2013

Added Appendix F: “GTMPCAT - GT.M
Process/Core Analysis Tool ”(page
437). gtmpcat is a diagnostic tool for FIS to
provide GT.M support.

Updated for V6.0-001. For chapter-
specific revisions, refer to Chapter 3:
“Basic Operations” [12], Chapter 4:
“Global Directory Editor” (page

32), Chapter 5: “General Database
Management” (page 67), Chapter 6:

“GT.M Journaling” (page 130), Chapter 7:
“Database Replication” (page 173),

and Chapter 10: “Database Structure
Editor” (page 279).

Revision V6.0-000/1

21 November 2012

Updated for V6.0-000. For chapter-specific
revisions, refer to Chapter 3: “Basic
Operations” [12], Chapter 4: “Global

Directory Editor” (page 32), Chapter 6:
“GT.M Journaling” (page 130), Chapter 10:
“Database Structure Editor” (page

279), and Appendix B: “Monitoring GT.M
Messages” (page 411).

Revision V6.0-000

19 October 2012

In Chapter 4: “Global Directory
Editor” (page 32), added the description
of the -INST_FREE_ON_ERROR region
qualifier.

In Chapter 5: “General Database
Management” (page 67), added the
description of the -INST_FREE_ON_ERROR
qualifier of MUPIP SET.

In Chapter 7: “Database Replication” (page
173), added the description of the -FREEZE
qualifier of MUPIP REPLICATE -SOURCE.

In Chapter 3: “Basic Operations” (page
12) added gtm_custom_errors to the list of
“Environment Variables” [17].

Revision 11

05 October 2012

In Chapter 12: “Database Encryption” (page
363), added information about setting the
environment variable GTMXC_gpgagent in
“Special note - Gnu Privacy Guard version

27 [389].

In Chapter 5: “General Database
Management” (page 67), improved the
description of MUPIP INTEG and the -
ADJACENCY qualifier.

In Chapter 3: “Basic Operations” (page
12) added GTMXC_gpgagent to the list of
“Environment Variables” [17].

Revision 10

28 September 2012

In Chapter 11: “Maintaining Database
Integrity” [324], added the “O5-Salvage
of a damaged spanning node” (page 354)
and “Recovering data from damaged binary
extracts” (page 331) sections.

In Chapter 9: “GT.M Database
Structure(GDS)” [265], added a new
section called “Using GDS records to hold
spanning nodes ” [274] and corrected the
first sentence of the "Use of Keys" section as
follows:

GT.M locates records by finding the first key
in a block lexically greater than, or equal to,
the current key.

In “Database Structure Editor” (page
279), improved the description of -DATA.

In “Starting the Receiver Server ” (page
243), improved the description of -
UPDATERESYNC.

In Appendix D: “Building Encryption
Libraries” (page 425), removed a
redundant step in the “Solaris 9 and 10
(SPARC) ” (page 428) section.

In Chapter 4: “Global Directory

Editor” (page 32), added the description

of the STDNULLCOLL qualifier and corrected
the description of the NULL_SUBSCRIPTS
qualifier.

In Chapter 4: “Global Directory

Editor” (page 32) and Chapter 5:

“General Database Management” (page
67), corrected the maximum value for -
LOCK_SPACE and improved the description
of -FLUSH_TIME.

Revision 9

14 August 2012

In Chapter 7: “Database Replication” (page
173), improved the description of the
replication WAS_ON state and added the
“Recovering from the replication WAS_ON
state ” (page 219) section.

Revision 8

03 August 2012

In Chapter 4: “Global Directory
Editor” (page 32) and Chapter 5:
“General Database Management” (page

67), improved the description of -
LOCK_SPACE.

In Chapter 4: “Global Directory

Editor” (page 32), improved the overview
description of GDE.

In Chapter 5: “General Database
Management” (page 67), added a note

on MUPIP BACKUP supporting only one
concurrent -online backup.

In Chapter 10: “Database Structure
Editor” (page 279) added the description
of the GVSTATS qualifier.

Revision 7

26 July 2012

In Chapter 1: “About GT.M” (page 1),
added a new section called "Command

Qualifiers".

Revision 6

19 July 2012

In Chapter 13: “GT.CM Client/Server” (page
400), corrected the example of starting a
GT.CM server.

In screen and print pdfs, removed excessive
spacing around SVG diagrams in Chapter 7:
Database Replication (page 173).

Revision 5

17 July 2012

Updated Chapter 7: “Database
Replication” (page 173) for V5.5-000.

In Chapter 3: Basic Operations (page
12), corrected the description

of the environment variable
gtm_non_blocked_write_retries.

Fixed a typo (stand-along -> stand-alone) in
“Recommendations” (page 432).

Revision 4

6 June 2012

Added Chapter 13: “GT.CM Client/
Server” (page 400).

In Chapter 5: “General Database
Management” (page 67), added the
description of MUPIP REORG -TRUNCATE
and MUPIP LOAD -STDIN.

In Chapter 6: “GT.M Journaling” (page

130), added the description of -ROLLBACK
-ONLINE, updated the description of -
EXTRACT to include the -stdout value, and
added the definitions of unam, cIlntunam, and
ALIGN records.

In Chapter 8: “M Lock Utility (LKE)” (page
252), added the description of the
LOCKSPACEUSE message.

In Chapter 10: “Database Structure
Editor” (page 279), updated the
description of -SIBLING.

In Chapter 4: “Global Directory

Editor” (page 32), added
AUTOSWITCHLIMIT as an option for the -
JOURNAL region qualifier.

In Chapter 7: “Database Replication” (page
173), removed -LOG as an option for -
STATSLOG.

Revision 3

02 May 2012

Added Appendix E: “GT.M Security
Philosophy” (page 430).

In “Rolling Back the Database After System
Failures” (page 249), corrected the
command syntax and the example.

In “Starting the Source Server” (page 230),
corrected the quoting of -filter examples.

In “Journal Extract Formats” (page 168),
added the definition of tid.

Revision 2

19 March 2012

In “O4-Salvage of Data Blocks with Lost
Indices” (page 352), fixed syntax errors in
the example.

Updated the section called “Journal Extract
Formats” [168] for V5.5-000.

« In “Installation Procedure” (page 5),

removed an incorrect reference to
libgtmshr.so.

Revision 1

5 March 2012

+ Updated “Basic Operations” (page 12)

for V5.5-000.

* In “Database Replication” [173],

improved the description of the -instsecondary
qualifier and added the “Stopping a Source
Server” [241] section and the “Shutting

Down an instance” [209] procedure.

Revision V5.5-000

27 February 2012

* Updated “Installing GT.M” (page 4) for

V5.5-000.

« Updated “REORG ” [102] for V5.5-000. Also,

improved the description of -EXCLUDE and -
SELECT qualifiers.

« In “CHANGE -Flleheader Qualifiers” [290],

added a caution note about changing the
value of the -CORRUPT_FILE fileheader
element.

« In “Starting the Source Server” [230], added

information about using external filters for
pre-V5.5-000 versions.

Revision 4

13 January 2012

- In “Starting the Source Server” [230], added

an example of a replication filter.

« In “Before you begin” [4], added a note
to caution users about installing and operating
GT.M from an NFS mounted directory.

« In “Operating in DSE” [279], improved the
description of the Change command.

Revision 3

26 December 2011

In “GT.M Journaling” [130], added the

Journal Extract format for the ZTRIG record.

Revision 2

2 December 2011

* In “GT.M Journaling” [130], improved the
description of -EXTRACT and corrected the
heading levels of some sections under MUPIP
JOURNAL.

* In “Database Replication” [173],
corrected the usage of the term
propagating instance, improved the
description of -stopsourcefilter, and
changed -nopropagatingprimary to -
propagatingprimary.

» Added Index entries for gtmsecshr.

« In “Compiling ICU” [414], changed the
instructions for Compiling ICU 4.4 on AIX 6.1.

Revision 1

10 November 2011

« In the “Conventions Used in This
Manual” [xi] section, added a brief
description about wrapping long-line examples
in Print and Screen PDFs.

« Inthe “SET ” [109] section, changed
"MUPIP SEt" to "MUPIP SET".

« In the “Startup” [204] section, changed
"Restore the replication instance file" to
"Recreate the replication instance file".

Revision V5.4-002B

24 October 2011

Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Table of Contents

ADOUL This MaNUAL ...coiiiiiiiiiiiiii ettt e ettt e ettt e e ettt e e ettt e e ettt e e et e e et ee e X
1o ADOUL GT.M ittt e e ettt e e ettt e e ettt oottt e ettt e et e et e e ettt e e eaaeeeean 1
2. InStalling GT.M (oot 4
3. BASIC OP@TATIONS «.eiiiiiiiieeee ettt ettt e et ettt e e e ettt ettt e e e ettt et e bbb e e ettt ettt e e e e ettt ettt e e eeeeeans 12
Z @ [0) L1 B U (<ot o) iyl S L) PP PURPR SRR 32
5. General Database MAaNA@EIMENEuuiiiiieeeeiiiiiiiee et e e e e e ettt ettt e e e e e e ettt e eeee e e e aebae et e eeeee e e eeeeeeeeeaeesaanntnaeeeeeaeeeeannnenees 67
6. GT.M JOUTNALINE «ooiiiiiiiiiiiiiiii 130
7. Database REPICATION ...eiiuuiiiiiiiiie ettt e e e ettt e e e e e ettt e e e e e e e s ettt e e e e e e e eanneseaeeeeeeeeeaannntaeeeeeaeeeaannes 173
8. M LOCK UHHEY (LKE) ©...veveeeeeeeeeeeeeeeeeeeee e e e e e e e ee e e e e e s e e s e e e e e e e e e e eee e e e e 252
9. GT.M Database Structure(GDS)cccooeiiiiiiieiiee e 265
10. Database STrUCUIe EdItOTccooiiiiiiiiiiiiiiiiii ettt e ettt e et e ettt e e st ee e 279
11. Maintaining Database TNEEEIILYoiiiiiiiiiiiiiiiii ettt ettt e e e e e ettt et e e e e e ettt e e e e e e e nnnebaeeeeeeeeeannneeneeas 324
12. DAtabase EIICTYPLION ...uuiiiiiiiiiiiiiiiiiiiititte ettt 363
13, GT.CM CHENE/SEIVET ...etiiiiiieeiiiiiiit ettt ettt e e e ettt e e e e sttt ettt e e e ettt ettt e e e e e nabbt et eeeeesaaeataaeeeas 400
A. GT.M'S IPC RESOUICE USAZE .eevvviuueeeeitiiiiiiiiis e e et ettt e e e e ettt e e e e ettt ettt e e e e e et etttbba s e e e et eeaataba e e eeeeeeeattaba e eeeeeeens 405
B. MONItOTING GT.IM MESSAZESuueeeeiieiiiiiiie ettt ettt e ettt ettt e e e ettt ettt b e e e e et e e ettt e e e e et eeeatabb e e eeeeeeenanaaanns 411
C. Compiling ICU on GT.M supported platfOrmmscc.uuuiiiiiiiiiiii et e et e e e e e eeeeeeeeeees 414
D. Building ENcryption LIDTATIESeeiiiiieiiiiiiitiieiee ettt e e e e e e ettt e e e e e e e ettt eaeeeeaansneeteeeeeeeeeannnsenneeeeens 425
E. GT.M Security PhilOSOPRYcoiiiiiiiiiiii ettt e ettt e e e e e e ettt e e e e e e e ettt e e e e e e eanneeeeeeas 430
F. GTMPCAT - GT.M Process/Core Analysis TOOLcooiiiiiiiiiiiiiiiiiiic e 437
G. Packaging GT.M APPLICATIONSvueiiiiieee ittt e e e ettt et e e e e e ettt e e e e e e ettt e e e e e e e e attee ittt e eeeeeaannb ettt aaeeeeannnneeneeeeens 441
(@) (LT T 1 o PSP PPPEPRRN 446
IIUAEX ettt e e e ettt e ettt e e ettt e e ettt e ettt e e e e as 447

ix

About This Manual

GT.M is a high-end database application development platform offered by Fidelity National Information Services (FIS). GT.M
provides an M (also known as MUMPS) language environment that largely complies with ISO/IEC 11756:1999. GT.M's compiler
for the standard M scripting language implements full support for ACID (Atomic, Consistent, Isolated, Durable) transactions,
using optimistic concurrency control and software transactional memory (STM) that resolves the common mismatch between
databases and programming languages. The GT.M data model is a hierarchical associative memory (that is, multi-dimensional
array) that imposes no restrictions on the data types of the indexes and the content - the application logic can impose any
schema, dictionary or data organization suited to its problem domain.

GT.M's unique ability to create and deploy logical multi-site configurations of applications provides unrivaled continuity of
business in the face of not just unplanned events, but also planned events, including planned events that include changes to
application logic and schema.

You can install and manage GT.M using the utilities described in this manual and standard operating system tools. The first
three chapters provide an overview of GT.M, installation procedures, and GT.M system environment. The remaining chapters
describe GT.M operational management.

Intended Audience

This manual is intended for users who install GT.M and manage the GT.M user environment. The presentation of information
assumes a working knowledge of UNIX, but no prior knowledge of GT.M.

Purpose of the Manual

This GT.M Administration and Operations Guide explains how to install and manage GT.M.

How to Use This Manual

First, read Chapter 1: “About GT.M” (page 1) for an overview of GT.M system management. Then, proceed to the chapter
that discusses the area of interest.

The presentation of information in each chapter is designed to be useful for even a first-time user. Each chapter starts

with an overview of the topic at hand and then moves on to related GT.M utility program commands and qualifiers. This

list is organized alphabetically by command and then by the qualifiers for each command. Then, the chapter provides
recommendations from FIS to implement and operate important aspects of the topic. It ends with an exercise that reinforces the
concepts introduced in the chapter.

FIS recommends users read the chapters in a top-down manner. After becoming familiar with GT.M, use the "Commands and
Qualifiers" section of each chapter as a reference manual.

Overview
This manual contains twelve chapters and an Appendix. Here is a brief overview of each chapter:

Chapter 1: “About GT.M” (page 1) introduces GT.M administration and operations.

About This Manual

Chapter 2: “Installing GT.M” (page 4) provides procedures for installing GT.M.
Chapter 3: “Basic Operations” (page 12) describes operations required to start GT.M and keep it running.

Chapter 4: “Global Directory Editor” (page 32) describes global directories, which control placement and access of global
variables, and explains how to use the Global Directory Editor (GDE) to create and maintain global directories.

Chapter 5: “General Database Management” (page 67) describes how to use a GT.M utility called MUPIP to perform database
and non-database operations.

Chapter 6: “GT.M Journaling” (page 130) describes the journaling capabilities of GT.M.

Chapter 7: “Database Replication” (page 173) describes how to implement continuous application availability using multiple
systems.

Chapter 8: “M Lock Utility (LKE)” (page 252) describes how to use a GT.M utility called M Lock Utility (LKE) to examine and
adjust M locks.

Chapter 9: “GT.M Database Structure(GDS)” (page 265) provides an overview of GT.M Database Structure (GDS).

Chapter 10: “Database Structure Editor’ (page 279) describes how to use the Database Structure Editor (DSE) to examine and
modify sections of the database, should that ever be necessary.

Chapter 11: “Maintaining Database Integrity” (page 324) describes procedures for verifying and maintaining the integrity of
GDS databases.

Chapter 12: “Database Encryption” (page 363) describes procedures for encrypting data in the database and journal files.

Appendix A: “GT.M's IPC Resource Usage” (page 405) describes how GT.M processes use UNIX Interprocess Communication
(IPC).

Appendix C: “Compiling ICU on GT.M supported platforms” (page 414) contains sample ICU installation instructions.
Although GT.M uses ICU to enable the support for Unicode™, ICU is not FIS software and FIS does not support ICU. The
sample instructions for installing and configuring ICU are merely provided as a convenience to you.

"Appendix C" describes security considerations for deploying applications on GT.M.

Conventions Used in This Manual
References to other GT.M documents are implemented as absolute hypertext links.

Use GT.M with any UNIX shell as long as environment variables and scripts are consistently created for that shell. In this
manual, UNIX examples are validated on Ubuntu Linux (Ubuntu Linux uses dash for /bin/sh). Examples in later chapters
assume that an environment has been set up as described in the chapters Chapter 2: “Installing GT.M” (page 4) and
Chapter 3: “Basic Operations” (page 12).

FIS made a conscientious effort to present intuitive examples and related error messages that appear if a user tries those
examples. However, due to environment and shell differences, you may occasionally obtain different results (although the
differences should be relatively minor). Therefore, FIS suggests that you try the examples in a database environment that does
not contain any valued information.

Examples follow the descriptions of commands. For readability purposes, long shell command lines are wrapped into multiple
lines. The » icon denotes the starting point of wrap. Users must always assume a single line is correct and that the » icon means

xi

About This Manual

continuation. To facilitate copy/paste of examples from Screen PDF, clicking on u icon below a wrapped example opens a
window or tab where that example is available with unwrapped command lines. For Print PDF, an unwrapped command lines
example can be downloaded from the URL below the example.

In M examples, an effort was made to construct examples where command lines did not wrap, in many cases using the
argumentless DO.

The examples make frequent use of literals in an attempt to focus attention on particular points. In normal usage arguments are
far more frequently variables.

xii

Chapter 1. About GT.M

Revision History

Revision V5.5-000/7 26 July 2012 Added a new section called “Command
Qualifiers” (page 3).

Revision V5.5-000/4 10 May 2012 Updated for V5.5-000.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

GT.M is a high-end performance database application development and deployment platform from Fidelity National
Information Services (FIS). GT.M provides an M language subsystem, a database engine, and a complete set of utilities for
administration and operation. One can install and manage GT.M using the utilities described in this manual and standard
operating system tools. This chapter provides an overview of the GT.M system environment and utilities.

Hardware/Operating System Environment

GT.M runs on a wide variety of UNIX/Linux implementations as well as OpenVMS. Consult FIS for currently supported
versions. Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on specific hardware
architectures (the combination of operating system and hardware architecture is referred to as a platform). This set of specific
versions is considered Supported. There will be other versions of the same operating systems on which a GT.M release may
not have been tested, but on which the FIS GT.M support team knows of no reason why GT.M would not work. This larger set
of versions is considered Supportable. There is an even larger set of platforms on which GT.M may well run satisfactorily, but
where the FIS GT.M team lacks the knowledge to determine whether GT.M is Supportable. These are considered Unsupported.
Contact FIS GT.M Support with inquiries about your preferred platform.

System requirements vary widely depending on application needs, and should be empirically determined for each situation.

Installation

GT.M installation is semi-automatic, using the system administration scripts provided with GT.M. The installation procedure is
described in Chapter 2: “Installing GT.M” (page 4).

Security

Users require no special privileges to run GT.M beyond standard system access and suitable access to relevant application and
database files. All the standard UNIX/OpenVMS security features are available to protect GT.M resources.

FIS strongly recommends a security design where each user has no more authorizations than they require to do their assigned
roles and each user's actions are distinguishable in an audit.

About GT.M

Note

Root or superuser access is required to install GT.M, but not to use it. FIS recommends against routine use of
the root userid to run GT.M.

Program Development Environment

GT.M provides a compiler and run-time environment for the M language. Program development uses standard editors and
utility programs.

GT.M requires minimal administrative effort.
M routines are stored as text files and object files in the native file system. Compilation of source text into object code is
typically automatic, but may be invoked explicitly. A user may store routines in multiple libraries and/or directories organized

into search hierarchies, and change the search paths as needed.

For more information on the GT.M language and programming environment, see GT.M Programmer's Guide.

Database Subsystem

The GT.M database subsystem consists of a run-time library and a set of utilities which operate on one or more user-specified
Global Directories (GD) and database files. GT.M stores M global variables in database files, which are ordinary UNIX files.
Internally, the UNIX files are organized as balanced trees (B-trees) in GT.M Data Structures (GDS). See "GT.M Database
Structure" chapter for more information on B-trees and the GDS file structure.

A directory maps global names to a database file. GT.M processes use this mapping when storing and retrieving globals from
the database. Multiple global directories can reference a single database file, and a database file can be referenced in multiple
global directories, with some exceptions, as discussed in Chapter 4: “Global Directory Editor” (page 32). Use the Global
Directory Editor (GDE) to create and maintain global directories.

In addition to mapping global variables to database files, global directories also store initial parameters used by the MUPIP
CREATE command when creating new database files. GT.M uses environment variables to locate the global directory or,
optionally database files.

GT.M Utility Programs

GT.M provides utility programs to administer the system. Each utility is summarized below, and described later in this manual.

GDE

The Global Directory Editor (GDE) is a GT.M utility program that creates and maintains global directories. GDE provides
commands for operating on the global directory.

MUPIP

MUPIP (M Peripheral Interchange Program) is the GT.M utility program for general database operations, GT.M Journaling,
Multi-site Database Replication, and some non-database operations.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

About GT.M

LKE

The M Lock Utility (LKE) is the GT.M utility program that examines and modifies the lock space where GT.M maintains the
current M LOCK state. LKE can monitor the locking mechanism and remove locks. See Chapter 8: “M Lock Utility (LKE)” (page
252) for more information.

DSE

The Database Structure Editor (DSE) is the GT.M utility program to examine and alter the internal database structures. DSE
edits GT.M Database Structure (GDS) files. It provides an extensive database "patch" facility (including block integrity checks),
searches for block numbers and nodes, and provides symbolic examination and manipulation facilities. See Chapter 10:
“Database Structure Editor” (page 279) for more information.

Command Qualifiers

Each utility program has its own set of commands. Qualifiers are used as arguments for a command. A qualifier is always
prefixed with a hypen (-). Some qualifier allow assigning values with an equal (=) sign where as some allow the use of sub-
qualifiers as their arguments. If you specify the same qualifier more than once, MUPIP, DSE, and LKE acts upon the qualifier
that appears latest. However, you cannot specify qualifiers that have sub-qualifiers more than once. With GDE, specifying the
same qualifier more than once produces an error.

Database Integrity

GT.M tools verify and maintain database integrity. As described in Chapter 11: “Maintaining Database Integrity” (page 324),
database integrity refers to a state of logical and physical consistency in the database when all of the globals and pointers are
correct, thereby making all data accessible. Chapter 11 [324] describes how to use the MUPIP INTEG command and the DSE
utility to detect and repair integrity problems, and supplies procedures for avoiding such problems.

Interprocess Communication

GT.M uses UNIX Interprocess Communication (IPC) resources to coordinate access to the database. Additionally, GT.M
includes a daemon process gtmsecshr that implements process wake-up for M locks and clean-up of IPC resources after certain
types of abnormal process termination. See Appendix A: “GT.M's IPC Resource Usage” (page 405) for more information.

Chapter 2. Installing GT.M

Revision History

Revision V6.1-000/1 04 September 2014 Added a new section called “Reference
Implementation Plugin - Shared Library
Dependencies” (page 8).

Revision V5.5-000/2 19 March 2012 Removed an incorrect reference to libgtmshr.so.
Revision V5.5-000 27 February 2012 Updated for V5.5-000.
Revision 4 13 January 2012 In “Before you begin” [4], added a note

to caution users about installing and operating
GT.M from an NFS mounted directory.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

This chapter describes the installation procedure for GT.M. Always see the release notes for special instructions before
installing GT.M.

Obtaining GT.M Distribution Media

FIS prefers to distribute GT.M online via the Internet. GT.M for selected platforms, including GNU/Linux on the popular x86
architecture, can be downloaded under the terms of the Affero GNU General Public License (AGPL) version 3, from Source
Forge (http://sourceforge.net/projects/fis-gtm). Contact GT.M Support (gtmsupport@fisglobal.com) to obtain a copy of a GT.M
distribution for other platforms or on physical media.

Before you begin
Before you begin installing GT.M, perform the following tasks:

« Read the GT.M Release Notes documentation. The release documents contain the latest information that may be critical for
installing and configuring GT.M. They are located at the User Documentation tab on the GT.M website (www.fis-gtm.com).

« Determine whether or not, GT.M access is restricted to a group. Keep the group name handy as you will have to enter it
during the installation process.

« Set the environment variable gtm_log to a directory where GT.M should create log files. In conformance with the Filesystem
Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for $gtm_log unless you are installing the same
version of GT.M in multiple directories. Note that $gtmver can be in the form of V6.1-000_x86 which represents the current
GT.M release and platform information.

If you do not set gtm_log, GT.M creates log files in a directory in /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-
UX, Solaris). However, this is not recommended because it makes GT.M log files vulnerable to the retention policy of a
temporary directory.

http://sourceforge.net/projects/fis-gtm
http://fis-gtm.com

Installing GT.M

Important

Starting with V6.0-000, gtmsecshr logs its messages in the system log and the environment variable gtm_log
is ignored.

« If you need to perform Unicode™-related operations in GT.M, you must have at least ICU version 3.6 installed. GT.M uses
ICU 3.6 (or above) to provide the support for Unicode. GT.M generates the distribution for Unicode only if ICU 3.6 (or
above) is installed on your system. By default, GT.M uses the most current version of ICU. GT.M expects ICU to have been
built with symbol renaming disabled and issues an error at startup if the currently installed version of ICU has been built
with symbol renaming enabled. If you intend to use a version of ICU built with symbol renaming enabled or any version
other than the default, keep the MAJOR VERSION and MINOR VERSION numbers ready as you will have to enter it as
MajorVersion.MinorVersion (for example "3.6" to denote ICU-3.6) during the installation process.

n Caution

Installing GT.M on an NFS mounted directory is not recommended. Several NFS characteristics violate GT.M
database design assumptions which may manifest themselves as hard to diagnose problems. If you still
choose to install and operate GT.M from an NFS mounted directory, there are chances that at some point you
will face significant problems with performance and response time.

While you should never operate GT.M database and journal files from an NFS mounted directory you
can safely, except on Linux, use an NFS mounted directory for keeping source and object code modules
and performing sequential file I0. While NFS mounted files may work for you, historically they have
not provided sufficient support for file locking over NFS to prevent intermittent errors when you have a
significant concurrent file activity.

Installation Procedure

Create a backup copy of any existing version of GT.M before running the installation procedure. The installation procedure
overwrites any existing version of GT.M in the installation target directory.

ﬁ Important

Never install a GT.M release into an existing directory overwriting another release that might be needed for
research or recovery and never on the one currently in use. FIS recommends installing each version of GT.M
in a separate directory using the naming convention /usr/lib/fis-gtm/version_platform , where version is
the GT.M version being installed and platform is the hardware architecture. For example, /usr/lib/fis-gtm/
V6.1-000_x86_64.

Run the installation procedure as root for everything to install correctly.

Find or create a temporary directory to hold your GT.M distribution files and change to that directory.

Example:

$ cd /tmp

or

$ cd /usr/tmp

Installing GT.M
Note
When choosing a temporary directory, keep in mind the following points:

« Whether it is safe to use a directory (like /tmp) subject to concurrent use by the operating system,
applications, and so on.

« Whether you can protect any sensitive information in temporary files with appropriate access permissions.

Unpack the distribution to the current directory with a command such as the following (your UNIX version may require you to
first use gzip to decompress the archive and then tar to unpack it; the tar options may also vary):

$ tar zxvf /Distrib/GT.M/gtm_V55000_linux_x8664_pro.tar.gz

Note

The name of the device and the tar options may vary from system to system.

The GT.M distribution contains various GT.M system administration scripts. These include:

configure to install GT.M
gtm sets a default user environment and starts GT.M.
gtmbase An example to set up a default user environment.

Note that gtmbase is simply an example of the type of script you can develop. Do not use it as is.
For more information on using gtmbase and other scripts, refer to Chapter 3: “Basic Operations” (page 12).
To start the GT.M installation procedure, execute the following script:
#./configure
The configure script displays a message like the following:
GT.M Configuration Script
GT.M Configuration Script Copyright 2009, 2012 Fidelity Information Services, Inc. Use of this

software is restricted by the provisions of your license agreement.

What user account should own the files? (bin)

Enter the name of the user who should own GT.M distribution files. The default is bin. If there is no user with the name bin,
the configure script asks for an alternate user who should own GT.M distribution files.

What group should own the files? (bin)

Enter the name of the group who should own GT.M distribution files. The default is bin. If there is no group with the name bin,
the configure script asks for an alternate group who should own GT.M distribution files.

Should execution of GT.M be restricted to this group? (y or n)

Choose y to restrict the ownership of your GT.M distribution to the specified group. This is a security-related option. By
default, GT.M does not restrict the ownership to a group.

In what directory should GT.M be installed?

Installing GT.M

Enter a directory name, such as /usr/lib/fis-gtm/V6.1-000_x86_64. If the directory does not exist, the configure script displays
a message like the following:

Directory /usr/lib/fis-gtm/V6.1-000_x86_64 does not exist.
Do you wish to create it as part of this installation? (y or n)

Choose y to create the directory or n to cancel the installation.
Installing GT.M...

This is followed by a confirmation message for installing UTF-8 support.
Should UTF-8 support be installed? (y or n)

Choose y to confirm. If you choose n, Unicode functionality is not installed.

Note

GT.M requires at least ICU Version 3.6 to install the functionality related to Unicode.

If you choose y, the configure script displays a message like the following:

Should an ICU version other than the default be used?

If you choose n, the configure script looks for the symbolic link of libicuuc.so to determine the default ICU version.
If you choose y, the configure script displays a message like the following:

Enter ICU version (at least ICU version 3.6 is required.
Enter as <major-ver>.<minor-ver>):

Enter the ICU version number in the major-ver.minor-ver format. The configure script displays the following message:
All of the GT.M MUMPS routines are distributed with uppercase

names. You can create lowercase copies of these routines

if you wish, but to avoid problems with compatibility in

the future, consider keeping only the uppercase versions

of the files.

Do you want uppercase and lowercase versions of the MUMPS routines? (y or n).

Choose y to confirm. The configure script then displays the list of MUMPS routines while creating their lowercase versions.
Then the script compiles those MUMPS routines. On platforms where GT.M supports placing object code in shared library, it
creates a library libgtmutil.so with the object files of the utility programs and GDE distributed with GT.M. On these platforms,
it asks the question:

Object files of M routines placed in shared library /usr/lib/fis-gtm/V6.1-000_x86_64/1libgtmutil.so.
Keep original .o object files (y or n)?

Unless your scripts require separate object files for these routines, you can safely delete the .o object files, and place $gtm_dist/
libgtmutil.so as the last element of gtmroutines in lieu of $gtm_dist.

The configure script then asks you:
Installation completed. Would you like all the temporary files removed from this directory? (y or n)

Choose y to confirm. FIS recommends deleting all temporary files.

Installing GT.M

Congratulations! GT.M is now installed on the system. Proceed to “Reference Implementation Plugin - Shared Library
Dependencies” (page 8) section to identify and resolve shared library dependencies on your system and then Chapter 3:
“Basic Operations” (page 12) to set up a default user environment.

Reference Implementation Plugin - Shared Library Dependencies

The database encryption and TLS reference implementation plugin requires libgerypt11, libgpgme11, libconfig 1.4.x, and
libssl1.0.0 runtime libraries. Immediately after installing GT.M, install these libraries using the package manager of your
operating system. If these runtime libraries are not available, the plugin may produce errors like the following (for example on
Ubuntu x86_64):

%GTM-I-TEXT, libxxxxxx.so.<ver>: cannot open shared object file: No such file or directory

.where libxxxxxx is either libgcrypt, liggpgme, libconfig, libgcrypt, or libssl and <ver> is the version number of the libxxxxxx
shared library. To locate missing share library dependencies in your reference implementation plugin, execute the following
command:

$ 1dd $gtm_dist/plugin/libgtmx | awk '/*.usr/{libname=$03}/not found/{print libname;print}’
This command produces an output like:
/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmcrypt_openssl_AES256CFB.so:
libcrypto.so.10 => not found
/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmcrypt_openssl_BLOWFISHCFB.so:
libcrypto.so.10 => not found
/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmtls.so:

libssl.so0.10 => not found

...which means that libcrypto.so.10 and libssl.so.10 shared libraries are missing from the system and the reference
implementation plugin will produce a libxxxxxx.so.<ver>: cannot open shared object file: No such file or directory error during
runtime. Note down the missing shared libraries and proceed as follows for each missing library:

« If libxxxxxx.so.<ver> is already installed: Set the environment variable LD_LIBRARY_PATH to include its location.

« If libxxxxxx is not installed: Install the runtime libxxxxxx library using the package manager; check for pre-packaged
distributions for your operating system and ensure that it contains the library having version specified with <vers.

« If libxxxxxx is installed but its version number is different from what GT.M expects (<ver>): You can either symlink
the unversioned libxxxxxx.so library to libxxxxxx.so.<ver> (recommended) or recompile the reference implementation
plugin. The instructions are as follows:

Creating a symbolic link from the unversioned .so (libxxxxxx.so) to libxxxxx.so.<ver>

1. Install the development libraries for libgerypt11, libgpgme11, libconfig 1.4.x, libssl1.0.0. The package name of development
libraries usually have the -dev suffix and are available through the package manager. For example, on Ubuntu_x86_64 a
command like the following installs the required development libraries:

sudo apt-get install libgcryptli-dev libgpgmell-dev libconfig-dev libssl-dev
These packages contain the unversioned .so library (libxxxxxx.s0).

2. Find the directory where the unversioned .so library is installed on your system. Note down the name of the directory.

Installing GT.M

3. Login as root and change to the $gtm_dist/plugin directory.

4. Create the symlink from libxxxxxx.so to libxxxxxx.so.<ver>. For example, if libcrypto.so.10 and libssl.s0.10 shared libraries
are missing, create their symbolic links in $gtm_dist/plugin from the unversioned .so library location that you noted in step
2:

In -s /usr/lib/x86_64-1inux-gnu/libcrypto.so libcrypto.so.10
In -s /usr/lib/x86_64-1inux-gnu/libssl.so libssl.so0.10

Note

The reference implementation plugin libraries are linked using the RPATH directive $ORIGIN which means
that these libraries always start looking for library dependencies from the current directory. Therefore, it

is safe to create symlinks for the missing libraries in $gtm_dist/plugin directory. Do not create symlinks

to shared libraries in directories managed by package managers and never symlink incompatible library
versions as it may not always lead to predictable results.

Recompiling the Reference Implementation Plugin

1. Install the development libraries for libgerypt11, libgpgme11, libconfig 1.4.x, libssl1.0.0. The package name of development
libraries usually have the -dev suffix and are available through the package manager. For example, on Ubuntu_x86_64 a
command like the following installs the required development libraries:

2. Login as root and set the gtm_dist environment variable to point to the location of the GT.M distribution.
3. Note down the file permissions of the *.so files in $gtm_dist/plugin directory.
4. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build

cd /tmp/plugin-build

cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

5. Recompile the reference implementation plugin and install it in the $gtm_dist/plugin directory.

make uninstall
make

make install
make clean

6. Assign permissions noted in step 3 to the newly installed .so files in $gtm_dist/plugin.

C Important

If you are running the V6.1-000 reference implementation plugin (database encryption and TLS replication)
on a UNIX platform other than RedHat, please follow instructions from “Creating a symbolic link from

the unversioned .so (libxxxxxx.so) to libxxxxx.so.<ver>" (page 8) to create symlinks for the missing
liberypto.so.10 and libssl.s0.10 shared libraries. GT.M UNIX distributions are compiled and linked on a
RedHat platform where libcrypto.so.10 and libssl.s0.10 version libraries are available from package managers.
On UNIX platforms other than RedHat, these library versions may not be available from package managers
and need to be linked to their unversioned .so libraries.

Installing GT.M

gtminstall script

gtminstall is an experimental GT.M installation facility that when used stand-alone attempts to download the latest / current
production GT.M distribution from sourceforge.net and installs GT.M using reasonable defaults. It is included with the GT.M
binary distribution and you can also use it to install GT.M from the temporary directory in which you unpack the GT.M
distribution. It allows considerable customization using the following command line switches:

Command line switches

Description

--build-type buildtype

Type of GT.M build, default is pro

--copyenv dirname

Copy gtmprofile and gtmcshrec files to dirname; incompatible with linkenv

--copyexec dirname

Copy gtm script to dirname; incompatible with linkexec

--debug -

Turn on debugging with set -x

--distrib dirname or URL

Source directory for GT.M distribution tarball, local or remote

--dry-run

Do everything short of installing GT.M, including downloading the distribution

--group group

Group that should own the GT.M installation

--group-restriction

Limit execution to a group; defaults to unlimited if not specified

--help

Print this usage information

--installdir dirname

Directory where GT.M is to be installed; defaults to /usr/lib/fis-gtm/version_platform

--keep-obj

Keep .o files of M routines (normally deleted on platforms with GT.M support for routines in
shared libraries). By default, this option is disabled.

--linkenv dirname

Create link in dirname to gtmprofile and gtmcshre files; incompatible with copyenv

--linkexec dirname

Create link in dirname to gtm script; incompatible with copyexec

--overwrite-existing

Install into an existing directory, overwriting contents; defaults to requiring new directory

--prompt-for-group

GT.M installation script will prompt for group; default is yes for production releases V5.4-002 or
later, no for all others

--ucaseonly-utils

Install only upper case utility program names; defaults to both if not specified

--user username

User who should own GT.M installation; default is root

--utf8 ICU_version

Install UTF-8 support using specified major.minor ICU version; specify default to use default
version

--verbose -

Output diagnostic information as the script executes; default is to run quietly

- options that take a value (e.g, --group) can be specified as either --option=value or --option value

« options marked with * are likely to be of interest primarily to GT.M developers

- version is defaulted from the mumps file if one exists in the same directory as the installer

o This version must run as root.

To run the gtminstall script, unpack and run it a root. For example, on an x86_64 GNU/Linux platform, ./gtminstall installs
GT.M with M mode support in /usr/lib/fis-gtm/V6.1-000_x86_64.

10

Installing GT.M
Example:

$ sudo ./gtminstall # installs latest version in M mode only
$ sudo ./gtminstall --utf8 default # install latest version with UTF-8 mode support

$ sudo ./gtminstall --distrib /Distrib/GT.M V6.0-003 # install V6.0-0030 from a local
directory

11

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX61.txt

Chapter 3. Basic Operations

Revision History

Revision V6.1-000 01 August 2014

In “Environment Variables” (page 17),

improved the descriptions of gtm_tpnotacidtime
and gtm_zquit_anyway and added

the descriptions of gtmcrypt_config,
gtmtls_passwd_<tlslabel>, and gtmcrypt_FIPS.

Revision V6.0-003/1 19 February 2014

In “Environment Variables” (page 17),
improved the description of gtm_nocenable.

Revision V6.0-003 27 January 2014

« In“gtm ” (page 17), added the -help and -?
command line options.

« In “Environment Variables” (page 17),
added the description of gtm_ipv4_only and
gtm_etrap.

Revision V6.0-001 27 February 2013

« Added the “Configuring huge pages for GT.M
x86[-64] on Linux ” (page 29) section.

« In “Environment Variables” (page 17),
added the description of gtm_side_effects,
gtm_extract_nocol, and gtm_crypt_plugin
environment variables.

Revision V6.0-000/1 21 November 2012

« In “Environment Variables” (page 17),
added the description of the environment
variables gtm_tprestart_log_delta,
gtm_tprestart_log_first, gtm_tpnotacidtime,
and gtm_zmaxtptime.

+ Added a note which states that the
environment variable gtm_log is ignored from
V6.0-000 onwards.

Revision V6.0-000 19 October 2012

In “Environment Variables” (page 17), added
the description of the environment variable
gtm_custom_errors.

Revision V5.5-000/11 05 October 2012

In “Environment Variables” (page 17), added
the description of the environment variable
GTMXC_gpgagent.

Revision V5.5-000/5 17 July 2012

Corrected the description of the environment
variable gtm_non_block_write_retries to include
the PIPE write behavior.

Revision V5.5-000/1 5 March 2012

Updated for V5.5-000.

Revision V5.4-002B 24 October 2011

Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

12

Basic Operations

GT.M Environment Setup

Several environment variables control the operation of GT.M. Some of them must be set up for normal operation, where as for
others GT.M assumes a default value if they are not set.

Your GT.M distribution comes with many scripts that set up a default GT.M environment for the shell of your choice. These
scripts are as follows:

1. gtmprofile: uses reasonable defaults to set up a system and GT.M application development environment for POSIX
shells. The gtmprofile script sets default values for environment variables gtm_dist, gtmgbldir, gtm_icu_version, gtm_log,
gtm_principal_editing, gtm_prompt, gtm_retention, gtmroutines, gtm_tmp, and gtmver. When you source the gtmprofile
script, it creates a default execution environment (global directory and a default database file with BEFORE_IMAGE
journaling) if none exists.

2. gtmceshre: sets up a default GT.M environment for C-shell compatible shells. It sets up default values for gtm_dist,
gtmgbldir, gtm_chset and gtmroutines. It also creates aliases so you can execute GT.M and its utilities without typing
the full path. While gtmprofile is current with GT.M releases, gtmcshrc is at the same level of sophistication as
gtmprofile_preV54000. It is not as actively maintained as the gtmprofile script.

3. gtmprofile_preV54000: This script was provided as gtmprofile in GT.M distributions prior to V5.4-000. This script is a
POSIX shell equivalent of gtmschrec.

4. gtmbase: detects the shell type and adds gtmprofile to .profile or gtmchsrc to .cshre so the shell automatically sources
gtmprofile or gtmschrc on a subsequent login operation. FIS does not recommend using gtmbase as is - use it as an example
of a script for you to develop suitable for your systems. It is not as actively maintained as the gtmprofile script.

5. gtm: starts GT.M in direct mode on POSIX shells. The gtm script sources gtmprofile. It also deletes prior generation journal
and temporary files older than the number of days specified by the environment variable gtm_retention. It attempts to
automatically recover the database when it runs and as such is suitable for "out of the box" usage of GT.M. Although it will
work for large multi-user environments, you may want to modify or replace it with more efficient scripting.

6. gdedefaults: a GDE command file that specifies the default values for database characteristics defined by GDE.

These scripts are designed to give you a friendly out-of-the-box GT.M experience. Even though you can set up an environment
for normal GT.M operation without using these scripts, it is important to go through these scripts to understand the how to
manage environment configuration.

gtmprofile

gtmprofile helps you set an environment for POSIX shells. It uses reasonable defaults to set up all environment variables for
normal GT.M operation. gtmprofile sets the following environment variables:

gtmprofile sets the following environment variables:

gtm_dist, gtmgbldir, gtm_icu_version, gtm_log, gtm_principal_editing, gtm_prompt, gtm_retention, gtmroutines, gtm_tmp,
gtmver.

If $gtm_chset is set to UTF-8, gtmprofile also attempts to set LC_CTYPE to the first usable utf8 locale.
The following shell variables are used by the script and left unset at its completion:

old_gtm_dist, old_gtmroutines, old_gtmver, tmp_gtm_tmp, tmp_passwd.

13

Basic Operations

The gtmpscript (and gtm) scripts, by design, are idempotent so that calling them repeatedly is safe. The GT.M installation
process ensures that gtmprofile always sets gtm_dist correctly. Idempotency is implemented by checking the value of
$gtm_dist, and skipping all changes to environment variables of $gtm_dist.

When gtm sources gtmprofile, it provides a default execution environment (global directory and a default database with
BEFORE_IMAGE journaling) if none exists. It also creates a directory .fis-gtm with a default structure like the following:

.fis-gtm

|-- V6.1-000_x86

I e

| | |-- gtm.dat
| | |-- gtm.gld
[| [-- gtm.mjl
| |--o

| | '-— utf8
R

'-—-r

where V6.1-000_x86 represents current release and platform information. Note that this directory structure has different
locations for GT.M routines (r) , object files (0), and database-related files (g). gtmprofile sets gtmroutines to something like /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/0(/usr/gtmnode1/.fis-gtm/V6.0-003_x86/r /usr/gtmnodel/.fis-gtm/r) <path to the GT.M
distribution>. This specifies that GT.M searches for routines in /usr/gtmnode1/.fis-gtm/V6.0-003_x86/r, then /usr/gtmnode1/ fis-
gtm/r, and finally in your GT.M distribution directory. gtmroutines also specifies that all object files should be generated in /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/0, which also specifies the GT.M lookup location for finding object files.

Suppose you have a routine MyRoutine.m in /usr/gtmnode1/.fis-gtm/V6.1-000_x86/r. On compilation, GT.M stores MyRoutine.o
in /usr/gtmnode1/.fis-gtm/V6.0-003_x86/0. Everytime a process first runs this routine, GT.M looks in the /fis-gtm/V6.0-003_x86/
o directory and links it prior to its first execution. For a comprehensive discussion of GT.M source and object file management,
refer to the $ZROUTINES section in the GT.M Programmer's Guide.

When $gtm_chset is set to UTF-8, gtmprofile sets gtmroutines to something like /usr/gtmnode1/.fis-gtm/V6.1-000_x86/0/utf8(/
usr/gtmnode1/ fis-gtm/V6.0-003_x86/r /usr/gtmnodel/ fis-gtm/r) <path to the GT.M distribution>/utf8. So, on compilation,
GT.M stores MyRoutine.o in /usr/gtmnodel/.fis-gtm/V6.0-003_x86/0/utf8. Note that GT.M does not store object files in /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/0 which was the case in M mode. Everytime your run this routine, GT.M looks for
MyRoutine.o in the .../o/utf8 directory and executes it.gtmprofile automatically modifies environment variables based on the
required settings. In the above example, notice how gtmprofile modifies gtmroutines based on the character mode set for
gtm_chset.

If a GT.M environment exists, gtmprofile looks for and replaces substrings in environment variables with the GT.M version
(gtmver and gtm_dist). This allow you to to switch between different GT.M versions and character set modes (M and UTF-8).
This way you can use the same source code files to generate different object code files, depending on the GT.M version and the
setting of $gtm_chset.

On platforms where GT.M supports object code in shared libraries, if there are any shared libraries in object directories
such as /usr/gtmnodel/.fis-gtm/V6.1-000_x86_64/0, the gtmprofile script automatically includes them in the gtmroutines
environment variable.

The gtmprofile script also provides a framework to extend GT.M with plug-ins. Place the M code in $gtm_dist/plugin/r, the M
mode object code in the $gtm_dist/plugin/o directory and UTF-8 mode object modules in the $gtm_dist/plugin/o/utf8 directory.
On platforms where GT.M supports object code in shared libraries, you can create shared libraries instead of .o files. You

can place external call tables in the plugin subdirectory, as well as shared libraries of calls to C code. The gtmprofile script
automatically includes these in the gtmroutines environment variable.

14

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Basic Operations

gtmprofile automatically changes the environment variable values based on the values of gtmver and gtmdir set by the last
sourced gtmprofile. Consider the following example:

$ env | grep gtm

$ source /usr/lib/fis-gtm/V6.1-000_x86_64/gtmprofile

$ env | grep gtm
gtm_repl_instance=/home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.repl
gtm_log=/tmp/fis-gtm/V6.1-000_x86_64

gtm_prompt=GTM>

gtm_retention=42

gtmver=V6.1-000_x86_64

gtm_icu_version=4.2

gtmgbldir=/home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.gld
PATH=/home/jdoe/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin
:/bin:/usr/games:/usr/lib/fis-gtm/V6.1-000_x86_64
gtmroutines=/home/jdoe/.fis-gtm/V6.1-000_x86_64/0(/home/jdoe/.fis-gtm/V6.0-003_x86_64/r
/home/jdoe/.fis-gtm/r) /usr/lib/fis-gtm/V6.1-000_x86_64/plugin/o
(/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/r)
/usr/lib/fis-gtm/V6.1-000_x86_64/libgtmutil.so /usr/lib/fis-gtm/V6.0-003_x86_64/
gtmdir=/home/jdoe/.fis-gtm

gtm_principal_editing=EDITING

gtm_tmp=/tmp/fis-gtm/V6.1-000_x86_64
gtm_dist=/usr/lib/fis-gtm/V6.1-000_x86_64

$

Notice how gtmprofile sets up $gtmroutines to allow for a single source directory /home/jdoe/.fis-gtm/r to generate object
files used by multiple GT.M versions, in this case in /home/jdoe/ .fis-gtm/V6.1-000_x86_64/0. Now, let's consider the following
example for a different version of GT.M.

Now, let us source gtmprofile for a different GT.M:

$ env | grep "gtm"

$ source /usr/lib/fis-gtm/V6.1-000_x86/gtmprofile

$ env | grep "gtm"

gtm_repl_instance=/home/jdoe/.fis-gtm/V6.1-000_x86/g/gtm.repl

gtm_log=/tmp/fis-gtm/V6.1-000_x86

gtm_prompt=GTM>

gtm_retention=42

gtmver=V6.1-000_x86

gtm_icu_version=4.4

gtmgbldir=/home/jdoe/.fis-gtm/V6.1-000_x86/g/gtm.gld

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:

/usr/lib/fis-gtm/V6.1-000_x86

gtmroutines=/home/jdoe/.fis-gtm/V6.1-000_x86/0(/home/jdoe/.fis-gtm/V6.0-003_x86/r
/home/jdoe/.fis-gtm/r)
/usr/lib/fis-gtm/V6.1-000_x86/plugin/o(/usr/lib/fis-gtm/V6.0-003_x86/plugin/r) /usr/lib/fis-gtm/V6.0-003_x86

gtmdir=/home/jdoe/.fis-gtm

gtm_principal_editing=EDITING

gtm_tmp=/tmp/fis-gtm/V6.1-000_x86

gtm_dist=/usr/lib/fis-gtm/V6.1-000_x86

$

Notice how gtmprofile automatically changes the environment variables to the new GT.M version. Notice that the same
routines in /home/jdoe/ fis-gtm/r now put their object files in /home/jdoe/ fis-gtm/V6.1-000_x86/0.

Now, let us edit gtmroutines and source the original gtmprofile:

15

Basic Operations

$ export gtmroutines="/tmp/$gtmver $gtm_dist”

$ source /usr/lib/fis-gtm/V6.1-000_x86_64/gtmprofile

$ echo $gtmroutines /tmp/V6.1-000_x86_64 /usr/lib/fis-gtm/V6.0-003_x86_64/1libgtmutil.so
$

Notice how gtmprofile again automatically modifies gtmroutines.
Note

This scenario of sourcing gtmprofile is only for the sake of example.

gtmprofile creates the following aliases:

alias dse="$gtm_dist/dse”

alias gde="$gtm_dist/mumps -run GDE”
alias gtm="$gtm_dist/gtm"

alias lke="$gtm_dist/lke"

alias mupip="$gtm_dist/mupip”

If /var/log/fis-gtm/$gtmver directory exists, gtmprofile sets it as the value for $gtm_log. If gtmprofile does not find /var/log/fis-
gtm/$gtmver, it uses $gtm_tmp to set the value of $gtm_log, which may not meet your file retention needs.

gtmprofile creates the following aliases:
alias dse="$gtm_dist/dse”

alias gde="$gtm_dist/mumps -run GDE"
alias gtm="$gtm_dist/gtm"

alias lke="$gtm_dist/lke"

alias mupip="$gtm_dist/mupip”

If /var/log/fis-gtm/$gtmver directory exists, the gtmprofile script sets it as the value for $gtm_log. If gtmprofile does not find /
var/log/fis-gtm/$gtmver, it uses $gtm_tmp to set the value of $gtm_log, which may not meet your file retention needs.

gtmcshrc

Sets a default GT.M environment for C type shell. It sets the $gtm_dist, $gtmgbldir, $gtm_chset, $gtmroutines, and adds
$gtm_dist to the system environment variable PATH.

To source the gtmeshre script, type:
$ source <path_to_GT.M_installation_directory>/gtmcshrc

You can also run the gtmbase script which places the above command in the .cshrc file so the script will get automatically
sourced the next time you log in.

gtmcshre also creates the following aliases.

alias gtm '$gtm_dist/mumps -direct’
alias mupip '$gtm_dist/mupip’

alias lke '$gtm_dist/lke'’

alias gde '$gtm_dist/mumps -r ~GDE'
alias dse '$gtm_dist/dse’

Now you run can GT.M and its utilities without specifying a full path to the directory in which GT.M was installed.

16

Basic Operations
gtmbase
Adds the following line to .profile or .cshrce file depending on the shell.
In the POSIX shell, gtmbase adds the following line to .profile:
. <gtm_dist pathname>/gtmprofile
In the C shell, adds the following line to .cshre:

source <gtm_dist pathname>/gtmcshrc

gdedefaults

Specifies default or template values for database characteristics defined by GDE.

gtm

The gtm script starts with #!/bin/sh so it can run with any shell. Also, you can use it to both run a program and run in direct
mode. It sources gtmprofile and sets up default GT.M database files with BEFORE_IMAGE journaling. It automatically recovers
the database on startup.This script sets up everything you need to run GT.M for a simple out-of-box experience.

For multi-user multi-environment systems, you should modify or replace the gtm script for your configuration.

The gtm script deletes all prior generation journal files (*_<time and date stamp> files) older than $gtm_retention days from the
directory that contains the global directory (as pointed to by $gtmgbldir) and any subdirectories of that directory. By default,
$gtm_retention is 42. However, you might want to align it with the backup frequency of your database.

Note that the removal of prior generation journal files is not specific to the database/journal files indicated by the current
$gtmgbldir but the directory from where you run the gtm script.

If you plan to use GT.M in UTF-8 mode, set $gtm_chset to UTF-8 and then run the gtm script.

If you intend to use Database Encryption, set $gtm_passwd and $gtm_dbkeys first and then run the gtm script.
To run the gtm script type:

$ <path to your GT.M Distribution>/gtm

To invoke the help to assist first-time users, type:

$ <path to your GT.M Distribution>/gtm -help

gtm -dir[ect] to enter direct mode (halt returns to shell)

gtm -run <entryref> to start executing at an entryref
gtm -help / gtm -h / gtm -? to display this text

Environment Variables
A comprehensive list of environment variables that are directly or indirectly used by GT.M follows:

EDITOR is a standard system environment variable that specifies the full path to the editor to be invoked by GT.M in response
to the ZEDit command (defaults to vi, if SEDITOR is not set).

17

Basic Operations

gtm_badchar specifies the initial setting of the VIEW command that determines whether GT.M should raise an error when it
encounters an illegal UTF-8 character sequence.It is ignored in M mode.

gtm_baktmpdir specifies the directory where mupip backup creates temporary files. If $gtm_baktmpdir is not defined, GT.M
uses the $GTM_BAKTMPDIR environment variable if defined, and otherwise uses the current working directory.

gtm_chset determines the mode in which GT.M operates. If it has a value of "UTF-8" GT.M assumes that strings are encoded in
UTF-8. In response to a value of "M" (on indeed anything other than "UTF-8"), GT.M treats all 256 combinations of the 8 bits in
a byte as a single character.

gtm_chset_locale (z/OS only) specifies the locale for UTF-8 operations on z/OS.

gtm_collate_n specifies the shared library holding an alternative sequencing routine when collation is used. The syntax is
gtm_collate_n=pathname where n is an integer from 1 to 255 that identifies the collation sequence, and pathname identifies the
shared library containing the routines for that collation sequence.

gtm_db_startup_max_wait specifies how long to wait for a resolution of any resource conflict when they first access a
database file. GT.M uses semaphores maintained using UNIX Inter-Process Communication (IPC) services to ensure orderly
initialization and shutdown of database files and associated shared memory. Normally the IPC resources are held in an
exclusive state only for very brief intervals. However, under unusual circumstances that might include extreme large numbers
of simultaneous database initializations, a long-running MUPIP operation involving standalone access (like INTEG -FILE or
RESTORE), an OS overload or an unpredicted process failure the resources might remain unavailable for an unanticipated
length of time. $gtm_db_startup_max_wait specifies how long to wait for the resources to become available:

+ -1 - Indefinite wait until the resource becomes available; the waiting process uses the gtm_procstuckexec mechanism at 48
and 96 seconds.

+ 0 - No wait - if the resource is not immediately available, give a DBFILERR error with an associated SEMWT2LONG

« >0 - Seconds to wait - rounded to the nearest multiple of eight (8); if the specification is 96 or more seconds, the waiting
process uses the gtm_procstuckexec mechanism at one half the wait and at the end of the wait; if the resource remains
unavailable, the process issues DBFILERR error with an associated SEMWT2LONG

The default value for the wait if $gtm_db_startup_max_wait is not defined is 96 seconds.

gtm_crypt_plugin: If you wish to continue using Blowfish CFB with V6.0-001 via the reference implementation of the

plugin, you need to change a symbolic link post-installation, or define the environment variable gtm_crypt_plugin. If the
environment variable gtm_crypt_plugin is defined and provides the path to a shared library relative to $gtm_dist/plugin, GT.M
uses $gtm_dist/plugin/$gtm_crypt_plugin as the shared library providing the plugin. If $gtm_crypt_plugin is not defined, GT.M
expects $gtm_dist/plugin/libgtmcrypt.so to be a symbolic link to a shared library providing the plugin. The expected name

of the actual shared library is libgtmcrypt_cryptlib_ CIPHER.so (depending on your platform, the actual extension may differ
from .so), for example, libgtmcrypt_openssl_AESCFB. GT.M cannot and does not ensure that the cipher is actually AES CFB as
implemented by OpenSSL - GT.M uses CIPHER as salt for the hashed key in the database file header, and cryptlib is for your
convenience, for example, for troubleshooting. Installing the GT.M distribution creates a default symbolic link.

gtm_custom_errors specifies the complete path to the file that contains a list of errors that should automatically stop all
updates on those region(s) of an instance which have the Instance Freeze mechanism enabled.

gtm_dbkeys is used by the encryption reference plugin (not used by GT.M directly) for the name of a file providing a list of
database files and their corresponding key files.

gtm_dist specifies the path to the directory containing the GT.M system distribution. gtm_dist must be defined for each user.
If you are not using the gtm script or sourcing gtmprofile, consider defining gtm_dist in the login file or as part of the default
system environment. In UTF-8 mode, the gtm_dist environment variable specifies the path to the directory containing the

18

Basic Operations

GT.M system distribution for Unicode. The distribution for Unicode is located in subdirectory utf8 under the GT.M distribution
directory. For example, if the GT.M distribution is in /usr/lib/fis-gtm/V6.1-000_x86, set gtm_dist to point to /usr/lib/fis-gtm/
V6.0-003_x86/utf8 for UTF-8 mode. Correct operation of GT.M executable programs requires gtm_dist to be set correctly.

gtm_env_translate specifies the path to a shared library to implement the optional GT.M environment translation facility.

gtm_etrap specifies an initial value of $ETRAP to override the default value of "B" for $ZTRAP as the base level error handler.
The gtmprofile script sets gtm_etrap to "Write:(0=$STACK) ""Error occurred: "",$ZStatus,!" which you can customize to
suit your needs.

gtm_extract_nocol specifies whether a MUPIP JOURNAL -EXTRACT (when used without -RECOVER or -ROLLBACK) on
a database with custom collation should use the default collation if it is not able to read the database file. In a situation where
the database file is inaccessible or the replication instance is frozen with a critical section required for the access held by
another process and the environment variable gtm_extract_nocol is defined and evaluates to a non-zero integer or any case-
independent string or leading substrings of "TRUE" or "YES", MUPIP JOURNAL -EXTRACT issues the DBCOLLREQ warning
and proceeds with the extract using the default collation. If gtm_extract_nocol is not set or evaluates to a value other than a
positive integer or any case-independent string or leading substrings of "FALSE" or "NO", MUPIP JOURNAL -EXTRACT exits
with the SETEXTRENV error.

n Warning

Note that if default collation is used for a database with custom collation, the subscripts reported by MUPIP
JOURNAL -EXTRACT are those stored in the database, which may differ from those read and written by
application programs.

gtm_fullblockwrites specifies whether a GT.M process should write a full database block worth of bytes when writing a
database block that is not full. Depending on your IO subsystem, writing a full block worth of bytes (even when there are
unused garbage bytes at the end) may result in better database IO performance by replacing a read-modify-read low level 10
operation with a single write operation.

gtm_gdscert specifies the initial value of the VIEW command that controls whether GT.M processes should test updated
database blocks for structural damage. By default, GT.M does not check database blocks for structural damage, because the
impact on performance is usually unwarranted.

gtm_gvdupsetnoop specifies the initial value of the VIEW command that controls whether a GT.M process should enable
duplicate SET optimization. If it is defined, and evaluates to a non-zero integer or any case-independent string or leading
substrings of "TRUE" or "YES", a SET command does not change the value of an existing node, GT.M does not perform the
update or execute any trigger code specified for the node.

gtm_icu_version specifies the MAJOR VERSION and MINOR VERSION numbers of the desired ICU. For example "3.6" denotes
ICU-3.6. If $gtm_chset has the value "UTF-8", GT.M requires libicu with version 3.6 or higher. If you must chose between
multiple versions of libicu or if libicu has been compiled with symbol renaming enabled, GT.M requires gtm_icu_version to be
explictly set.

gtm_ipv4_only specifies whether a Source Server should establish only IPv4 connections with a Receiver Server. If it is
defined, and evaluates to a non-zero integer, or any case-independent string or leading substring of "TRUE" or "YES", the Source
Server establishes only IPv4 connections with the Receiver Server. Set gtm_ipv4_only for environments where different server
names are not used for IPv4 and IPv6 addresses and the Source Server connects to a Receiver Server running a GT.M version
prior to V6.0-003.

gtm_jnl_release_timeout specifies the number of seconds that a replicating Source Server waits when there is no activity on
an open journal file before closing it. The default wait period is 300 seconds (5 minutes). If $gtm_jnl_release_timeout specifies

19

Basic Operations

0, the Source Server keeps the current journal files open until shutdown. The maximum value for $gtm_jnl_release_timeout is
2147483 seconds.

gtm_keep_obj specifies whether the gtminstall script should delete the object files from the GT.M installation directory. If
gtm_keep_obj is set to "Y", the gtminstall script enables the --keep-obj option. By default, --keep_obj is disabled.

gtm_lct_stdnull specifies whether a GT.M process should use standard collation for local variables with null subscripts or
legacy GT.M collation.

gtm_local_collate specifies an alternative collation sequence for local variables.

gtm_log specifies a directory where the gtm_secshr_log file is stored. The gtm_secshr_log file stores information gathered in
the gtmsecshr process. FIS recommends that a system-wide default be established for gtm_log so that gtmsecshr always logs
its information in the same directory, regardless of which user's GT.M process invokes gtmsecshr. In conformance with the
Filesystem Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for $gtm_log unless you are installing
the same version of GT.M in multiple directories. Note that $gtmver can be in the form of V6.1-000_x86 which represents the
current GT.M release and platform information. If you do not set $gtm_log, GT.M creates log files in a directory in /tmp (AIX,
GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX, Solaris). However, this is not recommended because it makes GT.M log files
vulnerable to the retention policy of a temporary directory.

Important

Starting with V6.0-000, gtmsecshr logs its messages in the system log and the environment variable gtm_log
is ignored.

gtm_tprestart_log_delta specifies the number of transaction restarts for which GT.M should wait before reporting
a transaction restart to the operator logging facility. If gtm_tprestart_log_delta is not defined, GT.M initializes
gtm_tp_restart_log_delta to 0.

gtm_tprestart_log_first specifies the initial number of transaction restarts for which GT.M should wait before reporting
any transaction restart to the operator logging facility. If gtm_tprestart_log_delta is defined and gtm_tprestart_log_first is not
defined, GT.M initializes gtm_tprestart_log_first to 1.

gtm_max_sockets specifies the maximum number of client connections for socket devices. The default is 64.

gtm_memory_reserve specifies the size in kilobytes of the reserve memory that GT.M should use in handling and reporting
an out-of-memory condition. The default is 64 (KB).

gtm_nocenable specifies whether the $principal terminal device should ignore <CTRL-C> or use <CTRL-C> as a signal to
place the process into direct mode; a USE command can modify this device characteristic. If gtm_nocenable is defined and
evaluates to a non-zero integer or any case-independent string or leading substrings of "TRUE" or "YES", $principal ignores
<CTRL-C>. If gtm_nocenable is not set or evaluates to a value other than a positive integer or any case-independent string or
leading substrings of "FALSE" or "NO", <CTRL-C> on $principal places the process into direct mode at the next opportunity
(usually at a point corresponding to the beginning of the next source line).

gtm_non_blocked_write_retries modifies FIFO or PIPE write behavior. A WRITE which would block is retried up to the
number specified with a 100 milliseconds delay between each retry. The default value is 10 times.

gtm_noundef specifies the initial value of the VIEW command that controls whether a GT.M process should treat undefined
variables as having an implicit value of an empty string. If it is defined, and evaluates to a non-zero integer or any case-
independent string or leading substring of "TRUE" or "YES", then GT.M treats undefined variables as having an implicit value of
an empty string. By default, GT.M signals an error on an attempt to use the value of an undefined variable.

20

Basic Operations

gtm_passwd used by the encryption reference plugin (not used by GT.M directly) for the obfuscated (not encrypted) password
to the GNU Privacy Guard key ring.

gtm_patnumeric specifies the initial value of the ISV $ZPATNUMERIC in UTF-8 mode.
gtm_pattern_file and gtm_pattern_table specify alternative patterns for the ? (pattern) syntax.
gtm_principal specifies the value for $principal, which designates an alternative name (synonym) for the principal $IO device.

gtm_principal_editing determines whether the previous input to a READ command can be recalled and edited before
pressing ENTER to submit it.

Note

The GT.M direct mode commands have a more extensive capability in this regard, independent of the value
of this environment variable.

gtm_prompt specifies the initial value of the ISV $ZPROMPT, which controls the GT.M direct mode prompt. By default, the
direct mode prompt is "GTM>".

gtm_procstuckexec specifies a shell command or a script to execute when any of the following conditions occur:

+ An explicit MUPIP FREEZE or an implicit freeze, such as BACKUP, INTEG -ONLINE, and so on, after a one minute wait on a
region.

« MUPIP actions find kill_in_prog (KILLs in progress) to be non-zero after a one minute wait on a region. Note that GT.M
internally maintains a list of PIDs (up to a maximum of 8 PIDs) currently doing a KILL operation.

« The BUFOWNERSTUCK, INTERLOCK_FAIL, JNLPROCSTUCK, SHUTDOWN, WRITERSTUCK, MAXJNLQIOLOCKWAIT,
MUTEXLCKALERT, SEMWT2LONG, and COMMITWAITPID operator messages are being logged.

You can use this as a monitoring facility for processes holding a resource for an unexpected amount of time. Typically, for
the shell script or command pointed to by gtm_procstuckexec, you would write corrective actions or obtain the stack trace of
the troublesome processes (using their PIDs). GT.M passes arguments to the shell command / script in the order specified as
follows:

1. condition is the name of the condition. For example, BUFOWNERSTUCK, INTERLOCK_FAIL, and so on.

2. waiting_pid is the PID of the process reporting the condition.

3. blocking pid is the PID of the process holding a resource.

4. count is the number of times the script has been invoked for the current condition (1 for the first occurrence).

Each invocation generates an operator log message and if the invocation fails an error message to the operator log. The shell
script should start with a line beginning with #! that designates the shell.

Note

Make sure user processes have sufficient space and permissions to run the shell command / script.

gtm_obfuscation_key: If $gtm_obfuscation_key specifies the name of file readable by the process, the encryption reference
plug-in uses an SHA-512 hash of the file's contents as the XOR mask for the obfuscated password in the environment variable

21

Basic Operations

gtm_passwd. When gtm_obfuscation_key does not point to a readable file, the plug-in creates an XOR mask based on the userid
and inode of the mumps executable and then computes an SHA-512 hash of the XOR mask to use as a mask.

gtm_obfuscation_key can be used as a mechanism to pass an obfuscated password between unrelated processes (for example, a
child process with a different userid invoked via a sudo mechanism), or even from one system to another (for example, over an
ssh connection).

gtm_quiet_halt specifies whether GT.M should disable the FORCEDHALT message when the process is stopped via MUPIP
STOP or by a SIGTERM signal (as sent by some web servers).

gtm_repl_instance specifies the location of the replication instance file when database replication is in use.

gtm_repl_instsecondary specifies the name of the replicating instance in the current environment. GT.M uses
$gtm_repl instsecondary if the -instsecondary qualifer is not specified.

gtm_retention (not used by GT.M directly) - used by the gtm script to delete old journal files and old temporary files it creates.

gtm_side_effects: When the environment variable gtm_side_effects is set to one (1) at process startup, GT.M generates code
that performs left to right evaluation of actuallist arguments, function arguments, operands for non-Boolean binary operators,
SET arguments where the target destination is an indirect subscripted glvn, and variable subscripts. When the environment
variable is not set, or set to zero (0), GT.M retains its traditional behavior, which re-orders the evaluation of operands using
rules intended to improve computational efficiency. This reordering assumes that functions have no side effects, and may
generate unexpected behavior (x+$increment(x) is a pathological example). When gtm_side_effects is set to two (2), GT.M
generates code with the left-to-right behavior, and also generates SIDEEFFECTEVAL warning messages for each construct
that potentially generates different results depending on the order of evaluation. As extrinsic functions and external calls

are opaque to the compiler at the point of their invocation, it cannot statically determine whether there is a real interaction.
Therefore SIDEEFFECTEVAL warnings may be much more frequent than actual side effect interactions and the warning mode
may be most useful as a diagnostic tool to investigate problematic or unexpected behavior in targeted code rather than for

an audit of an entire application. Note that a string of concatenations in the same expression may generate more warnings
than the code warrants. Other values of the environment variable are reserved for potential future use by FIS. It is important
to note that gtm_side_effects affects the generated code, and must be in effect when code is compiled - the value when that
compiled code is executed is irrelevant. Note also that XECUTE and auto-ZLINK, explicit ZLINK and ZCOMPILE all perform
run-time compilation subject to the characteristic selected when the process started. Please be aware that programming style
where one term of an expression changes a prior term in the same expression is an unsafe programming practice. The existing
environment variable gtm_boolean may separately control short-circuit evaluation of Boolean expressions but a setting of

1 (or 2) for gtm_side_effects causes the same boolean evaluations as setting gtm_boolean to 1 (or 2). The differences in the
compilation modes may include not only differences in results, but differences in flow of control.

gtm_snaptmpdir specifies the location to place the temporary "snapshot" file created by facilities such as on-line mupip integ.
If $gtm_snaptmpdir is not defined, GT.M uses the $GTM_BAKTMPDIR environment variable if defined, and otherwise uses the
current working directory.

gtm_stdxkill enables the standard-compliant behavior to kill local variables in the exclusion list if they had an alias that as not
in the exclusion list. By default, this behavior is disabled.

gtm_sysid specifies the value for the second piece of the $SYstem ISV. $SYSTEM contains a string that identifies the executing
M instance. The value of $SYSTEM is a string that starts with a unique numeric code that identifies the manufacturer. Codes
were originally assigned by the MDC (MUMPS Development Committee). $SYSTEM in GT.M starts with "47" followed by a
comma and $gtm_sysid.

gtm_tmp specifies a directory where socket files used for communication between gtmsecshr and GT.M processes are stored.
All processes using the same GT.M should have the same $gtm_tmp.

22

Basic Operations

gtm_tpnotacidtime specifies the maximum time that a GT.M process waits for non-Isolated timed command (JOB, LOCK,
OPEN, READ, or ZALLOCATE) running within a transaction to complete before it releases all critical sections it owns and
sends a TPNOTACID information message to the system log. A GT.M process owns critical sections on all or some of the
regions participating in a transactions only during final retry attempts (when $TRETRY>3). gtm_tpnotacidtime specifies time in
seconds; the default is 2 seconds. The maximum value of gtm_tpnotacidtime is 30 and the minimum is 0. If gtm_tpnotacidtime
specifies a time outside of this range, GT.M uses the default value. The GT.M behavior of releasing critical sections in final retry
attempt to provide protection from certain risky coding patterns which, because they are not Isolated, can cause deadlocks

(in the worst case) and long hangs (in the best case). As ZSYSTEM and BREAK are neither isolated nor timed, GT.M initiates
TPNOTACID behavior for them immediately as it encounters them during execution in a final retry attempt (independent of
gtm_tpnotacidtime). Rapidly repeating TPNOTACID messages are likely associated with live-lock, which means that a process
is consuming critical resources repeatedly within a transaction, and is unable to commit because the transaction duration is too
long to commit while maintaining ACID transaction properties.

gtm_trace_gbl_name enables GT.M tracing at process startup. Setting gtm_trace_gbl_name to a valid global variable

name instructs GT.M to report the data in the specified global when a VIEW command disables the tracing, or implicitly at
process termination. This setting behaves as if the process issued a VIEW "TRACE" command at process startup. However,
gtm_trace_gbl_name has a capability not available with the VIEW command, such that if the environment variable is defined
but evaluates to zero (0) or, only on UNIX, to the empty string, GT.M collects the M-profiling data in memory and discards

it when the process terminates (this feature is mainly used for in-house testing). Note that having this feature activated for
process that otherwise don't open a database file (such as GDE) can cause them to encounter an error.

gtm_trigger_etrap provides the initial value for SETRAP in trigger context; can be used to set trigger error traps for trigger
operations in both mumps and MUPIP processes.

gtm_zdate_form specifies the initial value for the $ZDATE ISV.

gtm_zinterrupt specifies the initial value of the ISV $ZINTERRUPT which holds the code that GT.M executes (as if it is the
argument for an XECUTE command) when a process receives a signal from a MUPIP INTRPT command.

gtm_zlib_cmp_level specifies the zlib compression level used in the replication stream by the source and receiver servers. By
default, replication does not use compression.

gtm_zmaxtptime specifies the initial value of the $ZMAXTPTIME Intrinsic Special Variable, which controls whether and
when GT.M issues a TPTIMEOUT error for a TP transaction that runs too long. gtm_zmaxtptime specifies time in seconds and
the default is 0, which indicates "no timeout" (unlimited time). The maximum value of gtm_zmaxtptime is 60 seconds and the
minimum is 0; this range check does not apply to SET $ZMAXTPTIME. GT.M ignores gtm_zmaxtptime if it contains a values
outside of this recognized range.

gtm_zquit_anyway specifies whether the code of the form QUIT <expr> execute as if it were SET <tmp>=<expr> QUIT:$QUIT
tmp QUIT, where <tmp> is a temporary local variable in the GT.M runtime system that is not visible to application code. This
setting is not a compiler-time setting, but rather a run-time one. If gtm_zquit_anyway is defined and evaluates to 1 or any
case-independent string or leading substrings of "TRUE" or "YES", code of the form QUIT <expr> executes as if it were SET
<tmp>=<expr> QUIT:$QUIT tmp QUIT. If gtm_zquit_anyway is not defined or evaluates to 0 or any case-independent string or
leading substrings of "FALSE" or "NO", there is no change in the execution of code of the form QUIT <expr>.

gtm_ztrap_form and gtm_zyerror specify the behavior of error handling specified by $ZTRAP as described in the Error
Processing chapter of the GT.M Programmer's Guide.

gtm_ztrap_new specifies whether a Set of $ZTRAP also implicitly News it.
GTMCI specifies the call-in table for function calls from C code to M code.

gtmcompile specifies the initial value of the $ZCOmpile ISV.

23

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Basic Operations

gtmerypt_config specifies the location of the configuration file required for database encryption and/or TLS support.

A configuration file is divided into two sections—database encryption section and TLS section. The database encryption
section contains a list of database files and their corresponding key files. Do not add a database encryption section if you
are not using an encrypted database. The TLS section contains a TLSID label that identifies the location of root certification
authority certificate in PEM format and leaf-level certificate with its corresponding private key file. Note that the use of the
gtmcrypt_config environment variable require the libconfig library to be installed.

gtmerypt_FIPS specifies whether the plugin reference implementation should attempt to use either OpenSSL or Libgcrypt
to provide database encryption that complies with FIPS 140-2. When the environment variable $gtmcrypt_FIPS is set to 1 (or
evaluates to a non-zero integer, or any case-independent string or leading substring of "TRUE" or "YES"), the plugin reference
implementation attempts to use libgcrypt (from GnuPG) and libcrypto (OpenSSL) in "FIPS mode".

gtmgbldir specifies the initial value of the $2ZGBLDIR ISV. $ZGBLDIR identifies the global directory. A global directory maps
global variables to physical database files, and is required to access M global variables. Users who maintain multiple global
directories must choose one to use. To automate this definition, define gtmgbldir in the user's login file.

gtmroutines specifies the initial value of the $ZROutines ISV.

gtmtls_passwd_<label> $gtmtls_passwd_<label> specifies the obfuscated password of the encrypted private key pair. You can
obfuscate passwords using the 'maskpass' utility provided along with the encryption plugin. If you choose to use unencrypted
private keys, set the gtmtls_passwd_<label> environment variable to a non-null dummy value; this prevents inappropriate
prompting for a password.

gtmver (not used by GT.M directly) - The current GT.M version. The gtmprofile script uses $gtmver to set other environment
variables.

GTMXC_gpgagent specifies the location of gpgagent.tab. By default, GT.M places gpgagent.tab in the $gtm_dist/plugin/
directory. GTMXC_gpgagent is used by pinentry-gtm.sh and is meaningful only if you are using Gnu Privacy Guard version 2.

LC_CTYPE is a standard system environment variable used to specify a locale. When $gtm_chset has the value "UTF-8",
$LC_CTYPE must specify a UTF-8 locale (e.g., "en_US.utf8").

LC_ALL is a standard system environment variable used to select a locale with UTF-8 support. LC_ALL is an alternative to
LC_TYPE, which overrides LC_TYPE and has a more pervasive effect on other aspects of the environment beyond GT.M.

LD_LIBRARY_PATH is a standard system environment variable (LIBPATH in AIX) to point to the location of ICU. GT.M
requires ICU 3.6 (or above) to perform Unicode related functionality.

old_gtm_dist (not used by GT.M directly) - The path of the prior GT.M distribution. The gtmprofile script uses this value to set
other environment variables.

old_gtmroutines (not used by GT.M directly) - The prior routine search path. The gtmprofile script uses this value to set other
environment variables.

old_gtmver (not used by GT.M directly) - The value of gtmver that was set when the gtmprofile script was last sourced. The
gtmprofile script uses this value to set other environment variables.

tmp_gtm_tmp (not used by GT.M directly) - It is used by the gtmprofile script in maintaining gtm_tmp.
tmp_passw (not used by GT.M directly) - It is used by the gtmprofile script in maintaining gtm_passwd.

TZ is a standard system environment variable that specifies the timezone to be used by GT.M processes, if they are not to use
the default system timezone (GT.M assumes the system clock is set to UTC).

24

Basic Operations

The gtmprofile and gtmschrc scripts sets the following environment variables. FIS recommends using the gtmprofile script (or
the gtm script which sources gtmprofile) to set up an environment for GT.M.

Environment Variables Set up by GT.M shell scripts
gtm_dist* gtmprofile, gtmschre
gtmgbldir* gtmprofile, gtmcshre
gtm_icu_version gtmprofile

gtm_log* gtmprofile
gtm_principal_editing gtmprofile
gtm_prompt gtmprofile
gtm_retention gtmprofile
gtmroutines* gtmprofile, gtmeshre
gtm_tmp gtmprofile

gtmver gtmprofile
gtm_repl_instance gtmprofile
LC_CTYPE gtmprofile
old_gtm_dist gtmprofile
old_gtmroutines gtmprofile
old_gtmver gtmprofile
tmp_gtm_tmp gtmpropfile
tmp_passw gtmprofile

* denotes environment variables that must be defined for normal GT.M operation.

While creating an environment for multiple processes accessing the same version of GT.M, bear in mind the following
important points:

1.
A GT.M version has an associated gtmsecshr (located by $gtm_dist). If multiple processes are accessing the same GT.M
version, each process must use the same combination of $gtm_tmp and $gtm_log.

2. In conformance with the Filesystem Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for
$gtm_log. Note that $gtmver can be in the form of V5.4-001_x86 which represents the current GT.M release and platform
information.

3. FIS recommends setting $gtm_tmp to a temporary directory /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX,
Solaris). The gtmprofile script sets $gtm_tmp to /tmp/fis-gtm/$gtmver.

4. If'you do not set $gtm_log, GT.M creates log files in a directory in /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp
(HP-UX, Solaris). However, this is not recommended because it makes GT.M log files vulnerable to the retention policy of a
temporary directory.

25

Basic Operations

Always set the same value of $gtm_tmp for all processes using the same GT.M version. Having different $gtm_tmp for
multiple processes accessing the same GT.M version may prevent processes from being able to communicate with gtmsecshr
and cause performance issues.

Configuring and operating GT.M with Unicode™ support (optional)

The configure script provides the option to install GT.M with or without Unicode™ support for encoding international
character sets. This section describes the system environment required to install and operate GT.M with Unicode™ support.
Users who handle data in ASCII or other single-byte character sets such as one of the ISO-8859 representations and do not
foresee any use of character sets beyond single byte character sets, may proceed to the next section.

M mode and UTF-8 mode

A GT.M process can operate in either M mode or UTF-8 mode. In certain circumstances, both M mode and UTF-8 mode may
concurrently access the same database.

$gtm_chset determines the mode in which a process operates. If it has a value of M, GT.M treats all 256 combinations of the 8
bits in a byte as a character, which is suitable for many single-language applications.

If $gtm_chset has a value of UTF-8, GT.M (at process startup) interprets strings as being encoded in UTF-8. In this mode, all
functionality related to Unicode™ becomes available and standard string-oriented operations operate with UTF-8 encoding. In
this mode, GT.M detects character boundaries (since the size of a character is variable length), calculates glyph display width,
and performs string conversion between UTF-8 and UTF-16.

If you install GT.M with Unicode support, all GT.M components related to M mode reside in your GT.M distribution directory
and Unicode-related components reside in the utf8 subdirectory of your GT.M distribution. For processes in UTF-8 mode, in
addition to gtm_chset, ensure that $gtm_dist points to the utf8 subdirectory, that $gtmroutines includes the utf8 subdirectory
(or the libgtmutil.so therein) rather than its parent directory.

Compiling ICU

GT.M uses ICU 3.6 (or above) to perform Unicode™-related operations. GT.M generates the distribution for Unicode only if
ICU 3.6 (or above) is installed on the system. Therefore, install an appropriate ICU version before installing GT.M to perform
functionality related to Unicode.

Note that the ICU installation instructions may not be the same for every platform. If libicu has been compiled with symbol
renaming enabled, GT.M requires $gtm_icu_version be explicitly set. By default, GT.M uses the most current installed
version of ICU. GT.M expects ICU to have been built with symbol renaming disabled and issues an error at startup if the
currently installed version of ICU has been built with symbol renaming enabled. To use a different version of ICU (not the
currently installed) or a version of ICU built with symbol renaming enabled, use $gtm_icu_version to specify the MAJOR
VERSION and MINOR VERSION numbers of the desired ICU formatted as MajorVersion.MinorVersion (for example "3.6" to
denote ICU-3.6). When $gtm_icu_version is so defined, GT.M attempts to open the specific version of ICU. In this case, GT.M
works regardless of whether or not symbols in this ICU have been renamed. A missing or ill-formed value for this environment
variable causes GT.M to only look for non-renamed ICU symbols. Note that display widths for a few characters are different
starting in ICU 4.0.

Note

If you are using gtmprofile, you do not have to set $gtm_icu_version.

After installing ICU 3.6 (or above), you also need to set the following environment variables to an appropriate value.

26

Basic Operations

1. LC_CTYPE
2. LC_ALL
3. LD_LIBRARY PATH

4. TERM

Starting GT.M
To start GT.M from a POSIX shell:
1. Execute gtm from your shell prompt:
$ <path_to_gtm_installation_directory>/gtm
To start GT.M in UTF-8 mode from a POSIX shell:
1. First, set $gtm_chset to UTF-8.
$ export gtm_chset="UTF-8"
2. Execute the gtm script.
$ <path_to_gtm_installation_directory>/gtm
To start GT.M from a C-type shell:
1. First source the gtmschre script to set up a default GT.M environment. At your shell prompt, type:
2. $ source <path_to_gtm_installation_directory>/gtmchrc
3. Run the gtm alias to start GT.M in direct mode.
$ gtm
To start GT.M in UTF-8 mode from a C-type shell:
1. Set the enviornment variable gtm_chset to UTF-8.
$ setenv gtm_chset UTF-8
2. Source the gtmchrc script to set up default GT.M unicode environment.
$ source <path_to_gtm_installation_directory>/gtmchrc
3. Run the gtm alias to start GT.M in direct mode.
$ gtm
To start GT.M without using any script:

1. Define gtm_dist, gtm_log, gtm_tmp, gtmgbldir, and gtmroutines. Ensure that gtm_dist points to the location of your GT.M
distribution.

2. Add gtm_dist to the system environment variable PATH.

27

Basic Operations

Ensure that you have set an appropriate value for TERM.

If possible, add these environment variables in your login file so you do not have to create them again the next time you
start your shell.

Set the following aliases to run GT.M and its utlities.
alias dse="$gtm_dist/dse”

alias gde="$gtm_dist/mumps -run ~GDE"

alias gtm="$gtm_dist/mumps -direct”

alias lke="$gtm_dist/lke"

alias mupip="$gtm_dist/mupip”

Run the gtm alias to start GT.M in direct mode.

$ gtm

To start GT.M in UTF-8 mode without using any script:

1.

Define gtm_dist, gtm_log, gtmgbldir, and gtmroutines. Ensure that gtm_dist points to the uft8 subdirectory of your GT.M
distribution.

Set gtm_routines to include the utf8 subdirectory of your GT.M distribution. Note that the utf8 subdirectory includes all
Unicode-related GT.M functionality. Type a command like the following:

$ gtmroutines=". $gtm_dist ‘echo $gtm_dist | sed 's/utf8\(\/\)*//'""

Ensure that you have installed ICU 3.6 (or above) and have set appropriate values for LC_CTYPE, LC_ALL,
LD_LIBRARY_PATH, and TERM.

If you have built ICU with symbol renaming enabled, set gtm_icu_version to an appropriate ICU verison.
Add gtm_dist to the system environment variable PATH.
Set gtm_chset to UTF-8.

If possible, add these environment variables in your login file so you do not have to create them again the next time you
start your shell.

Set the following aliases to run GT.M and its utlities.

alias dse="$gtm_dist/dse”

alias gde="$gtm_dist/mumps -run ~GDE"

alias gtm="$gtm_dist/mumps -direct”

alias lke="$gtm_dist/lke"

alias mupip="$gtm_dist/mupip”

Type the following command to start GT.M in direct mode.
$ gtm

At the GT.M prompt, type the following command.

GTM>w $ZCHSET
UTF-8 ; the output confirms UTF-8 mode.

28

Basic Operations

Note

If you are configuring a GT.M environment without using the gtmprofile script (or the gtm script which
sources gtmprofile), bear in mind the following recommendation from FIS:

« All GT.M processes should use the same settings for gtm_log and gtm_tmp, especially for production
environments. This is because gtmsecshr inherits these values from whichever GT.M process first uses its
services.

« If there are multiple GT.M versions active on a system, FIS recommends different sets of gtm_log and
gtm_tmp values for each version as using the same values for different distributions can cause significant
performance issues.

GT.M has three invocation modes: compiler, direct, and auto-start. To invoke GT.M in these modes, provide the following
arguments to the gtm script or the mumps command.

1. -direct: Invokes GT.M in direct mode where you can enter M commands interactively.

2. <list of M source files>: Invokes GT.M in compiler mode, invoke GT.M by entering a list of file names to compile as a
argument. GT.M then compiles the specified programs into .o files. UNIX wildcards (* and ?) are acceptable within the file
names.

3. -run “routine_name: -r invokes GT.M in auto-start mode. The second argument is taken to be an M entryref, and that
routine is automatically executed, bypassing direct mode. Depending on the shell being used, you may need to put the
entryref in quotes.

When executing M programs, GT.M incrementally links any called programs. For example, the command GTM> d "TEST
links the object file TEST.o and executes it; if the TESTM program calls other M routines, those are automatically compiled and
linked.

Configuring huge pages for GT.M x86[-64] on Linux

GT.M on Linux supports using huge pages (depending on the CPU architecture, typically 2MiB or 4MiB rather than the

default 4KiB) for shared memory segments for BG access and for the heap of mumps processes. Using huge pages reduces

the need for page tables at the cost of a slight increase in total system virtual memory usage. While your mileage may vary,

FIS believes that many large applications will benefit from configuring and using huge pages. If you do not configure your
system for huge pages, GT.M continues to use the default page size. Note that using huge pages requires no change whatsoever
at the application code level, or even to database management operations such as replication, backup, integ, reorg, etc. - the
changes discussed here pertain entirely to configuring system memory and the virtual memory manager to improve application
performance.

To use huge pages:

+ You must have a 32- or 64-bit x86 CPU, running a Linux kernel with huge pages enabled. All currently Supported Linux
distributions appear to support huge pages; to confirm, use the command: grep hugetlbfs /proc/filesystems which should
report: nodev hugetlbfs

+ You must have libhugetlbfs.so installed in a standard location for system libraries. Installing the library using your Linux
system's package manager should place it in a standard location. (Note that libhugetlbfs is not in Debian repositories and
must be manually installed; GT.M on Debian releases is Supportable, not Supported.)

29

Basic Operations

« You must have a sufficient number of huge pages available:

« To reserve Huge Pages boot Linux with the hugepages=num_pages kernel boot parameter; or, shortly after bootup when
unfragmented memory is still available, with the command: hugeadm --pool-pages-min DEFAULT:num_pages command

+ For subsequent on-demand allocation of Huge Pages, use: hugeadm --pool-pages-max DEFAULT:num_pages or set the
value of /proc/sys/vm/nr_overcommit_hugepages. These delayed (from boot) actions do not guarantee availability of the
requested number of huge pages; however, they are safe as, if a sufficient number of huge pages is not available, Linux
simply uses traditional sized pages.

+ To use huge pages for shared memory segments for the BG database access mode, both of the following are required:

« Permit GT.M processes to use huge pages for shared memory segments (where available, FIS recommends 1, below;
however not all file systems support extended attributes). Either:

1. set the CAP_IPC_LOCK capability needs for your mumps, mupip and dse processes with a command such as setcap
'cap_ipc_lock+ep' $gtm_dist/mumps, or

2. permit the group used by GT.M processes needs to use huge pages with, as root, echo gid >/proc/sys/vm/
hugetlb_shm_group.

« Set the environment variable HUGETLB_SHM for each process to yes.
+ To use huge pages for process working space and dynamically linked code:
« Set the environment variable HUGETLB_MORECORE for each process to yes.

« Although not required to use huge pages, your application is also likely to benefit from including the path to libhugetlbfs.so
in the LD_PRELOAD environment variable.

« If you enable huge pages for all applications (by setting HUGETLB_MORECORE, HUGETLB_SHM, and LD_PRELOAD
as discussed above in /etc/profile and/or /etc/csh.login), you may find it convenient to suppress warning messages from
common applications that are not configured to take advantage of huge pages by also setting the environment variable
HUGETLB_VERBOSE to zero (0).

At this time, huge pages cannot be used for MM databases; the text, data, or bss segments for each process; or for process stack.
Refer to the documentation of your Linux distribution for details. Other sources of information are:

« http://www kernel.org/doc/Documentation/vm/hugetlbpage.txt

« http://Iwn.net/Articles/374424/

« http://www.ibm.com/developerworks/wikis/display/LinuxP/libhuge+short+and+simple

+ the HOWTO guide that comes with libhugetlbfs (http://sourceforge.net/projects/libhugetlbfs/files/)

Note

« In order to assure predictable performance, FIS strongly recommends that you invest the effort to
appropriately tune your system before using huge pages in production. For example, use of on demand
huge pages (over-committing) may result in delays while the kernel performs memory management
activities to satisfy requests for memory - but this may or may not be material in your situation.

30

http://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
http://lwn.net/Articles/374424/
http://www.ibm.com/developerworks/wikis/display/LinuxP/libhuge+short+and+simple
http://sourceforge.net/projects/libhugetlbfs/files/

Basic Operations

« Since the memory allocated by Linux for shared memory segments mapped with huge pages is rounded
up to the next multiple of huge pages, there is potentially unused memory in each such shared memory
segment. You can therefore increase any or all of the number of global buffers, journal buffers, and lock
space to make use of this otherwise unused space. You can make this determination by looking at the
size of shared memory segments using ipcs. Contact FIS GT.M support for a sample program to help you
automate the estimate.

« Transparent huge pages may further improve virtual memory page table efficiency. Some Supported
releases automatically set transparent_hugepages to "always"; others may require it to be set at or shortly
after boot-up. Consult your Linux distribution's documentation.

Important

A fatal SIGBUS error occurs when a GT.M process using huge pages tries to spawn another process and
Linux does not have sufficient available huge pages to provide the required memory for the spawned process.
The following involve spawning additional processes:

- JOB

« OPEN of a PIPE device

« ZSYSTEM

« interprocess signaling that requires the services of gtmsecshr when gtmsecshr is not already running
« SPAWN commands in DSE, GDE, and LKE

+ Argumentless MUPIP RUNDOWN

+ Replication-related MUPIP commands that start server processes and/or helper processes

Depending on when huge pages become unavailable, the SIGBUS error may go to the initiating process or
may only prevent the new process from starting. The solution is to tune Linux to ensure that the number of
huge pages required by your application are always available to your application. Because such tuning may
require a reboot, an interim workaround is to unset the environment variable HUGETLB_MORECORE for
GT.M processes until you are able to reboot or otherwise make available an adequate supply of huge pages.

31

Chapter 4. Global Directory Editor

Revision History

Revision V6.1-000

01 August 2014

« In “Global Directory” (page 32), explained
the concepts of mapping different subscripts
of the same global to different regions.

« In “Global Director Editor Commands” (page
42), added example of globals spanning
regions, the description of the new -
GBLNAME, -COLLATION, MUTEX_LOCK
qualifiers.

Revision V6.0-003

27 January 2014

« In “Region Qualifiers” (page 54), corrected
the syntax of [NO]STDNULLCOLL and -
COLLATION_DEFAULT .

« In “Segment Qualifiers” (page 58), added
a paragraph about what happens when
database file with automatic extension
disabled (EXTENSION_COUNT=0) starts to
get full.

Revision V6.0-001

27 February 2013

In “Segment Qualifiers” (page 58) and under
the ~ALLOCATION section, specified that GT.M
always reserves 32 global buffers for BG access
method out of the requested allocation.

Revision V6.0-000/1

21 November 2012

Updated for V6.0-000.

Revision V6.0-000

19 October 2012

In “Region Qualifiers” (page
54), added the description of -
[NOJINST[_FREEZE_ON_ERROR].

Revision V5.5-000/10

28 September 2012

Added the description of -[NO]STDNULLCOLL,
corrected the description of -
NULL_SUBSCRIPTS, and corrected the
maximum value for -LOCK_SPACE.

Revision V5.5-000/8

03 August 2012

Improved the description of the LOCK_SPACE
qualifier and GDE Overview.

Revision V5.5-000/4

6 June 2012

Added AUTOSWITCHLIMIT as an option for -
JOURNAL region qualifier.

Revision V5.4-002B

24 October 2011

Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Global Directory

A global directory is analogous to a telephone directory. Just as a telephone directory helps you find the phone number (and
the address) given a person's name, a global directory helps GT.M processes find the database file of an M global variable node.
But because its life is independent of the databases it maps, a global directory has a second purpose in addition to holding key
mappings, which is to hold database characteristics for MUPIP CREATE. While changes to the mappings take effect as soon as

Global Directory Editor

a process loads a new global directory, MUPIP CREATE transfers the other characteristics to the database file, but other GT.M
processes never use the global directory defined characteristics, they always use those in the database file.

GT.M manages routines in files and libraries separately from globals. For more information on routine management, refer to the
Development Cycle chapter in GT.M Programmer's Guide.

A set of M global variables (Names or Name spaces) and / or their subscripts map to Regions that define common sets of
properties such as the maximum record length and whether null subscripts collate in conformance to the M standard. Each
Region maps to a Segment that defines the properties relating to the file system such as the file name, the initial allocation, and
number of global buffers. These properties and mapping rules are stored in a binary file called global directory. By default, a
global directory file has an extension of .gld. You can specify any filename and extension of your choice for a global directory
as long as it is valid on your operating system; GT.M documentation always uses the default extension.

The location of the global directory is pointed to by the Intrinsic Special Variable $ZGBLDIR. GT.M processes initialize
$ZBGLDIR at process startup from the environment variable gtmgbldir and can modify it during execution. For example, with a
simple SET $ZGBLDIR command, a process can switch back and forth between development and testing databases.

Consider a global variable “TMP that holds only temporary data that is no longer meaningful when a system is rebooted. A
global directory can map "TMP to region TEMP that maps to a database file called scratch.dat, with all other globals mapped to
gtm.dat. A global directory allows the separation of persistent data (gtm.dat) from non-persistent data(scratch.dat), so that each
database file may get appropriately configured for operations—for example, the database administrator may choose to exclude
scratch.dat from backup/archival procedures or periodically delete and recreate scratch.dat using MUPIP CREATE.

Consider the following illustration:

S$ZGBLDIR

Global Directory

Names [‘Gharial||“Hoopoe ||*Jacare |[*Trogon || * |

Regions

Segments

There are four M global variables--"Gharial, “"Hoopoe, "Jacare, and *Trogon. "Gharial and "Jacare map to region REPTILES
that maps to database file creep.dat and "Hoopoe and "Trogon map to region BIRDS that maps to database file flap.dat. The

33

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Global Directory Editor

default namespace * maps to a region called DEFAULT that maps to database file gtm.dat. * denotes all globals other than the
explicitly named "Gharial, “Hoope, "Jacare, and "Trogon. All globals store data in their respective database files. Each database
file has a single active journal file. To enforce access restrictions on globals so that herpetologists have access to “Gharial

and "Jacare and only ornithologists have access to "Hoopoe and "Trogon, one just needs to assign appropriate read / write
permissions to creep.dat and flap.dat.

4 Note

.

Each database file can have a single active journal file. A journal can be linked to its predecessor journal file
to form a chain of journal files.

You can also map different subscripts of the same global to different regions when subscripts have logically separable data.
Consider the following global directory example:

Global Directory

Global AEURWest | “EURWest [REIVTetEY AUS Apustralia

Collation 1] 0 0 0 _

Subscriot AEURWest | “EURWest [EIV{eCTI{E] AUS AUS N/A
P ("UK") ("France”) BMNGEW] ("South” "a""m") | (South®,"m":"{")
AUS

Region UKREG FRREG POREG US5ALREG USSMZREG USREG DEFAULT

Segment UKSEG FRSEG POSEG USSALSEG USSMZSEG AUSSEG DEFAULT

UK.dat France.dat [asIETTNeFY USSAL.dat USSMZ.dat gtm.dat

"US and "EURWest have logically separable subscripts that map to different regions. "\EURCentral holds data that has a
different collation order than others so it maps to a different region. Such mapping improves operational administration and
permits a larger total size. It may also improve performance if the access patterns of the distinct parts allow accesses to all or
some of them to use optimizations in the GT.M database engine, for example, to optimize serial accesses.

In a nutshell, the database attributes and mapping rules defined in a global directory allow you to:
+ Finer-grained Access Control- To block access, or updates, to a portion of the data.

« Improve Operational Administration- When a global becomes so big that that breaking it up improves operational
administration or permit a larger total size.

« Compliment Application Design- To separate global and / or their subscripts in a way that achieves a design goal without
writing addition code. For example, mapping globals to regions that are not replicated.

+ Manage Volatility- some data is static, or relatively so, and you wish to leverage that to tailor your backup and integrity
verification patterns, or to use MM access.

« Improve Manageability and Performance- When a global variable is overloaded with logically separate data, distributing
the logically separate components each to its own database region improves manageability and performance when access
patterns use optimization in the GT.M database engine.

GDE Overview

The GT.M Global Directory Editor (GDE) is a utility for creating, examining, and modifying a global directory. GDE is a
program written in M and you can invoke it from the shell with $gtm_dist/mumps -run *"GDE.

34

Global Directory Editor

Because GDE is an M program, you can also invoke GDE from a GT.M process with DO *GDE. If you invoke GDE with a DO
and modify the map of global directly currently opened by that process, you must HALT and restart the process for the process
to pick up the revised mapping. FIS expects users normally run GDE from the shell --$gtm_dist/mumps -run GDE.

The input to GDE can be a command file. In a production environment, FIS recommends using command files to define
database configurations and putting them under version control.

n Caution

A global directory stores database attributes and mapping rules. Processes use mapping rules to determine
which database file contains a global variable node. MUPIP CREATE uses database attributes to create new
database file(s). Once MUPIP CREATE applies the database attributes to create a database file, GT.M does not
use the attributes until the next MUPIP CREATE. If you use MUPIP SET (or DSE) to change the attributes of
a database file, always perform an equivalent change to any global directory used for a subsequent MUPIP
CREATE. Conversely, if you change attributes with GDE, existing database files must be explicitly changed
with MUPIP SET or DSE.

Identifying the Current Global Directory

At process startup, the environment variable gtmgbldir identifies the global directory to the process. M application code can
access and change the global directory through the $2ZGBLDIR intrinsic special variable, which is initialized from $gtmgbldir at
process startup. M application code can also use extended global references with the || or {} syntax.

Note that $gtmgbldir / $ZGBLDIR are pathnames. If they do not start with a "/", then the pathname is relative and GT.M
searches for the global directory starting in the current working directory.

To change the Global Directory used by processes, specify a new value for gtmgbldir.
Example:
$ export gtmgbldir=/home/jdoe/nodel/prod.gld

When you invoke GDE and no Global Directory exists for gtmgbldir, GDE creates a minimal default Global Directory that is a
starting point or template for building global directories for your specific needs.

To retain the default Global Directory, exit GDE without making any changes.
Example:

$ export gtmgbldir=/home/jdoe/nodel/prod.gld

Creating a Default Global Directory

When you invoke GDE and no Global Directory exists for gtmgbldir, GDE produces a default Global Directory that contains a
minimal set of required components and values for database characteristics. It can be used for purposes such as development
and testing work. A default Global Directory also serves as a starting point or template for building custom global directories.

To retain the default Global Directory, quit GDE without making any changes.
Example:

$ gtmgbldir=/usr/accntg/jones/mumps.gld

35

Global Directory Editor

$ export gtmgbldir

$ $gtm_dist/mumps -dir

GTM>do “GDE

%GDE-I-GDUSEDEFS, Using defaults for Global Directory
/usr/accntg/jones/mumps.gld

GDE> EXIT

%GDE-I-VERIFY, Verification OK

%GDE-I-GDCREATE, Creating Global Directory file
/usr/accntg/jones/mumps.gld

Mapping Global Variables in a Global Directory

Mapping is the process of connecting a global variable name or a subtree or a subscript range to a database file.

A complete mapping has the following four components:

- NAME

« REGION

« SEGMENT

- FILE

These components may be defined in any order, but the final result must be a complete logical path from name to file:
NAME(s) ---> REGION ---> SEGMENT ---> FILE

The default Global Directory contains one complete mapping that comprises these entries for name, region, segment, and file.

* —--=> DEFAULT ---> DEFAULT ---> mumps.dat
(NAME) (REGION) (SEGMENT) (FILE)

The * wildcard identifies all possible global names. Subsequent edits create entries for individual global names or name prefixes.

Regions and segments store information used to control the creation of the file. The characteristics stored with the region and
segment are passed to MUPIP only when creating the database file using the CREATE command, so subsequent changes to
these characteristics in the Global Directory have no effect on an existing database.

On EXIT, GDE validates the global directory to ensure that every legal global variable node maps to exactly one region; that
every region has at least one global variable node mapping to it and that it maps to exactly one segment; that every segment
has exactly one region mapping to it; and that the attributes for each region and segment are internally consistent. GDE
will not create a structurally unsound global directory, and will not exit until it validates the global directory. Informational
messages advise you of structural inconsistencies.

Examining the Default Global Directory

A Global Directory looks like this:

*%% TEMPLATES *%%

Std Inst
Def Rec Key Null Null Freeze Qdb
Region Coll Size Size Subs Coll Jnl on Error Rndwn
<default> Q 4080 255 NEVER Y Y DISABLED DISABLED

36

Global Directory Editor

Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
<default> <based on DB file-spec> Y 2308 2048 2048 8386560
Segment Active Acc Typ Block Alloc Exten Options
<default> * BG DYN 4096 5000 10000 GLOB =1000
LOCK = 40
RES = Q
ENCR = OFF
MSLT =1024
<default> MM DYN 4096 5000 10000 DEFER
LOCK = 40
MSLT =1024

*%% NAMES *%x%
Global Region

* DEFAULT

*%% REGIONS **x

Std Inst
Dynamic Def Rec Key Null Null Freeze Qdb
Region Segment Coll Size Size Subs Coll Jnl on Error Rndwn
DEFAULT DEFAULT Q 4080 255 NEVER Y Y DISABLED DISABLED
%% JOURNALING INFORMATION ##*%
Region Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
DEFAULT $gtmdir/$gtmver/g/gtm.mjl
Y 2308 2048 2048 8386560
*%% SEGMENTS *x%x
Segment File (def ext: .dat)Acc Typ Block Alloc Exten Options
DEFAULT $gtmdir/$gtmver/g/gtm.dat
BG DYN 4096 5000 10000 GLOB=1000

LOCK= 40

RES = Q

ENCR=0OFF

MSLT=1024

*%% MAP *%%
- - - - - - - - - -Names - - - - - - - - - -

From Up to Region / Segment / File(def ext: .dat)
% C. REG = DEFAULT

SEG = DEFAULT

FILE = $gtmdir/$gtmver/g/gtm.dat
LOCAL LOCKS REG = DEFAULT

SEG = DEFAULT

FILE = $gtmdir/$gtmver/g/gtm.dat

There are five primary sections in a Global Directory:
- TEMPLATES

- NAMES

« REGIONS

« SEGMENTS

+ MAP

37

Global Directory Editor

The function of each section in the Global Directory is described as follows:
TEMPLATES

This section of the Global Directory provides a default value for every database or file parameter passed to GT.M as part of a
region or segment definition. GDE uses templates to complete a region or segment definition where one of these necessary
values is not explicitly defined.

GDE provides initial default values when creating a new Global Directory. You can then change any of the values using the
appropriate -REGION or -SEGMENT qualifiers with the TEMPLATE command.

NAMES

An M program sees a monolithic global variable namespace. The NAMES section of the Global Directory partitions the
namespace so that a global name or a global name with a subscript range reside in different database files. An M global can
reside in one more database file, each database file can store many M globals.

REGIONS

The REGIONS section lists all of the regions in the Global Directory. Each region defines common properties for a set of M
global variables or nodes; therefore, multiple sets of names from the NAMES section map onto a single region.

You assign these values by specifying the appropriate qualifier when you create or modify individual regions. If you do not
specify a value for a particular parameter, GDE assigns the default value from the TEMPLATES section.

SEGMENTS

This section of the Global Directory lists currently defined segments. While regions specify properties of global variables,
segments specify the properties of files. There is a one-to-one mapping between regions and segments. You assign these values
by specifying the appropriate qualifier when you create or modify individual segments. If you do not specify a value for a
particular parameter, GDE assigns the default value from the TEMPLATES section.

MAP

This section of the Global Directory lists the current mapping of names to region to segment to file. In the default Global
Directory, there are two lines in this section: one specifies the destination for all globals, the other one is for M LOCK resources
with local variable names. If you add any new mapping component definitions (that is, any new names, regions, or segments),
this section displays the current status of that mapping. Any components of the mapping not currently defined display "NONE".
Because GDE requires all elements of a mapping to be defined, you will not be able to EXIT (and save) your Global Directory
until you complete all mappings.

Global Directory Abbreviations

GDE uses the following abbreviations to display the output of a global directory. The following list show global directory
abbreviations with the associated qualifiers. For a description of the function of individual qualifiers, see "GDE Command
Summary".

Abbreviation Full Form

Acc ACCESS_METHOD
Alloc ALLOCATION
AutoSwitch AUTOSWITCHLIMIT
Block BLOCK_SIZE

Buff BUFFER_SIZE

Def Coll COLLATION_DEFAULT

38

Global Directory Editor

Exten EXTENSION_COUNT
File FILE_NAME
GLOB GLOBAL_BUFFER_COUNT

Inst Freeze On Error

INST_FREEZE_ON_ERROR

JINL JOURNAL

KeySize KEY_SIZE

LOCK LOCK_SPACE

MSLT MUTEX_SLOTS
Null Subs NULL_SUBSCRIPTS
Qdb Rndwn QDBRUNDOWN

Std Null Coll STDNULLCOLL

Rec Size RECORD_SIZE

RES RESERVED_BYTES
Region REGION

Typ DYNAMIC_SEGMENT

Customizing a Global Directory

Once you have installed GT.M and verified its operation, create Global Directories based on your needs. To create customized
Global Directories, use the appropriate GDE commands and qualifiers to build each desired Global Directory. The GDE
commands are described later in this chapter.

You can also create a text file of GDE commands with a standard text editor and process this file with GDE. In a production
environment, this gives better configuration management than interactive usage with GDE.

Adding a Journaling Information Section

If you select the -JOURNAL option when you ADD or CHANGE a region in a Global Directory, the following section is added
to your Global Directory and displays when you invoke SHOW. The columns provided display the values you selected with the
journal options, or defaults provided by FIS for any options not explicitly defined.

**%% JOURNALING INFORMATION *#*%
Jnl File (def ext: .mjl) Before Buff Alloc AutoSwitch

DEFAULT

Exten

$gtmdir/$gtmver/g/gtm.mjl

Y 2308 2048 2048 8386560

For more information about journaling, see the section on the JOURNAL qualifier in this chapter and Chapter 6: “GT.M
Journaling” (page 130).

Using GDE

The default installation procedure places the GDE utility into a directory assigned to the environment variable gtm_dist.
To invoke GDE:

from within GTM, use the command:

GTM>do “GDE

from the shell, enter:

$ mumps -r GDE

39

Global Directory Editor

GDE displays informational messages like the following, and then the GDE> prompt:

%GDE-I-LOADGD, loading Global Directory file /prod/mumps.gld
%GDE-I-VERIFY, Verification OK
GDE>

If this does not work, contact your system manager to investigate setup and file access issues.
To leave GDE:
1. Use the GDE EXIT command to save all changes and return to the caller.
GDE> EXIT
2. Use the GDE QUIT command to discard all changes and return to the caller. This will not save any changes.

GDE> QUIT

Guidelines for Mapping
This section lists the parameters that apply to defining each component of a mapping.
NAMES

The NAMES section contains mappings of M global name spaces. More than one name space can map to a single region but a
single name space can only map to one region.

A name space:

« Is case sensitive.

« Must begin with an alphabetic character or a percent sign (%).

« Can be a discrete "global" name, for example, aaa corresponds to the global variable "aaa.

« Can be a global name ending with a wild card ("*"), for example, abc* represents the set of global nodes which have abc as the
starting prefix.

« Can be a subtree of a global name, for example, abc(1) represents a subtree of the global "abc.

+ Can be a subscript range, for example, abc(1:10) represents all nodes starting from "abc(1) up to (but not including) to
*abc(10).

« A global name can be one to 31 alphanumeric characters. However, the combined length of a global and its subscripts
is limited to 1,019 bytes (the maximum key size supported by GT.M). Note that the byte length of the subscripted global
specification can exceed the maximum KeySize specified for its region.

+ Maps to only one region in the Global Directory.

REGIONS

The REGIONS section contain mappings of database region. A region is a logical structure that holds information about a
portion of a database, such as key-size and record-size. A key is the internal representation of a global variable name. In this
chapter the terms global variable name and key are used interchangeably. A record refers to a key and its data.

A Global Directory must have at least one region. A region only maps to a single segment. More than one name may map to a
region.

40

Global Directory Editor

A region name:

« Can include alphanumerics, dollar signs ($), and underscores (_).

« Can have from 1 to 31 characters.

GDE automatically converts region names to uppercase, and uses DEFAULT for the default region name.
SEGMENTS

The SEGMENTS section contains mappings for segments. A segment defines file-related database storage characteristics. A
segment must map to a single file. A segment can be mapped by only one region.

GT.M uses a segment to define a physical file and access method for the database stored in that file.

A segment-name:

« Can include alphanumerics, dollar signs ($), and underscores (_)

« Can have from one to 31 characters

GDE automatically converts segment names to uppercase. GDE uses DEFAULT for the default segment name.
FILE

Files are the structures provided by UNIX for the storage and retrieval of information. Files used by GT.M must be random-
access files resident on disk.

By default, GDE uses the file-name mumps.dat for the DEFAULT segment. GDE adds the .dat to the file name when you do not
specify an extension. Avoid non-graphic and punctuation characters with potential semantic significance to the file system in
file names as they will produce operational difficulties.

Example of a Basic Mapping
To complete this procedure, you must have already opened a Global Directory.
« ADD a new global variable name.
GDE> add -name cus -region=cusreg
This maps the global name cus to the region cusreg.
« ADD region cusreg, if it does not exist.
GDE> add -region cusreg -dynamic=cusseg

This creates the region cusreg and connects it to the segment cusseg. -d[ynamic] is a required qualifier that takes the
associated segment-name as a value.

+ ADD segment cusreg, if it does not exist, and link it to a file.
GDE> add -segment cusseg -file=cus.dat

This creates the segment cusseg and connects it to the file cus.dat.

41

Global Directory Editor

To review the information you have added to the Global Directory, use the SHOW command.
To perform a consistency check of the configuration, use the VERIFY command.

To exit the Global Directory and save your changes, use the EXIT command. GDE performs an automatic verification. If
successful, the mappings and database specifications become part of the Global Directory, available for access by processes,
utilities, and the run-time system.

Only MUPIP CREATE uses the database specifications; run-time processes and other utility functions use only the map.

Global Director Editor Commands

This section describes GDE commands. GDE allows abbreviations of commands. The section describing each command
provides the minimum abbreviation for that command and a description of any qualifiers that are not object-related. The
section discussing the object-type describes all the associated object-related qualifiers.

Command Syntax:
The general format of GDE commands is:

command [-object-type] [object-name] [-qualifier]

where:

-object-type Indicates whether the command operates on a -N[AME] space, -R[EGION], or -S[EGMENT].

object-name Specifies the name of the NJAME] space, R[EGION], or SSEGMENT]. Objects of different types may have
the same name. Name spaces may include the wildcard operator (*) as a suffix.

-qualifier Indicates an object qualifier.

The format description for each individual command specifies required qualifiers for that command.

The @, EXIT, HELP, LOG, QUIT, SETGD, and SPAWN commands do not use this general format. For the applicable format,
refer to the section explaining each of these commands.

Comments on command lines start with an exclamation mark (!) and run to the end of line.

Caution

"

An exclamation mark not enclosed in quotation marks (
the rest of that input line.

)(for example in a subscript) causes GDE to ignore

Specifying File Names in Command Lines

file-names must either appear as the last item on the command line or be surrounded by quotation marks. Because UNIX file
naming conventions permit the use of virtually any character in a file-name, once a qualifier such as -FILE_NAME or -LOG
introduces a file-name and the first character after the equal sign is not a quotation mark, GT.M treats the entire remainder of
the line as the file-name. When using quotation marks around file-names, GDE interprets a pair of embedded quotation marks
as a single quotation mark within the file-name. Note that the use of Ctrl or punctuation characters such as exclamation mark
("), asterisk (*), or comma (,) in a file-name is likely to create significant operational file management challenges. FIS strongly
recommends against such practices.

42

Global Directory Editor
Font/Capitalization Conventions Used in this Chapter

All GT.M and GDE commands and qualifiers may be entered in either upper or lower case at the command prompt. However,
when you SHOW your current Global Directory, GDE uses the following case conventions:

+ Region and segment names always display in uppercase
« Name space object names always appear in case in which they are entered.

+ File-names always appear in case in which they are entered.

Note

The .dat extension is appended to the file-name when the database file is created, but does not appear in the
Global Directory listing, unless you enter it that way.

The descriptions of these commands and qualifiers appear in various cases and fonts throughout this documentation. This
section describes the conventions used in describing these commands and qualifiers.
« In text: all GT.M commands and qualifiers appear in uppercase.

+ In examples: the entire command line is shown in lower case, and appears in bold typewriter font.

@

The @ command executes a GDE command file. Use the @ command to execute GDE commands stored in a text file.
The format of the @ command is:
@file-name

The file-name specifies the command file to execute. Use the file-name alone for a file in the current working directory or
specify the relative path or the full path.

GDE executes each line of the command file as if it were entered at the terminal.
Example:
GDE> @standard

This command executes the GDE commands in the file to standard in the current working directory. standard should contain
GDE commands; comments should start with an exclamation mark (!).

Add

The ADD command inserts a new name, region, or segment into the Global Directory.

The format of the ADD command is one of the following:

ALDD] -N[AME] namespace -R[EGION]=region-name

ALDD] -R[EGION] region-name -D[YNAMIC]=segment-name [-REGION-qualifier...]
ALDD] -S[EGMENT] segment-name [-SEGMENT-qualifier...] -F[ILE_NAME]=file-name
ALDD] -G[BLNAME] global-name [-GBLNAME-qualifier ...]

The ADD command requires specification of an object-type and object-name. GDE supplies default values from the templates
for qualifiers not explicitly supplied in the command.

43

Global Directory Editor

namespace specifies a global name or a global name with subscript(s) or a global name with a subscript range in the form of
global[[*]|[(from-subscript:[to-subscript])]].

Name spaces and file-names are case-sensitive; other objects are not case-sensitive.

-Name

Maps a namespace to a region in the global directory. The format of the ADD -NAME command is:
ALDDI-N[AME] namespace -R[EGION]=region-name
+ You can map a global and its subtrees to different regions.

« You can also use colon (:) to map ranges of subscripted names and their subtrees to a region. Ranges are closed on the
left and open on the right side of the colon. For example, add -name PRODAGE(0:10) -region DECADEO maps
"PRODAGE(0) to "PRODAGE(9), assuming the application always uses integer subscripts, to region DECADEO.

+ You can also use $CHAR() and $ZCHAR() to specify unprintable characters as subscripts. "" (an empty string) or no value
(e.g. 20: or :20 or :) specify open-ended ranges, which span, on the left, from the first subscript ("") to, on the right, the last
possible string.

+ Regions that contain global variables sharing the same unsubscripted name that span regions must use standard null
collation; attempting to use the deprecated original null collation produces an error.

Example:
GDE> add -name IMPL -region=0THERMUMPS ! Map MUMPS implementations to OTHERMUMPS
GDE> add -name IMPL("GT.M") -region=MYMUMPS ! While mapping GT.M to

MYMUMPS

These examples map an entire subtree of a global to a region.

Example:

GDE> add -name PRODAGE(0:10) -region=DECADEQ ! Ranges are closed on the left and open
on the right

GDE> add -name PRODAGE (10:20) -region=DECADE1 ! PRODAGE(10) maps to DECADE1

GDE> add -name PRODAGE (20:30) -region=DECADE2

This example uses a colon (:) to map ranges of subscripted names and their subtrees to a region. Note that ranges are specific

numbers or strings - GDE does not support wildcards (using "*") in ranges.
Example:
GDE> add -name=PRODAGE (: 10) -region=DECADEQ ! This line and

the next are equivalent
GDE> add -name PRODAGE("":10) -region=DECADEQ ! numbers up to, but not including, 10
GDE> add -name PRODAGE (20:) -region=DECADE?2 ! 20 thru all numbers (> 20) + strings
GDE> add -name PRODAGE (20:"") -region=DECADE2 ! same as the add just above

44

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX110.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX111.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX112.txt

Global Directory Editor

These examples demonstrate the use of $CHAR() and $ZCHAR() to specify unprintable characters; Notice that the arguments
are positive integers (exponential - E syntax not allowed), and valid code points for §CHAR() or in range for $ZCHAR(), both
with respect to the current $ZCHSET. Also, "" (an empty string) or no value (e.g. 20: or :20 or :) specify open-ended ranges,
which span, on the left, from the first subscript ("") to, on the right, the last possible string.

Example:
GDE> add -name MODELNUM -region=NUMERIC
GDE> add -name MODELNUM($char(0):) -region=STRING

This example map numeric subscripts and strings to separate regions.

Example:

GDE> add -name DIVISION("Europe”,"a":"m") -region EUROPEAL
GDE> add -name DIVISION("Europe”,"m":"z") -region EUROPEM
GDE> add -name DIVISION("Australia”) -region AUSTRALIA
GDE> add -name DIVISION("USA","South”,"a":"m") -region USSAL
GDE> add -name DIVISION("USA","South”,"m":"{") -region USSMZ
GDE> add -name DIVISION("USA","WestCoast") -region USWC

This example maps global variables with the same unsubscripted name at multiple subscript levels.

Example:

GDE> add -name X -region=REGT
GDE> add -name x(5) -region=REGT
GDE> add -name x(5,10:) -region=REG2
GDE> add -name x(5:20) -region=REG2
GDE> add -name x(20) -region=REG2
GDE> add -name x(20,40) -region=REG2
GDE> add -name x(20,40,50:) -region=REG3
GDE> add -name x(20,40:) -region=REG3
GDE> add -name x(20:) -region=REG3

This example performs the following mapping:
« from "x, upto but not including "x(5,10), maps to REG1
« from "x(5,10), upto but not including *x(20,40,50), maps to to REG2

« from "x(20,40,50) through the last subscript in *x maps to REG 3

-Segment

Maps a segment to a database file. The syntax of the ADD -SEGMENT command is:

ALDD]-S[EGMENT] segment-name [-SEGMENT-qualifier...]
-FLILE_NAME]=file-name

Example:

GDE> add -segment temp -file_name=scratch

45

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX116.txt

Global Directory Editor

This command creates a segment-name TEMP and maps it to the file scratch.dat in the current working directory. However,
if you were to specify scratch as the file-name, in other words, an environment variable, each process uses the file using the
translation of that environment variable at run-time.

-Region
Maps a region to a segment. The syntax of the ADD -REGION command is:

ALDD]-RLEGION] region-name -D[YNAMIC]=segment-name [-REGION-qualifier...]

-Gblname

Provides a mechanism to specify the collation for global variables sharing the same unsubscripted name. Specifying a collation
is necessary for globals that span multiple regions and and use an alternate collation. Because the global name EURCentral
(described in the Introduction section) uses an alternate collation, it requires an entry in the GBLNAME section. The format of
the ADD -GBLNAME command is:

A[DD] -G[BLNAME] -C[OLLATION]=collation_number

« Because string subscripts are subject to collation (the unsubscripted portion of a global variable name and numeric subscripts
are not), GDE needs to know the collation sequence number associated with each unsubscripted global variable name. M
standard collation (the default) has a collation number of zero (0). As a consequence, when you use alternative collation(s)
(other than 0), the collation transforms must be available to GDE in the same way as they are to other GT.M components. All
of a global (all nodes sharing the same unsubscripted global name) must have a single collation, which is implicitly the case
for globals that do not span multiple regions.

+ Globals that do not span multiple regions and do not have any collation characteristics defined in the GBLNAME section of
the global directory take on the default collation characteristics defined in the database region to which they map. On the
other hand, globals that span multiple regions have their collation implicitly (collation 0), or explicitly, established by the
GBLNAME section of the global directory and cannot adopt a differing collation based on the region collation characteristic.
Because GT.M determines collation for globals spanning multiple regions by the GBLNAME characteristic, which cannot
change once the database files are created, GDE reports collation on many error messages.

Example:

GDE> add -gblname EURCentral -collation=1
GDE> show -gblname

*%% GBLNAMES #*xx%

Global Coll Ver
EURCentral 1 0
Change

The CHANGE command alters the name-to-region or region-to-segment mapping and /or the environment for a region or
segment.

The format of the CHANGE command is:

C[LHANGE]-N[AME] namespace -R[EGION]=new-region
CLHANGE]-R[EGION] region-name [-REGION-qualifier...]
C[HANGE]-S[EGMENT] segment-name [-SEGMENT-qualifier...]

46

Global Directory Editor

CLHANGE] -G[BLNAME] -C[OLLATION]=collation_number
The CHANGE command requires specification of an object-type and object-name.

Once you exit GDE, mapping changes take effect for any subsequent image activation (for example, the next RUN or the
mumps -direct command). Changes to database parameters only take effect for new database files created with subsequent
MUPIP CREATE commands that use the modified Global Directory. Use the MUPIP SET command (or in some cases DSE) to
change characteristics of existing database files.

Example:
GDE> change -region master -dynamic=temp -key=100

This command changes the region master to use the segment temp and establishes a maximum KEY_SIZE of 100 characters for
the next creation of a file for this region. The segment change takes effect the first time the system uses the Global Directory
after the GDE session EXITs, while the KEY_SIZE change takes effect after the next MUPIP CREATE that creates a new
database file for segment temp.

Delete

The DELETE command removes a name, region, or segment from the Global Directory. The DELETE command does not

delete any actual data. However, GT.M does not access database files that do not have mapped global variables except through
extended references using an alternative global directory that does not map to them. Note that GT.M replication does not
support global updates made with extended references, unless they actually map to a database file that is a part of the replicated
instance.

The format of the DELETE command is:
DLELETE] -N[AME] namespace

DLELETE] -RLEGION] region-name
DLELETE] -S[EGMENT] segment-name
DLELETE] -G[BLNAME] global-name

The DELETE command requires specification of an object-type and object-name.

Deleting a name removes the namespace-to-region mapping. Deleting a region unmaps all names mapped to the region.
Deleting a segment unmaps the region mapped to the segment.

You may map the deleted names to another region or the deleted region to another segment using the CHANGE command.
The default namespace (*) cannot be deleted.

Example:

GDE> del -name T=

This command deletes the explicit mapping of all global names starting with the letter "T." This command does not delete any
global variables. However, it may make preexisting globals starting with the letter "T" invisible, at least while using this global
directory, because the T* global names map to the default namespace going forward.

Exit

The EXIT command writes all changes made in the current GDE editing session to the Global Directory and terminates the
current editing session.

47

Global Directory Editor
The format of the EXIT command is:
ELXIT]

GDE performs a full verification test (VERIFY) on the data. If the verification succeeds, GDE writes the new Global Directory to
file system and issues a verification message.

If the verification fails, GDE displays a listing of all unverifiable mappings and waits for corrections. Make appropriate
corrections, or leave the Global Directory in its original, unedited state by using the QUIT command.

If you have not made any changes to the Global Directory, GDE does not save a new Global Directory unless the original global
directory had an older format which GDE has automatically upgraded. Note that while GDE upgrades older global directories
to the current version, there is no facility to downgrade global directories to prior versions, so you should always save copies of
any global directories that might be needed to retrieve archival data.

Help
The HELP command displays online information about GDE commands and qualifiers.
The format of the HELP command is:

HLELP] [topic...]

where topic specifies the GDE command for which you want information. If you omit the topic, GDE prompts you for it.

LOCks

The LOCKS command specifies the region into which GT.M maps "local" locks(those with resource names not starting with a
caret symbol "). GDE maps locks on resource names, starting with a caret symbol, to the database region mapped for the global
variable name matching the resource name.

The format of the LOCKS command is:
LOCLKS] -RLEGION]=region-name

The LOCKS -REGION= qualifier allows specification of a region for local locks. By default, GDE maps local locks to the
DEFAULT region .

Example:
GDE> lock -region=main

This command maps all locks on resource names that don't start with the caret symbol, """ to the region main.

n Caution

GT.M associates LOCKs for global names with the database region holding the corresponding unsubscripted
global name. Suppose a global called "EURWest spans multiple regions in multiple global directories, a
command like LOCK "EURWest may not work in the same way as it would do if "EURWest did not span
multiple regions. Before using a command like LOCK "EURWest where "EURWest spans multiple regions in
multiple directories, ensure that the corresponding unsubscripted "EURWest map to the same region in all
the global directories. Alternatively, you can use LOCK globalname (with no leading up-arrow) and control
LOCK interactions with the LOCKS global directory characteristic or use transaction processing to eliminate
the use of LOCKs to protect global access.

48

Global Directory Editor

LOG

The LOG command creates a log file of all GDE commands and displays for the current editing session. Because the system
places an exclamation point (!) (i.e., the comment symbol) before all display lines that are not entered by the user. In the log, the
log can be used with the @ symbol as a command procedure.

The format of the LOG command is:
LOG

LOG -ON[=file-name]

LOG -OF[F]

The LOG command, without a qualifier, reports the current status of GDE logging. The LOG command displays a message
showing whether logging is in effect and the specification of the current log file for the GDE session.

The log facility can be turned on and off using the -ON or -OFF qualifiers any time during a GDE session. However, GDE closes
the log files only when the GDE session ends.

The -ON qualifier has an optional argument of a file, which must identify a legal UNIX file. If LOG -ON has no file-argument,
GDE uses the previous log file for the editing session. If no log file has previously been specified during this editing session,
GDE uses the default log file GDELOG.LOG.

Example:
GDE> log -on="standard.log"

This command turns on logging of the session and directs the output to standard.log.

Quit

The QUIT command ends the current editing session without saving any changes to the Global Directory. GDE does not update
the Global Directory file.

The format of the QUIT command is:

QLUIT]

If the session made changes to the Global Directory, GDE issues a message warning that the Global Directory has not been
updated.

Rename

The RENAME command allows you to change a namespace, the name of a region, or the name of a segment.
The format of the RENAME command is:

RLENAME] -N[AME] old-name new-name

RLENAME] -R[EGION] old-region-name new-region-name

RLENAME] -S[EGMENT] old-segment-name new-segment-name

RLENAME] -G[BLNAME] old-global-name new-global-name

The RENAME command requires specification of an object-type and two object-names.

49

Global Directory Editor

When renaming a region, GDE transfers all name mappings to the new region. When renaming a segment, GDE transfers the
region mapping to the new segment.

Example:
GDE> rename -segment stable table

This command renames segment stable to table and shifts any region mapped to stable so it is mapped to table.

SEtgd

The SETGD command closes out edits on one Global Directory and opens edits on another.
The format of the SETGD command is:

SE[TGD] -F[ILE]=file-name [-Q[UIT]]

The -FILE=file-name specifies a different Global Directory file. When you provide a file-name without a full or relative
pathname GDE uses the current working directory; if the file is missing an extension, then GDE defaults the type to .gld.

The -QUIT qualifier specifies that any changes made to the current Global Directory are not written and are lost when you
change Global Directories.

SETGD changes the Global Directory that GDE is editing. If the current Global Directory has not been modified, or the -QUIT
qualifier appears in the command, the change simply occurs. However, if the current Global Directory has been modified,
GDE verifies the Global Directory, and if the verification is successful, writes that Global Directory. If the verification is not
successful, the SETGD fails.

Example:
GDE> SETGD -f="temp”

This changes the Global Directory being edited to temp. The quotation marks around the file name identifies the name of the
file unequivocally to UNIX. If the -f is the final qualifier on the line, then the quotation marks are unnecessary.

SHow
The SHOW command displays information contained in the Global Directory about names, regions, and segments.
The format of the SHOW command is:

SHLOW] -CLOMMAND] -F[ILE]=[gde-command-file]
SHLOW] -N[AME] [namespace]

SHLOW] -R[EGION] [region-name]

SHLOW] -S[EGMENT] [segment-name]

SHLOW] -M[AP] [-RLEGION]=region-name]
SHLOW] -T[EMPLATE]

SHLOW] -G[BLNAME]

SHLOW] -A[LL]

-COMMAND: Displays GDE commands that recreate the current Global Directory state.

-F[ILE]=gde-command-file: Optionally specifies a file to hold the GDE commands produced by -COMMAND. -FILE must must
always appear after -COMMAND.

50

Global Directory Editor

Please consider using command files produced with the SHOW -COMMAND -FILE for creating new regions and segments in
a global directory as the defaults come from the templates. If you inadvertently upgrade a global directory, you can use SHOW
-COMMAND to create a file of commands that you can input to GDE with the prior GT.M release to recreate the prior global
directory file.

Note

When GDE encounters an error while executing the @command-file command, it stops processing the
command file and returns to the operator prompt, which gives the operator the option of compensating
for the error. If you subsequently issue @command-file command again in the same session for the same
command-file, GDE resumes processing it at the line after the last error.

-NAME, -REGION, -SEGMENT, -GBLNAME, -MAP, -TEMPLATE, and -ALL are qualifiers that cause GDE to display selected
portions of the Global Directory as follows:

-MAP: Displays the current mapping of all names, regions, segments, and files. This qualifier corresponds to the section of the
SHOW report titled ***MAP***. The output of a SHOW -MAP may be restricted to a particular region by specifying a -REGION
qualifier with a region name argument.

-TEMPLATE: Displays the current region and segment templates. This qualifier corresponds to the section of the SHOW report
titled:

***TEMPLATES**%
-ALL: Displays the entire Global Directory. This qualifier corresponds to displaying "all" sections of the SHOW report:
%%TEMPLATES#*% , **%*NAMES*%* *x**REGIONS# %%, #x*SEGMENTS# %%, *x**MAP**%.

By default, SHOW displays -ALL.

If you want to print the Global Directory, create a log file by executing LOG -ON= before executing the SHOW command. The -
LOG command captures all the commands entered and output. You can print the log file if you want a hard copy record.

If you want to export the current Global Directory state, create a GDE command file with the SHOW -COMMAND -FILE=gde-
command-file and run it in the target environment.

Example:
GDE>show -template

%% TEMPLATES *%x

Std Inst
Def Rec Key Null Null Freeze Qdb
Region Coll Size Size Subs Coll Jnl on Error Rndwn
<default> Q 4080 255 NEVER Y Y DISABLED DISABLED
Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch

<default> <based on DB file-spec> Y 2308 2048 2048 8386560
Segment Active Acc Typ Block Alloc Exten Options
<default> * BG DYN 4096 5000 10000 GLOB =1000

LOCK = 40

RES = Q

ENCR = OFF

MSLT =1024
<default> MM DYN 4096 5000 10000 DEFER

LOCK = 40

51

Global Directory Editor

MSLT =1024

This displays only the TEMPLATES section of the Global Directory.

GDE>SHOW -command

TEMPLATE -REGION -COLLATION_DEFAULT=0

TEMPLATE -REGION -NOINST_FREEZE_ON_ERROR

TEMPLATE -REGION -JOURNAL=(ALLOCATION=2048,AUTOSWITCHLIMIT=8386560,BEFORE_IMAGE,BUFFER_SIZE=2308,EXTENSION=2048)
TEMPLATE -REGION -KEY_SIZE=64

TEMPLATE -REGION -NULL_SUBSCRIPTS=NEVER

TEMPLATE -REGION -NOQDBRUNDOWN

TEMPLATE -REGION -RECORD_SIZE=256

TEMPLATE -REGION -STDNULLCOLL

|

TEMPLATE -REGION -NOJOURNAL

|

TEMPLATE -SEGMENT -ACCESS_METHOD=BG
TEMPLATE -SEGMENT -ALLOCATION=100
TEMPLATE -SEGMENT -BLOCK_SIZE=1024
TEMPLATE -SEGMENT -NOENCRYPTION_FLAG
TEMPLATE -SEGMENT -EXTENSION_COUNT=100
TEMPLATE -SEGMENT -GLOBAL_BUFFER_COUNT=1024
TEMPLATE -SEGMENT -LOCK_SPACE=40
TEMPLATE -SEGMENT -MUTEX_SLOTS=1024
TEMPLATE -SEGMENT -RESERVED_BYTES=0

|

TEMPLATE -SEGMENT -ACCESS_METHOD=MM
TEMPLATE -SEGMENT -ALLOCATION=100
TEMPLATE -SEGMENT -BLOCK_SIZE=1024
TEMPLATE -SEGMENT -DEFER

TEMPLATE -SEGMENT -NOENCRYPTION_FLAG
TEMPLATE -SEGMENT -EXTENSION_COUNT=100
TEMPLATE -SEGMENT -GLOBAL_BUFFER_COUNT=1024
TEMPLATE -SEGMENT -LOCK_SPACE=40
TEMPLATE -SEGMENT -MUTEX_SLOTS=1024
TEMPLATE -SEGMENT -RESERVED_BYTES=0

|

TEMPLATE -SEGMENT -ACCESS_METHOD=BG

|

DELETE -REGION DEFAULT

DELETE -SEGMENT DEFAULT

ADD -REGION AUSREG -DYNAMIC_SEGMENT=AUSSEG

ADD -REGION DEFAULT -DYNAMIC_SEGMENT=DEFAULT
ADD -REGION FRREG -DYNAMIC_SEGMENT=FRSEG

ADD -REGION POREG -DYNAMIC_SEGMENT=POSEG

ADD -REGION UKREG -DYNAMIC_SEGMENT=UKSEG

ADD -REGION USSALREG -DYNAMIC_SEGMENT=USSALSEG
ADD -REGION USSMZREG -DYNAMIC_SEGMENT=USSMZSEG
|

ADD -SEGMENT AUSSEG -FILE_NAME="AUS.dat”

ADD -SEGMENT DEFAULT -FILE_NAME="gtm.dat”

ADD -SEGMENT FRSEG -FILE_NAME="France.dat”

ADD -SEGMENT POSEG -FILE_NAME="Poland.dat”

ADD -SEGMENT UKSEG -FILE_NAME="UK.dat”

ADD -SEGMENT USSALSEG -FILE_NAME="USSAL.dat”
ADD -SEGMENT USSMZSEG -FILE_NAME="USSMZ.dat”

|

ADD -GBLNAME EURCentral -COLLATION=1

|

LOCKS -REGION=DEFAULT

ADD -NAME Australia -REGION=AUSREG

ADD -NAME EURCentral(”Poland”) -REGION=POREG
ADD -NAME EURWest(”France”) -REGION=FRREG

ADD -NAME EURWest(”UK") -REGION=UKREG

ADD -NAME US(”South”,”a”:"m") -REGION=USSALREG

ADD -NAME US(”South”,”m”:"{") -REGION=USSMZREG
1

This command displays the GDE commands to recreate the spanning region example described in the Introduction section.

52

Global Directory Editor
Template

The TEMPLATE command maintains a set of -REGION and -SEGMENT qualifier values for use as templates when ADDing
regions and segments. When an ADD command omits qualifiers, GDE uses the template values as defaults.

GDE maintains a separate set of -SEGMENT qualifier values for each ACCESS_METHOD. When GDE modifies the
ACCESS_METHOD, it activates the appropriate set of TEMPLATEs and sets all unspecified qualifiers to the template defaults
for the new ACCESS_METHOD. Use the GDE SHOW command to display qualifier values for all ACCESS_METHODs.

The format of the TEMPLATE command is:

TLEMPLATE] -R[EGION] [-REGION-qualifier...]
TLEMPLATE] -S[EGMENT] [-SEGMENT-qualifier...]

The TEMPLATE command requires specification of an object-type.
Example:
GDE> template -segment -allocation=200000

This command modifies the segment template so that any segments ADDed after this time produce database files with an
ALLOCATION of 200,000 GDS blocks.

Verify

The VERIFY command validates information entered into the current Global Directory. It checks the name-to-region mappings
to ensure all names map to a region. The VERIFY command checks region-to-segment mappings to ensure each region maps
to a segment, each segment maps to only one region, and the segment maps to a UNIX file. The EXIT command implicitly
performs a VERIFY -ALL.

The format of the VERIFY command is:

V[ERIFY]

VLERIFY] -N[AME] [namespace]
VLERIFY] -R[EGION] [region-namel]
V[ERIFY] -S[EGMENT] [segment-name]
VLERIFY] -M[AP]

VLERIFY] -G[BLNAME]

VLERIFY] -T[EMPLATE]

V[ERIFY] -A[LL]

The object-type is optional. -MAP, -TEMPLATE, and -ALL are special qualifiers used as follows:

-MAP Checks that all names map to a region, all regions map to a segment, and all segments map to a file.
-TEMPLATE Checks that all templates currently are consistent and useable.

-ALL Checks all map and template data.

VERIFY with no qualifier, VERIFY -MAP, and VERIFY -ALL each check all current information.

Example:

GDE> verify -region regis

This command verifies the region regis.

53

Global Directory Editor

Name, Region, and Segment Qualifiers

The -NAME, -REGION, and -SEGMENT qualifiers each have additional qualifiers used to further define or specify
characteristics of a name, region, or segment. The following sections describe these additional qualifiers.

Name Qualifiers

The following -NAME qualifier can be used with the ADD or CHANGE commands.

-REGION=region-name

Specifies the name of a region. Region names are not case-sensitive, but are represented as uppercase by GDE.
The minimum length is one alphabetic character.

The maximum length is 31 alphanumeric characters.

Example:

GDE> add -name a* -region=areg

This command creates the namespace a*, if it does not exist, and maps it to the region areg,.

Summary
GDE NAME Qualifiers
QUALIFIER DEFAULT MINIMUM MAXIMUM
-R[EGION]=region-name (characters) (none) 1A 16A/N

Region Qualifiers
The following -REGION qualifiers can be used with the ADD, CHANGE, or TEMPLATE commands.
-C[OLLATION_DEFAULT|=number

Specifies the number of the collation sequence definition to be used as the default for this database file. The number can be any
integer from 0 to 255. The number you assign as a value must match the number of a defined collation sequence that resides in

the shared library pointed to by the environment variable gtm_collate_n. For information on defining this environment variable
and creating an alternate collation sequence, refer to the "Internationalization" chapter in the GT.M Programmer's Guide.

The minimum COLLATION_DEFAULT number is zero, which is the standard M collation sequence.
The maximum COLLATION DEFAULT number is 255.

By default, GDE uses zero (0) as the COLLATION_DEFAULT.
-D[YNAMIC_SEGMENT]=segment-name

Specifies the name of the segment to which the region is mapped. Segment-names are not case-sensitive, but are displayed as
uppercase by GDE.

54

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Global Directory Editor

The minimum length is one alphabetic character.
The maximum length is 31 alphanumeric characters.
-K[EY_SIZE]=size in bytes

Specifies the maximum size of keys, in bytes, which can be stored in the region. The KEY_SIZE must be less than the
RECORD_SIZE. GDE rejects the command if the KEY_SIZE is inappropriate for the RECORD_SIZE.

The minimum KEY_SIZE is three bytes.
The maximum KEY_SIZE is 1,019 bytes.
When determining the maximum key size, applications should consider the following:

« GT.M uses packed decimal representation for numeric subscripts which may be larger or smaller than the original
representation.

« GT.M substitutes an element terminator for the caret (*), any comma (,), and any right parenthesis ()).
« GT.M adds an extra byte for every string element, including the global name.

For example, the key "ACN ("Name", "Type") internally occupies 17 bytes.

By default, GDE uses a KEY_SIZE of 64 bytes.

-R[ECORD_SIZE]|=size in bytes

Specifies the maximum size (in bytes) of a global variable node's value that can be stored in a region.

If the size of a global exceeds one database block, GT.M implicitly spans that global across multiple database blocks. In the
event a global variable node spans multiple blocks, and the process is not already within a TP transaction, the GT.M run-time
system automatically and transparently performs the entire operation within an implicit TP transaction (as it does for Triggers).

The minimum RECORD_SIZE is zero. A RECORD_SIZE of zero only allows a global variable node that does not have a value. A
typical use of a global variable node with RECORD_SIZE of zero is for creating indices (where the presence of a node is all that
is required).

The maximum RECORD_SIZE is 1,048,576 bytes (1MiB).
By default, GDE uses a RECORD_SIZE of 256 bytes.
-[NOJN[ULL_SUBSCRIPTS]=[ALWAYS/NEVER|EXISTING]

Indicates whether GT.M allows null subscripts for global variables stored in the region (that is, whether GT.M permits
references such as “aaa("",1)).

ALWAYS indicates that the null subscripts for global variables are allowed.
NEVER indicates that null subscripts for global variables are not allowed.
EXISTING indicates that null subscripts for global variable can be accessed and updated, but not created anew.

By default, regions have -NULL_SUBSCRIPTS=NEVER.

55

Global Directory Editor

-[NOJSTDNULLCOLL
Determines whether GT.M null subscripts collate in conformance to the M standard.

If STDNULLCOLL is specified, subscripts of globals in the database follow the M standard where the null subscript collates
before all other subscripts.

If NOSTDNULLCOLL is specified, null subscripts collate between numeric and string subscripts. FIS strongly recommends that
you use STDNULL and against using this non-standard null collation, which is the default for historical reasons.

-[NOJINST[FREEZE_ON _ERROR]

Controls whether custom errors in a region should automatically cause an Instance Freeze. This qualifier modifies the value of
"Inst Freeze on Error" file header element.

For more information on setting up a list of custom errors that automatically invoke an Instance Freeze, refer to “Instance
Freeze” (page 193).

For more information on setting or clearing an Instance Freeze on an instance irrespective of whether any region is enabled for
Instance, refer to “Starting the Source Server” (page 230).

-[NOJQ[DBRUNDOWN]

Quickens normal process shutdown where a large number of processes accessing a database file are required to shutdown
almost simultaneously, for example, in benchmarking scenarios. When a terminating GT.M process observes that a large
number of processes are attached to a database file and QDBRUNDOWN is enabled, it bypasses checking whether it is the last
process accessing the database. Such a check occurs in a critical section and bypassing it also bypasses the usual RUNDOWN
actions which accelerates process shutdown removing a possible impediment to process startup. By default, QDBRUNDOWN is
disabled.

Note that with QDBRUNDOWN there is a possibility of race condition that might leave the database fileheader and IPC
resources in need of cleanup. Although QDBRUNDOWN minimizes the probability of such a race condition, it cannot eliminate
it. FIS recommends restricting QDBRUNDOWN usage to special circumstances such as benchmarking and recommends
NOQDBRUNDOWN for normal GT.M usage. When using QDBRUNDOWN, FIS recommends an explicit MUPIP RUNDOWN of
the database file after the last process exits, to ensure the cleanup of database fileheader and IPC resources.

-[NOJJ[OURNAL][=journal-option-list]
This qualifier establishes characteristics for the journal file on newly created databases.

-NOJOURNAL specifies that updates to the database file are not journaled. -NOJOURNAL does not accept an argument
assignment.

-JOURNAL specifies that journaling is allowed. -JOURNAL takes one or more arguments in a journal-option-list. The journal-
option-list contains keywords separated with commas (,) enclosed in parentheses () with file-names quoted (for example,
change -region test -journal=(before,file="foo") . If the list contains only one keyword, the parentheses and quotes are optional.

Although you do not have to establish the criteria for your journaling process at this point, it is efficient to do so, even if you
are not entirely sure you will use journaling. The options available for -JOURNAL set up the environment, so it is ready for you

to enable with MUPIP SET -JOURNAL. You can also change or add any of the established options at that time.

For more information about journaling, see Chapter 6: “GT.M Journaling” (page 130).

56

Global Directory Editor

The journal-option-list includes:

. [NOJBE[FORE_IMAGE]

« F[ILE_NAME]=file-specification-name

« AUTOSWITCHLIMIT=blocks

. A[LLOCATION]=blocks

« E[XTENSION]=blocks

« BU[FFER_SIZE]=pages

The following section describes some -JOURNAL options.
-AU[TOSWITCHLIMIT]=blocks

Specifies the limit on the size of a journal file. When the journal file size reaches the limit, GT.M automatically switches to a
new journal file with a back-pointer to the prior journal file.

-[NO]BE[FORE_IMAGE]
[NO]BEFORE_IMAGE controls whether the journal should include before-image records.

The BEFORE_IMAGE option is required if you plan to consider "roll-back” (Backward) recovery of the associated database file
or if you plan to use certain database replication options. For a description of this type of recovery, refer to Chapter 6: “GT.M
Journaling” (page 130).

-F[ILE NAME]="file-name"
Specifies the name of the journal file.

Unless the name is the sole journaling option, and is the last parameter on the line, it should always be enclosed in quotation
marks in this context.

Journal file-specifications-names are limited to 255 characters.

By default, GDE derives the file-specification-name from the database "file-name".
By default, GDE uses a journal file extension of .mjlL.

Journal Options Summary

With GDE, you can create the journal files and define the journal parameters; however, you must use MUPIP SET to explicitly
turn it ON, and you must specify BEFORE/NOBEFORE at that time.

For information on all Journal options and their allowable minimum and maximum values, see “SET -JOURNAL Options ” (page
143) in the "GT.M Journaling" chapter.

Summary

The following table summarizes GDE region qualifiers. It provides their abbreviations, defaults (as provided by FIS), and
allowable minimum and maximum values.

57

Global Directory Editor

GDE REGION Qualifiers

QUALIFIER DEFAULT MINIMUM MAXIMUM
-C[OLLATION_DEFAULT]=number (integer) 0 0 255
-D[YNAMIC_SEGMENT] =segment-name (char) - 1 16
-K[EY_SIZE]=size in bytes (integer) 64 3 1,019
-R[ECORD_SIZE]=size in bytes (integer) 256 7 1,048,576 (1 MiB)
-N[ULL_SUBSCRIPTS]=[ALWAYS|NEVER|EXISTING] NEVER - -
-[NOJSTDNULLCOLL N - -
-[NOJINST[FREEZE_ON_ERROR] DISABLED - -
-[NO]Q[DBRUNDOWN] DISABLED - -
-[NO]J[OURNAL] [=journal-option-list] -NOJ - -

Segment Qualifiers

The following -SEGMENT qualifiers can be used with the ADD, CHANGE, or TEMPLATE commands.

-AC[CESS_METHOD]=code

Specifies the access method or the GT.M buffering strategy for storing and retrieving data from the global database file.

« code can have 2 values - Buffered Global (BG) or Memory Mapped (MM). The default value is BG.

« With BG, the global buffer pool manages the buffers (the OS/file system may also provide additional buffering). You get the
choice of using BEFORE_IMAGE or NOBEFORE_IMAGE journaling for your database. For details on the implications of

these forms of Journaling, see Chapter 6: “GT.M Journaling” (page 130).

+ BG supports both forward and backward recovery and rollback to recover a database without a restore. For more
information forward and backward recovery and rollback, see Chapter 5: “General Database Management” (page 67).

« BG is a likely choice when you need faster recovery times from system failures.

« With MM, GT.M bypasses the global buffer pool and relies entirely on the OS/file system to manage the data traffic between
memory and disk. GT.M has no control over the timing of disk updates, therefore there is a greater reliance on the OS/file
system for database performance.

+ MM supports NOBEFORE_IMAGE journaling only. GT.M issues an error if you use MM with BEFORE_IMAGE
Journaling. MM also supports MUPIP FORWARD -RECOVER and MUPIP JOURNAL -ROLLBACK with the -RESYNC or
-FETCHRESYNC qualifiers to generate lost and broken transaction files. For more information, see the Journaling and
Replication chapters.

« MM does not support backward recovery/rollback.

+ Depending on your file system, MM may be an option when you need performance advantage in situations where the
above restrictions are acceptable.

58

Global Directory Editor

« GDE maintains a separate set of segment qualifier values for each ACCESS_METHOD.

« When GDE modifies the ACCESS_METHOD, it activates the appropriate set of TEMPLATEs and sets all unspecified
qualifiers to the default values of the new ACCESS_METHOD.

Example:
GDE> change -segment DEFAULT -access_method=MM

This command sets MM as the access method or the GT.M buffering strategy for storing and retrieving database for segment
DEFAULT.

-AL[LOCATION]=blocks

Specifies the number of blocks GT.M allocates to a disk file when MUPIP creates the file. For GDS files, the number of bytes
allocated is the size of the database file header plus the ALLOCATION size times the BLOCK_SIZE.

+ The minimum ALLOCATION is 10 blocks.

o The maximum ALLOCATION is 1,040,187,392 blocks.

+ By default, GDE uses an ALLOCATION of 100 blocks.

« The maximum size of a database file is 1,040,187,392(992Mi) blocks.

« Out of the requested allocation, GT.M always reserves 32 global buffers for BG access method for read-only use to ensure
that non-dirty global buffers are always available.

« The default ALLOCATION was chosen for initial development and experimentation with GT.M. Because file fragmentation
impairs performance, make the initial allocation for production files and large projects large enough to hold the anticipated
contents of the file for a length of time consistent with your UNIX file reorganization schedule.

-BL[OCK_SIZE]=size

Specifies the size, in bytes, of each database block in the file system. The BLOCK_SIZE must be a multiple of 512. If the
BLOCK_SIZE is not a multiple of 512, GDE rounds off the BLOCK_SIZE to the next highest multiple of 512 and issues a
warning message.

If the specified BLOCK_SIZE is less than the minimum, GDE uses the minimum BLOCK_SIZE. If the specified BLOCK_SIZE is
greater than the maximum, GDE issues an error message.

A BLOCK_SIZE that is equal to the page size used by your UNIX implementation serves well for most applications, and is a
good starting point.

You should determine the block sizes for your application through performance timing and benchmarking. In general, larger
block sizes are more efficient from the perspective of the input/output subsystem. However, larger block sizes use more system
resources (CPU and shared memory) and may increase collision and retry rates for transaction processing.

Note

Global nodes that span blocks incur some overhead and optimum application performance is likely to be
obtained from a BLOCK_SIZE that accommodates the majority of nodes within a single block. If you adjust
the BLOCK_SIZE, you should also adjust GLOBAL_BUFFER_COUNT.

59

Global Directory Editor

GDE does not allow you to change the block size to an arbitrary number. It always rounds the block size to the next higher
multiple of 512, because the database block size must always be a multiple of 512.

The minimum BLOCK_SIZE is 512 bytes.
The maximum BLOCK_SIZE is 65,024 bytes.

Note

FIS recommends against using databases with block sizes larger than 16KiB. If a specific global variable has
records that have large record sizes, FIS recommends placing that global variable in a file by itself with large
block sizes and using more appropriate block sizes for other global variables. 4KiB and 8KiB are popular
database block sizes.

By default, GDE uses a BLOCK_SIZE of 1024 bytes.
-[NOJENCcryption

Specifies whether or not the database file for a segment is flagged for encryption. Note that MUPIP CREATE acquires an
encryption key for this file and puts a cryptographic hash of the key in the database file header.

-EX[TENSION_COUNT]=blocks

Specifies the number of extra GDS blocks of disk space by which the file should extend. The extend amount is interpreted as the
number of usable GDS blocks to create with the extension. To calculate the number of host operating system blocks added with
each extension, multiply the number of GDS blocks added by (GDS BLOCK_SIZE/host BLOCK_SIZE); add one local bitmap
block for each 512 blocks added in each extension to the amount from step 1. If the extension is not a multiple of 512, remember
to roundup when figuring the number of bitmap blocks.

When a MUPIP EXTEND command does not include a -BLOCKS= qualifier, EXTEND uses the extension size in the database
header.

The extension amount may be changed with the MUPIP SET command.
The minimum EXTENSION is zero blocks.

When a database file with automatic extension disabled (EXTENSION_COUNT=0) starts to get full, GT.M records the
FREEBLSLOW warning in the system log. So as to not compromise performance, GT.M checks whenever the master bit map
must be updated to show that a local bit map is full, and issues the warning if there are fewer than 512 free blocks or if the
number of free blocks is less than total blocks/32. This means that for databases whose size is 512 blocks or less the warning
comes at the last successful update before the database becomes full.

The maximum EXTENSION is 65,535 blocks.

By default, GDE uses an EXTENSION of 100 blocks.

Like allocation, the default extension amount was chosen for initial development and experimentation. Use larger extensions
for larger actual applications. Because multiple file extensions adversely affect performance, set up extensions appropriate to

the file allocation.

-F[ILE_ NAME]|=file-name

60

Global Directory Editor

Specifies the file for a segment.
The maximum file name length is 255 characters.

By default, GDE uses a file-name of mumps followed by the default extension, which is .dat. You can specify any filename and
extension of your choice for a database file as long as it is valid on your operating system.

-G[LOBAL BUFFER_COUNT]=size

Specifies the number of global buffers for a file. Global buffers reside in shared memory and are part of the database caching
mechanisms. Global buffers do not apply to MM databases.

Choose the settings for this qualifier carefully. Small numbers of global buffers tend to throttle database performance. However,
if your system has limited memory and the database file traffic is not heavy enough to hold the cache in RAM, increasing
GLOBAL_BUFFER_COUNT may trigger paging.

If database global buffers are paged out, it will result in poor performance. Therefore, do not increase this factor to a large value
without careful observation.

The proper number of GLOBAL_BUFFERs depends on the application and the amount of primary memory available on the
system. Most production databases exhibit a direct relationship between the number of GLOBAL_BUFFERs and performance.
However, the relationship is not linear, but asymptotic, so that increases past some point have progressively less benefit.
This point of diminishing returns depends on the application. For most applications, FIS expects the optimum number of
GLOBAL_BUFFERs to be between 1K and 64K.

Because transaction processing can be involved in an update and a transaction is limited to half the GLOBAL_BUFFER_COUNT,
the value for GLOBAL_BUFFER_COUNT should therefore be at least twenty-six plus twice the number of the blocks required
by the largest global variable node in your application.

Generally, you should increase the number of GLOBAL_BUFFERs for production GDS database files. This is because GT.M uses
the shared memory database cache associated with each GDS file for the majority of caching.

The minimum GLOBAL BUFFER_COUNT for BG is 64 blocks.
The maximum for GLOBAL_BUFFER_COUNT for BG is 2,147,483,647 blocks, but may vary depending on your platform.

By default, GDE uses a GLOBAL_BUFFER_COUNT that is appropriate for initial development use on each platform, but
probably too small for production applications.

Note

If global buffers are "paged out,” improvements in system performance resulting from more global buffers
will be more than offset by the dramatic slowdown that results from globals buffers that are "paged out."

-L[OCK_SPACE]=integer

Specifies the number of pages of space to use for the lock database stored with this segment. The size of a page is always 512
bytes.

As GT.M runs out of space to store LOCK control information, LOCKs become progressively less efficient. If a single process
consumes all the LOCK space, it cannot continue, and any other processes cannot proceed using LOCKSs.

The minimum LOCK_SPACE is 10 pages.

61

Global Directory Editor

The maximum LOCK_SPACE is 65,536 pages.
By default, GDE uses a LOCK_SPACE of 40 pages.

LOCK_SPACE usage depends on the number of locks and the number of processes waiting for locks. To estimate lock space
needs, here is a rule of thumb:

+ 1.5KiB overhead for the lock space, plus
« 640 bytes for each lock base name, plus
« 128 bytes for each subscript, plus

+ 128 bytes for each waiting process.

Generally, you would limit LOCK_SPACE only when memory is scarce or you want to be made aware of unexpected levels
of LOCK usage. For most other cases, there is no reason to limit the LOCK_SPACE. If you are introducing new code, FIS
recommends using TSTART and TCOMMIT as a more efficient alternate for most LOCKSs because it pushes the responsibility
for Isolation onto GT.M, which internally manages them with optimistic algorithms.

-M[UTEX_SLOTS]=integer

Specifies the number of mutex slots for a database file. GT.M uses mutex slots to manage database contention. FIS recommends
you configure the slots to cover the maximum number of processes you expect to concurrently access the database file, as an
insufficient number of slots can lead to much steeper and more severe degradation of performance under heavy loads. The
minimum is 1Ki and the maximum is 32Ki. The default of 1Ki should be appropriate for most situations.

-R[ESERVED_BYTES]=size

Specifies the size to be reserved in each database block. RESERVED_BYTES is generally used to reserve room for compatibility
with other implementations of M or to observe communications protocol restrictions. RESERVED_BYTES may also be used as a
user-managed fill factor.

The minimum RESERVED_BYTES is zero bytes.

The maximum Reserved_Bytes is the block size minus the size of the block header (which is 7 or 8 depending on your platform)
minus the maximum record size.

By default, GDE uses a RESERVED_BYTES size of zero bytes.
Summary

The following table summarizes GDE segment qualifiers. It provides abbreviations, defaults (as provided by FIS), and allowable
minimum and maximum values.

GDE SEGMENT Qualifiers
QUALIFIER DEFAULT MIN MAX
-AC[CESS_METHOD]=BG|MM BG - -

** BLOCK_SIZE minus the size of the block header

* May vary by platform

62

Global Directory Editor

GDE SEGMENT Qualifiers

QUALIFIER DEFAULT MIN MAX
-AL[LOCATION]=size (blocks) 100 10 1,040,187,392(992Mi)
-BL[OCK_SIZE]=size (bytes) 1,024 512 65,024
-[NOJEN[CRYPTION] 0

-EX[TENSION_COUNT]=size (blocks) 100 0 65,535
-F[ILE_NAME]=file-name (chars) mumps.dat - 255
-G[LOBAL_BUFFER_COUNT]=size (blocks) 1024* 64 2,147,483,647
-L[OCK_SPACE]=size (pages) 40 10 65536
-M[UTEX_SLOTS]=integer 1,024 1,024 32,768
-R[ESERVED_BYTES]=size (bytes) 0 0 block size-7

** BLOCK_SIZE minus the size of the block header

* May vary by platform

Gblname Qualifiers
The following -GBLNAME qualifier can be used with the ADD, CHANGE, or TEMPLATE commands.
-C[OLLATION]=collation_number

Specifies the collation number for a global name; a value of 0 specifies standard M collation. The first time that a GT.M
processes accesses a global variable name in a database file, it determines the collation sequence as follows:

+ Ifa Global Variable Tree (GVT) exists (that is, global variable nodes exist, or have previously existed, even if they have been
KILL'd), use the existing collation:

« If there is a collation specified in the Directory Tree (DT) for that variable, use it after confirming that this matches the
collation in the global directory.

« else (that is, there is no collation specified in the DT):
« If there is collation specified for that global variable in the global directory use it
« else if there is a default for that database file, use it
« else (that is, neither exists), use standard M collation
o else (that is, a GVT does not exist, which in turn means there is no DT):
« If there is collation specified for that global variable in the global directory use it
« else, if there is a default for that database file, use it

- else (that is, neither exists), use standard M collation

63

Global Directory Editor

GDE Command Summary

The following table summarizes GDE commands, abbreviations, object types, required object names, and optional qualifiers.

GDE Command Summary

Command Specified Object Type Required Object Name/[Optional] Qualifier
@ N/A file-name
A[DD] -N[AME] namespace

-R[EGION]=region-name

- -R[EGION] region-name

-D[YNAMIC]=segment-name [-REGION-qualifier...]

- -S[EGMENT] segment-name

-F[ILE_NAME]=file-name [-SEGMENT-qualifier...]

- -G[BLNAME] global-name

-C[OLLATION]=collation

C[HANGE] -N[AME] namespace

-R[EGION]=new-region

- -R[EGION] region-name

[-REGION-qualifier...]

- -S[EGMENT] segment-name

[-SEGMENT-qualifier]

- -G[BLNAME] global-name

-C[OLLATION]=collation

D[ELETE] -N[AME] namespace

- -R[EGION] region-name

- -S[EGMENT] segment-name
- -G[BLNAME] global-name

-C[OLLATION]=collation

E[XIT] N/A N/A

HE[LP] N/A Keyword

LOCI[KS] N/A -R[EGION]=region-name
LOG N/A [-ON][=file-name]

* -ALL is the default for the SHOW and VERIFY commands.

64

Global Directory Editor

GDE Command Summary

Command Specified Object Type Required Object Name/[Optional] Qualifier
(-OF[F]]

Q[UIT] N/A N/A

R[ENAME] -N[AME] old-name new-name

- -R[EGION] old-reg-name new-reg-name

- -S[EGMENT] old-seg-name new-seg-name

- -G[BLNAME] global-name
-C[OLLATION]=collation

SE[TGD] N/A -F[ILE]=file-name [-Q[UIT]]

SH[OW] -N[AME] [namespace]

- -R[EGION] [region-name]

- -S[EGMENT] [segment-name]

- -G[BLNAME] global-name
-C[OLLATION]=collation

- -M[AP] [R[EGION]=region-name]

- T[EMPLATE] N/A

- -A[LL]* N/A

T[EMPLATE] -R[EGION] [-REGION-qualifier...]

- -S[EGMENT] [-SEGMENT-qualifier...]

V[ERIFY] -N[AME] [namespace]

- -R[EGION] [region-name]

- -S[EGMENT] [segment-name]

- -G[BLNAME] global-name
-C[OLLATION]=collation

_ -M[AP] N/A

- -T[EMPLATE] N/A

- -A[LL]* N/A

* -ALL is the default for the SHOW and VERIFY commands.

65

Global Directory Editor

GDE Command Qualifier Summary

The following table summarizes all qualifiers for the ADD, CHANGE, and TEMPLATE commands. The defaults are those
supplied by FIS.

GDE Command Qualifiers

QUALIFIER DEF MIN MAX NAM REG SEG
-AC[CESS_METHOD]=code BG - - - -
-AL[LOCATION]=size(blocks) 100 10 1,040,187,392(992Mi) -
-BL[OCK_SIZE]=size(bytes) 1024 512 65024 - - X
-C[OLLATION_DEFAULT]=id-number 0 0 255 - X -
(integer)

-D[YNAMIC_SEGMENT]=segment-name * 1A 16A/N - X -
(chars)

-EX[TENSION_COUNT]=size (blks) 100 0 65535 - - X
-F[ILE_NAME]=file-name (chars) o 1A 255A/N - -
-G[LOBAL_BUFFER_COUNT]=size (blocks) | 1,024 *** 64 2,147,483,647 | - -
-K[EY_SIZE]=size (bytes) 64 3 1,019 - X -
-L[OCK_SPACE]=size (pages) 40 10 65,536 - -
-M[UTEX_SLOTS]=integer 1,024 1,024 32,768 - -
-[NOJINST[_FREEZE_ON_ERROR] FALSE - - - X -
-[NOJQ[DBRUNDOWN] FALSE - - - X -
-[NO]J[OURNAL]=option-list -NOJ - - - X -
-N[ULL_SUBSCRIPTS]=[ALWAYS|NEVER| |NEVERor |- - - X -
EXISTING]

-[NOJSTDNULLCOLL[=TRUE|FALSE] FALSE - - - X -
-R[ECORD_SIZE]=size (bytes) 256 7 1,048,576 - X -
-R[EGION] region-name (chars) * 1A 16A/N X - -
-R[ESERVED_BYTES]=size (bytes) 0 0 blocksize - - X

* DEFAULT is the default region- and segment-name
** MUMPS is the default file-name

May vary by platform

**** _.NONULL_SUBSCRIPTS

66

Chapter 5. General Database Management

Revision History

Revision V6.1-000

01 August 2014

« In “Introduction” (page 68), added a note
recommending against runing any GT.M
component as root.

Revision V6.0-003

27 January 2014

« In “SET ” (page 109), added the -
Mutex_slots qualifier.

« In “RUNDOWN ” (page 108), added the -
Override qualifier.

Revision V6.0-001/2

10 April 1013

In “BACKUP” (page 71), added notes for
"Before starting a MUPIP BACKUP".

Revision V6.0-001/1

22 March 1013

Improved the formatting of all command
syntaxes.

Revision V6.0-001

27 February 2013

« In “BACKUP” (page 71), added
information about the BKUPRUNNING
message and added information on the
handling of KILLs in Progress and Abandoned
Kills during a backup.

« In “EXTRACT ” (page 82), added the
description of -STDOUT.

« In MUPIP INTEG, specified the threshold
limit of incorrectly marked busy errors in “-
MAP” (page 92) and added information
on clearing KILLs in Progress and Adandoned
Kills.

Revision V6.0-000/1

21 November 2012

« In MUPIP SET, added the description of “-
PArtial_recov_bypass” (page 110).

« Updated “TRIGGER ” (page 116) for
V6.0-000.

Revision V6.0-000

19 October 2012

In MUPIP SET, added the description of “-
INST_freeze_on_error” (page 112).

Revision V5.5-000/11

05 October 2012

Corrected the description of the -ADJACENCY
qualifier and added more information about
“INTEG ” (page 88).

Revision V5.5-000/10

28 September 2012

Corrected the maximum value of “-
Lock_space” (page 111) and improved the
description of “-Flush_time” (page 111).

Revision V5.5-000/8

03 August 2012

« In “SET ” [109], improved the description of
the LOCK_SPACE qualifier.

« In “BACKUP” [71], added a note about
supporting only one concurrent backup.

Revision V5.5-000/4

6 June 2012

« In “LOAD ” [98], added the description of
-STDIN and its example.

67

General Database Management

+ In “REORG ” [102], added the description
of -TRUNCATE.

« In “ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]
” [155], added the description of -ONLINE.

Revision V5.5-000 27 February 2012 Updated “REORG ” [102] for V5.5-000. Also,
improved the description of -EXCLUDE and -
SELECT qualifiers.

Revision 1 10 November 2011 In the “SET ” [109] section, changed "MUPIP
SEt" to "MUPIP SET".

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

This chapter describes common database management operations such as creating database files, modifying database
characteristics, database backup and restore, routine integrity checks, extracting or loading data, and optimizing performance.

GT.M uses M Peripheral Interchange Program (MUPIP) for GT.M database management, database journaling, and logical
multisite replication (LMS). This chapter summarizes the MUPIP commands pertaining to GT.M database management and
serves as a foundation for more advanced GT.M functionality described for Journaling and LMS.

For MUPIP commands pertaining to database journaling, refer to Chapter 6: “GT.M Journaling” (page 130).
For MUPIP commands pertaining to multisite database replication, refer to Chapter 7: “Database Replication” (page 173).
Note

Two MUPIP operations - INTRPT and STOP - perform process management functions. All other MUPIP
operations relate to the operation of the database.
The GT.M installation procedure places the MUPIP utility program in a directory specified by $gtm_dist.

Invoke MUPIP by executing the mupip program at the shell prompt. If this does not work, consult your system manager
(MUPIP requires that the $gtm_dist point to the directory containing the MUPIP executable image).

$gtm_dist/mupip
MUPIP>

MUPIP asks for commands, with the MUPIP> prompt. Enter the EXIT command at the MUPIP> prompt to stop the utility.
MUPIP performs one operation at a time, and automatically terminates after most operations.

When additional information appears on the command line after the mupip program name, MUPIP processes the additional
information as its command, for example:

$gtm_dist/mupip stop 1158

This starts MUPIP and stops the process with Process ID (PID) 1158.

Some MUPIP commands require information contained in the global directory. Therefore, a process must have access to a valid
global directory before using any MUPIP commands other than EXIT, INTRPT, JOURNAL, RESTORE, STOP and the -file option
of any command that has that option.

68

General Database Management

The environment variable gtmgbldir specifies the active global directory.

A gtmgbldir value of mumps.gld tells MUPIP to look for a global directory file mumps.gld in the current directory. For more
information on the global directory, refer to “Global Directory Editor” (page 32).

ﬁ Important

FIS recommends against running GT.M components as root. When run as root, GT.M components use the
owner and group of the database file as the owner and group of newly created journal files, backup files,
snapshot files, shared memory, and semaphores. In addition, they set the permissions on the resulting files,
shared memory, and semaphores, as if running as the owner of the database file and as a member of the
database file group.

Operations - Standalone and Concurrent Access

While most MUPIP operations can be performed when GT.M processes are actively accessing database files, some operations
require stand-alone access. When using standalone access, no other process can access the database file(s). When using
concurrent access, other processes can read or update the database file(s) while MUPIP accesses them. A few operations permit
concurrent access to read database files, but not to update them. All MUPIP operations can be performed with stand-alone
access - there is never a requirement for another process to be accessing database files when MUPIP operates on them.

Most MUPIP operations require write access to the database files with which they interact. The exceptions are INTRPT and
STOP, which do not require database access, but may require other privileges; EXTRACT, which requires read access; and
INTEG, which may require write access, depending on the circumstances it encounters and the qualifiers with which it is
invoked. The following table displays some of the MUPIP operations and their database access requirements.

file characteristics

Operations MUPIP command Database Access Requirements

Backup database files MUPIP BACKUP Backup never requires standalone access and concurrent write
access is controlled by -[NO]JONLINE.

Create and initialize database MUPIP CREATE Standalone access

files

Converts a database file from MUPIP ENDIANCVT Standalone access

one endian format to the other

(BIG to LITTLE or LITTLE to

BIG)

Recover database files (for MUPIP JOURNAL Standalone access

example, after a system crash)

and extract journal records

Restore databases from MUPIP RESTORE Standalone access

bytestream backup files

Properly close database files MUPIP RUNDOWN Standalone access

when processes terminate

abnormally.

Modify database and/or journal | MUPIP SET Standalone access is required if the MUPIP SET command specifies

-ACCESS_METHOD, -GLOBAL_BUFFERS, -MUTEX_SLOTS, -

69

General Database Management

Operations MUPIP command Database Access Requirements

LOCK_SPACE or -NOJOURNAL, or if any of the -JOURNAL options
ENABLE, DISABLE, or BUFFER_SIZE are specified.

Backup database files MUPIP BACKUP Concurrent access.

Grow the size of BG database MUPIP EXTEND Concurrent access.

files

Export data from database files | MUPIP EXTRACT Although MUPIP EXTRACT command works with concurrent
into sequential (flat) or binary access, it implicitly freezes the database to prevent updates.
files Therefore, from an application standpoint, you might plan for a

standalone access during a MUPIP EXTRACT operation.

Prevent updates to database files | MUPIP FREEZE Standalone access.

Check the integrity of GDS MUPIP INTEG Concurrent access. However, standalone access is required if MUPIP
databases INTEG specifies -FILE.

Import data into databases MUPIP LOAD Although MUPIP LOAD works with concurrent access, you should

always assess the significance of performing a MUPIP LOAD
operation when an application is running because it may result in
an inconsistent application state for the database.

Defragment database files to MUPIP REORG Concurrent access.

improve performance

Send an asynchronous signal to | MUPIP INTRPT Non-database access.

a GT.M process

Stop GT.M processes MUPIP STOP Non-database access.
MUPIP

The general format of MUPIP commands is:
mupip command [-qualifier[...]] [object[,...]] [destination]

MUPIP allows the abbreviation of commands and qualifiers. In each section describing a command or qualifier, the abbreviation
is also shown (for example, BLACKUP]). The abbreviated version of the command you can use on the command line is B. To
avoid future compatibility problems and improve the readability, specify at least four characters when using MUPIP commands
in scripts.

Although you can enter commands in both upper and lower case (the mupip program name itself must be in lower case on
UNIX/Linux), the typographical convention used in this chapter is all small letters for commands. Another convention is in the
presentation of command syntax. If the full format of the command is too long for a single line of print, the presentation wraps
around into additional lines.

$ mupip backup -bytestream -transaction=1 accounts,history,tables,miscellaneous
/var/production/backup/

When you enter a MUPIP command, one of its variable arguments is the region-list. region-list identify the target of the
command and may include the UNIX wildcards "?" and "*". Region-lists containing UNIX wildcard characters must always

70

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX153.txt

General Database Management

nkn

be quoted, for example, "*" to prevent inappropriate expansion by the UNIX shell. Similarly, for file and directory names you
might want to avoid non-graphic characters and most punctuations except underbars (_), not because of GT.M conventions but
because of inappropriate expansion by UNIX shells.

MUPIP qualifier values are restricted only by the maximum size of the command input line, which is 4KB on some systems and
upto 64KB on others.

Commands and Qualifiers

The MUPIP commands described in this section are used for common database operations and serves as the foundation for
more advanced functionality like Journaling and Replication.

BACKUP

Saves the contents of the database. It provides a consistent application snapshot across all database regions involved in the
backup operation.
The format of the MUPIP BACKUP command is:

BLACKUP]
L
-BK[UPDBJNL]={DISABLE |OFF}]
-BLYTESTREAM] [-NET[TIMEOUT]]
-DA[TABASE]
-DBG
—[NOJINEWJINLFILES[=[NOJPREVLINK], [NOJS[YNC_IO]]
-O[NLINE]
-REC[ORD]
-REPL[ACE]
-REPLINSTANCE=target_location
-S[INCE]={DATABASE |BYTESTREAM|RECORD}
-T[RANSACTION]=hexadecimal_transaction_number
1 region-list[,...] destination-list

C Important

MUPIP BACKUP does a more comprehensive job of managing backup activities than other backup
techniques such as a SAN backup, breaking a disk mirror, or a file system snapshot because it integrates
journal management, instance file management, and records timestamps in the database file headers. To use
other techniques, you must first freeze all regions concurrently with a command such as MUPIP FREEZE -
ON "*" in order to ensure a consistent copy of files with internal structural integrity. FIS neither endorses nor
tests any third party products for backing up a GT.M database.

« MUPIP BACKUP supports two methods of database backup: -BYTESTREAM and -DATABASE. MUPIP BACKUP -
BYTESTREAM directs the output to a broad range of devices, including disks, TCP sockets, and pipes. MUPIP BACKUP -
DATABASE directs the output to random access devices (that is, disks).

+ [NO]ONLINE qualifier determines whether MUPIP BACKUP should suspend updates to regions. For example, MUPIP
BACKUP -NOONLINE suspends updates to all regions from the time it starts the first region until it finishes the last region.
However, it does not suspend processes that only read from the database.

« By default, MUPIP BACKUP is -DATABASE -ONLINE.

71

General Database Management

If any region name does not map to an existing accessible file, or if any element of the destination list is invalid, BACKUP
rejects the command with an error.

region-list may specify more than one region of the current global directory in a list. Regions are separated by a comma, and
wildcards can be used to specify them. Any region-name may include the wildcard characters * and % (remember to escape
them to protect them from inappropriate expansion by the shell). Any region name expansion occurs in M (ASCII) collation
order.

Depending on the type of backup, destination-list may be a single directory, or a comma separated list of destinations
including files, piped commands, or a TCP socket address (a combination of IPv4 or IPV6 hostname and a port number).

Region-list and destination-list items are matched in order - the first region is mapped to the first destination, the second
to the second destination, and so on. If GT.M encounters a region mapped to a directory, GT.M treats that directory as the
destination for all subsequent regions in the region-list.

GT.M implicitly timestamps both BYTESTREAM and DATABASE backups using relative timestamps (transaction numbers).
You can also explicitly specific a RECORD timestamp for custom-control (SANS or mirrored disk) backup protocol. You
might want to use these timestamps as reference points for subsequent backups.

It takes approximately one (1) minute (per region) for BACKUP -ONLINE to give up and bypass a KILLs in progress; backup
does not wait for Abandoned Kills to clear.

The environment variable gtm_baktmpdir specifies the directory where mupip backup creates temporary files. If
gtm_baktmpdir is not defined, GT.M uses the deprecated GTM_BAKTMPDIR environment variable if defined, and otherwise
uses the current working directory.

When you restrict access to a database file, GT.M propagates those restrictions to shared resources associated with the
database file, such as semaphores, shared memory, journals and temporary files used in the course of MUPIP BACKUP.

GT.M supports only one concurrent -ONLINE backup on a database. MUPIP BACKUP displays the BRUPRUNNING message
if started when there is an already running BACKUP.

MUPIP BACKUP protects against overwriting of existing destination files. However, it cannot protect other destinations, for
example, if the destination is a pipe into a shell command that overwrites a file.

INFO_ Before starting a MUPIP BACKUP

INDEPTH

1 Perform the following tasks before you begin a database backup.

+ Ensure adequate disk space for target location and temporary files. Set the environment variable
gtm_baktmpdir to specify the directory where MUPIP BACKUP creates temporary files. If gtm_baktmpdir
is not defined, GT.M uses the deprecated GTM_BAKTMPDIR environment variable if defined, and
otherwise uses the current working directory. Do not place temporary files in the current directory for
large databases in production environments.

« When using replication, ensure that the Source/Receiver process is alive (MUPIP REPLIC -SOURCE/-
RECEIVER -CHECKHEALTH). Always backup the replicating instance file with the database (BACKUP -
REPLINST).

« Ifyou intend to use a -DATABASE backup at the same time in the same computer system as the source
database, be sure to disable journaling in the backed up database with -BKUPDBJNL=DISABLE.

72

General Database Management

« When doing a complete backup, switch journal files as part of the backup command using -
NEWJNLFILES=NOPREVLINK. This aligns the journal files with the backup and simplifies journal file
retention.

« If you follow separate procedures for backup and archive (moving to secondary storage), you can save time
by starting archive as soon as MUPIP BACKUP completes the process of creating a backup database file
for a region. You do not need to wait for MUPIP BACKUP to complete processing for all regions before
starting archive. For example, a message like:

DB file /home/jdoe/.fis-gtm/V6.0-001_x86_64/g/gtm.dat backed up in file /backup/gtm.dat
Transactions up to OxQ000000000E92EQ4 are backed up.

confirms that gtm.dat is backed up correctly and is ready for archive.

+ Determine an appropriate frequency, timing, and backup method (-BYTESTREAM or -COMPREHENSIVE)
based on the situation.

 Ensure the user issuing backup commands has appropriate permissions before starting the backup. Backup
files have the ownership of the user running MUPIP BACKUP.

« There is one circumstance under which a MUPIP BACKUP is not advised. When your operational
procedures call for taking backups of unmodified databases and journal files on rebooting a system after a
crash, then use an underlying operating system command (cp, cpio, gzip, tar, and so on) which will open
the files read-only. Note that for ordinary system crashes where the system simply stops writing to open
files at power down, you can use MUPIP JOURNAL to recover journaled database files, and taking backups
on reboot should not be required. However, for system crashes with the possibility of damage to files
already written to disk (for example, if the crash involved an IO controller with the potential for having
written random data to disk immediately prior to power down), such backups on reboot are appropriate.

Example:
$ mupip backup "x" /gtm/bkup

This example creates ready-to-run database backup of all regions.

-BKupdbjnl

A backup database shares the same journaling characteristics of the source database. However, with BRUPDBJNL you can
disable or turns off journaling in the backup database. Use this qualifier if you intend to open your backup database at the same
time in the same environment as the source database.

The format of the BKUPDBJNL qualifier is:

-BK[UPDBJNL]={DISABLE | OFF }

« Specify DISABLE to disable journaling in the backup database.
« Specify OFF to turn off journaling is in the backup database.

« Only one of the qualifiers DISABLE or OFF can be specified at any given point.

73

General Database Management

-Bytestream

Ttransfers MUPIP BACKUP output to a TCP connection, file (or a backup directory), or a pipe. If there are multiple .dat files,
BYTESTREAM transfers output to a comma separated list of TCP connections, incremental backup files and/or directories, or
pipes. When used with -SINCE or -TRANSACTION, MUPIP BACKUP allow incremental backup, that is, include database blocks
that have changed since a prior point specified by the -SINCE or -TRANSACTION.

Note

MUPIP BACKUP output to a TCP connection saves disk I/O bandwidth on the current system.

All bytream backups needs to be restored to a random access file (with MUPIP RESTORE) before being used as a database file. -
BYTESTREAM can also send the output directly to a listening MUPIP RESTORE process via a TCP/IP connection or a pipe.

The format of the BYTESTREAM qualifier is:

-BLYTESTREAM]

« -BYTESTREAM is compatible with -SINCE and -TRANSACTION.

« -INCREMENTAL is deprecated in favor of -BYTESTREAM. For upward compatibility, MUPIP temporarily continues to
support the deprecated -INCREMENTAL.

-Database

Creates a disk-to-disk backup copy of the files of all selected regions. DATABASE backup copy is a ready-to-use a GT.M
database unlike BYTESREAM backup which is required to be restored to a random access file.

Note

The DATABASE qualifier does not support backup to magnetic tape.

The format of the DATABASE qualifier is:

-D[ATABASE]

+ By default, MUPIP BACKUP uses -DATABASE.

« The DATABASE qualifier is only compatible with the -[NO]JNEW[JNLFILES], -ONLINE, and -RECORD qualifiers.

« -COMPREHENSIVE is depreciated in favor of -DATABASE. For upward compatibility, MUPIP temporarily continues to
support the deprecated -COMPREHENSIVE.

-NETtimeout

Specifies the timeout period when a bytestream BACKUP data is sent over a TCP/IP connection. The format of the
NETTIMEOUT qualifier is:

NET[LTIMEOUT]J=seconds

« The default value is 30 seconds.

+ Use only with: -BYTESTREAM.

74

General Database Management

-NEWJNLFILES

Determines the journaling charactertistics of the database files being backed-up. All the established journaling characteristics
apply to new journal files. This qualifier is effective only for an ONLINE backup (the default), when the database has journaling
enabled.

The format of the NEWJNLFILES qualifier is:
—-[NOINEWJINLFILES[=[NOJPREVLINK], [NOISLYNC_IO]]
« -NEWJNLFILES can take the following three values:
1. PREVLINK: Back links new journal files with the prior generation journal files. This is the default value.

2. NOPREVLINK: Indicates that there should be no back link between the newly created journals and prior generation
journal files.

3. SYNC_IO: Specifies that every WRITE to a journal file to be committed directly to disk. On high-end disk subsystems (for
example, those that include non-volatile cache and that consider the data to be committed when it reaches this cache),
this might result in better performance than the NOSYNC_IO option. NOSYNC_IO turn off this option.

« -NONEW]JNLFILES causes journaling to continue with the current journal files. It does not accept any arguments.

+ The default is -NEWJNLFILES=PREVLINK.

-Online

Specifies that while a MUPIP BACKUP operation is active, other processes can update the database without affecting the result
of the backup. The format of the ONLINE qualifier is:

-[NOJO[NLINE]

« MUPIP BACKUP -ONLINE creates a backup of the database as of the moment the backup starts. If the running processes
subsequently update the database, the backup does not reflect those updates.

« MUPIP BACKUP -ONLINE on regions(s) waits for up to one minute so any concurrent KILL or MUPIP REORG operations
can complete. If the KILL or MUPIP REORG operations do not complete within one minute, MUPIP BACKUP -ONLINE
starts the backup with a warning that the backup may contain incorrectly marked busy blocks. Such blocks waste space
and can desensitize operators to much more dangerous errors, but otherwise don't affect database integrity. If you get
such an error, it may be better to stop the backup and restart it when KILL or MUPIP REORG operations are less likely to
interfere. Performing MUPIP STOP on a process performing a KILL or MUPIP REORG operation may leave the database
with incorrectly marked busy blocks. In this situation, GT.M converts the ongoing KILLs flag to abandoned KILLs flag.

If MUPIP BACKUP -ONLINE encounters ADANDONED_KILLS, it gives a message and then starts the backup. An
ABANDONED_KILLS error means both the original database and the backup database possibly have incorrectly busy blocks
which should be corrected promptly.

+ By default, MUPIP BACKUP is -ONLINE.

-Record

Timestamps (in the form of a transaction number) a database file to mark a reference point for subsequent bytestream,
database, or custom backup (SANS or disk mirror) protocols. Even though -DATABASE and -BYTESTREAM both mark their

75

General Database Management

own relative timestamps, -RECORD provides an additional timestamp option. MUPIP FREEZE also provides the -RECORD
qualifier because a FREEZE may be used to set the database up for a SAN or disk-mirror based backup mechanism.

The format of the RECORD qualifier is:
-RLECORD]

« Use -RECORD (with the hypen) to timpestamp a refererence point and use RECORD as a keyword (as in -SINCE=RECORD)
to specific the starting point for a MUPIP BACKUP operation.

« -RECORD replaces the previously RECORDed transaction identifier for the database file.

-REPLace

Overwrites the existing destination files.

The format of the REPLACE qualifier is:

-[REPLJACE

+ By default, MUPIP BACKUP protect against overwriting the destination files. -REPLACE disables this default behavior.

« -REPLACE is compatible only with -DATABASE.

-REPLInstance
Specifies the target location to place the backup of the replication instance file.

Note

The replication instance file should always be backed up with the database file.

The format of the REPLINSTANCE qualifier is:

-REPLI[NSTANCE]=<target_location>

-Since

Includes blocks changed since the last specified backup. The format of the SINCE qualifier is:
-S[LINCE]={DATABASE |BYTESTREAM|RECORD}

« D[ATABASE] - Backup all changes since the last MUPIP BACKUP -DATABASE.

« B[YTESTREAM] - Backup all changes since the last MUPIP BACKUP -BYTESTREAM.

« R[ECORD] - Backup all changes since the last MUPIP BACKUP -RECORD.

By default, MUPIP BACKUP -BYTESTREAM operates as -SINCE=DATABASE.

Incompatible with: -TRANSACTION.

76

General Database Management

-Transaction

Specifies the transaction number of a starting transaction that causes BACKUP -BYTESTREAM to copy all blocks that have
been changed by that transaction and all subsequent transactions. The format of the TRANSACTION qualifier is:

-TLRANSACTION]=transaction-number

+ A Transaction number is always 16 digit hexadecimal number. It appears in a DSE DUMP -FILEHEADER with the label
"Current transaction”.

« If the transaction number is invalid, MUPIP BACKUP reports an error and rejects the command.
« It may be faster than a DATABASE backup, if the database is mostly empty.

« Incompatible with: -DATABASE, -SINCE
Note

A point in time that is consistent from an application perspective is unlikely to have the same transaction
number in all database regions. Therefore, except for -TRANSACTION=1, this qualifier is not likely to be
useful for any backup involving multiple regions.

Examples for MUPIP BACKUP

Example:
$ mupip backup -bytestream REPTILES,BIRDS bkup

Suppose that the environment variable gtmgbldir has regions REPTILES and BIRDS that map to files called REPTILES.DAT and
BIRDS.DAT (no matter which directory or directories the files reside in). Then the above example creates bytestream backup
files REPTILES.DAT and BIRDS.DAT in the bkup directory since the last DATABASE backup.

Example:

$ mupip backup -bkupdbjnl="OFF" "*"

This command turns off journaling in the backup database.

Example:

$ mupip backup -bytestream "x" tcp://philadelphia:7883,tcp://tokyo:8892

Assuming a Global Directory with two regions pointing to ACN.DAT and HIST.DAT, this example creates a backup of
ACN.DAT to a possible MUPIP RESTORE process listening at port 7883 on server philadelphia and HIST.DAT to a possible
MUPIP RESTORE process listening at port 8893 on server tokyo.

Always specify the <machine name> and <port> even if both backup and restore are on the same system, and ensure that the
MUPIP RESTORE process is started before the MUPIP BACKUP process.

Example:
$ mupip backup -database -noonline "*" bkup

DB file /home/gtmnodel/gtmuserl/mumps.dat backed up in file bkup/mumps.dat
Transactions up to 0x00000000000F42C3 are backed up.

77

General Database Management

BACKUP COMPLETED.

This command creates a disk-to-disk backup copy of all regions of the current database in directory bkup. GT.M freezes all the
regions during the backup operation.

Example:

$ mupip backup -bytestream -nettimeout=420 DEFAULT tcp://${org_host}:6200

This command creates a backup copy of the DEFAULT region with timeout of 420 seconds.
Example:

$ mupip backup -bytestream DEFAULT '"| gzip -c > onlinebpipe.inc.gz"’

This command sends (via a pipe) the backup of the DEFAULT region to a gzip command.
Example:

$ mupip backup -online DEFAULT bkup

DB file /gtmnodel/gtmuser1/mumps.dat backed up in file bkup/mumps.dat
Transactions up to 0x00000000483F807C are backed up.

BACKUP COMPLETED.

This command creates a backup copy of the DEFAULT region of the current database in directory bkup. During the backup
operation, other processes can read and update the database.

Example:
$ mupip backup -record DEFAULT bkup

This command sets a reference point and creates a backup copy of the DEFAULT region of the current database in directory

bkup.
Example:

$ mupip backup -online -record DEFAULT bkup1921
DB file /home/reptiles/mumps.dat backed up in file bkup1921/mumps.dat
Transactions up to 0x00000000000F4351 are backed up.

Example:

$ mupip backup -bytestream -since=record DEFAULT bkup1921onwards

MUPIP backup of database file /home/reptiles/mumps.dat to bkup1921onwards/mumps.dat

DB file /home/reptiles/mumps.dat incrementally backed up in file bkup192Tonwards/mumps.dat
6 blocks saved.

Transactions from 0x00000000000F4351 to 0x0000000VV0OF4352 are backed up.

BACKUP COMPLETED.

The first command sets a reference point and creates a backup copy of the DEFAULT region of the current database in directory
bkup1921. The second command completes a bytestream backup starting from the reference point set by the first command.

78

General Database Management
Example:
$ mupip backup -bytestream -transaction=1 DEFAULT bkup_dir
MUPIP backup of database file /gtmnodel/gtmuser1/mumps.dat to bkup_dir/mumps.dat
DB file /gtmnodel/gtmuser1/mumps.dat incrementally backed up in file bkup/mumps.dat
5 blocks saved.
Transactions from 0x0000000000000001 to 0x0000000000000003 are backed up.
BACKUP COMPLETED.
This command copies all in-use blocks of the DEFAULT region of the current database to directory bkup_dir.
Example:

$ mupip backup -newjnlfiles=noprevlink,sync_io "*" backupdir

This example creates new journal files for the current regions, cuts the previous journal file link for all regions in the global
directory, enables the SYNC_IO option and takes a backup of all databases in the directory backupdir.

CREATE

Creates and initializes database files using the information in a Global Directory file. If a file already exists for any segment,
MUPIP CREATE takes no action for that segment.

The format of the CREATE command is:
CRLEATE] [-RLEGION]=region-name]
The single optional -REGION qualifier specifies a region for which to create a database file.

Note that one GT.M database file grows to a maximum size of 224M (234,881,024) blocks. This means, for example, that with an
8KB block size, the maximum single database file size is 1,792GB (8KB*224M). Note that this is the size of one database file -- a
logical database (an M global variable namespace) can consist of an arbitrary number of database files.

-Region

Specifies a single region for creation of a database file. By default, MUPIP CREATE creates database files for all regions in the
current Global Directory that do not already have a database file.

The format of the REGION qualifier is:

-R[EGION]=region-name

Examples for MUPIP CREATE

Example:
$ mupip create -region=REPTILES

This command creates the database file specified by the Global Directory (named by the GT.M Global Directory environment
variable) for region REPTILES.

79

General Database Management

DOWNGRADE

The MUPIP DOWNGRADE command changes the file header format to V4 or V5. The format of the MUPIP DOWNGRADE
command is:

DLOWNGRADE] -V[ERSION]={V4]|V5} file-name

For V4:

« It reduces the size from 8 bytes to 4 bytes for fields like current transaction (CTN), maximum tn (MTN) and others that
contain transaction numbers.

o It removes the results of any prior DBCERTIFY run on the database.

+ You cannot downgrade a V5 database which has standard null collation. In such a case, perform a MUPIP EXTRACT -
FORMAT=ZWR operation on the V5 database and then perform a MUPIP LOAD operation on a V4 database.

-VERSION={V4|V5}

Specifies file header format. For more information on the downgrade criteria for your database, refer to the release notes
document of your current GT.M version.

Examples for MUPIP DOWNGRADE

Example:
$ mupip downgrade mumps.dat

This command changes the file-header of mumps.dat to V4 format.

ENDIANCVT

Converts a database file from one endian format to the other (BIG to LITTLE or LITTLE to BIG). The format of the MUPIP
ENDIANCVT command is:

ENDIANCVT [-OUTDB=<outdb-file>] -OV[ERRIDE] <db-file>

+ <db-file> is the source database for endian conversion. By default ENDIANCVT converts <db-file> in place.

« outdb writes the converted output to <outdb-file>. In this case, ENDIANCVT does not modify the source database <db-file>.
« ENDIANCVT produces a <outdb-file>of exactly the same size as <db-file>.

ﬁ Important

Ensure adequate storage for <outdb-file> to complete the endian conversion successfully.

« ENDIANCVT requires standalone access to the database.

« GT.M displays a confirmation request with the “from” and “to” endian formats to perform the conversion. Conversion begins
only upon receiving positive confirmation, which is a case insensitive "yes".

80

General Database Management

+ In a multi-site replication configuration, the receiver server automatically detects the endian format of an incoming
replication stream and converts it into the native endian format. See Database Replication chapter for more information.

« Encrypted database files converted with ENDIANCVT require the same key and the same cipher that were used to encrypt
them.

Note

GT.M on a big endian platform can convert a little endian database into big endian and vice versa; as can
GT.M on a little endian platform. GT.M (run-time and utilities other than MUPIP ENDIANCVT) on a given
endian platform opens and processes only those databases that are in the same endian format. An attempt to
open a database of a format other than the native endian format produces an error.

-OVerride

Enables MUPIP ENDIANCVT to continue operations even if GT.M encounters the following errors:
+ "minor database format is not the current version"

« "kills in progress"

« "a GT.CM server is accessing the database"

Note that the OVERRIDE qualifier does not override critical errors (database integrity errors, and so on) that prevent a
successful endian format conversion.

Examples for MUPIP ENDIANCVT

$ mupip endiancvt mumps.dat -outdb=mumps_cvt.dat
Converting database file mumps.dat from LITTLE endian to BIG endian on a LITTLE endian system

Converting to new file mumps_cvt.dat
Proceed [yes/no] ?

This command detects the endian format of mumps.dat and converts it to the other endian format if you type yes to confirm.

EXIT

Stops a MUPIP process and return control to the process from which MUPIP was invoked.
The format of the MUPIP EXIT command is:

EXILT]

The EXIT command does not accept any qualifiers.

EXTEND
Increases the size of a database file. By default, GT.M automatically extends a database file when there is available space.

The format of the MUPIP EXTEND command is:

81

General Database Management

EXTE[ND] [-BLOCKS=<data-blocks-to-add>] region-name

« The only qualifier for MUPIP EXTEND is BLOCKS.
+ The required region-name parameter specifies the name of the region to expand.

« EXTEND uses the Global Directory to map the region to the dynamic segment and the segment to the file.

-Blocks

Specifies the number of GDS database blocks by which MUPIP should extend the file. GDS files use additional blocks for
bitmaps. MUPIP EXTEND adds the specified number of blocks plus the bitmap blocks required as overhead. For more
information about bitmaps, refer to Chapter 9: “GT.M Database Structure(GDS)” (page 265). The format of the BLOCK
qualifier is:

-BLOCKS=data-blocks-to-add

By default, EXTEND uses the extension value in the file header as the number of GDS blocks by which to extend the database
file. You can specify as many blocks as needed as long as you are within the maximum total blocks limit (which could be as
high as 224 million GDS blocks).

Examples for MUPIP EXTEND

$ mupip extend DEFAULT -blocks=400

This command adds 400 GDE database block to region DEFAULT.
Example:

$ mupip extend REPTILES -blocks=100

This command adds 100 GDE database blocks to the region REPTILES.

EXTRACT

Backups certain globals or to extract data from the database for use by another system. The MUPIP EXTRACT command copies
globals from the current database to a sequential output file in one of three formats-GO, BINARY, or ZWR. The format of the
EXTRACT command is:

EXTRLACT]

L
-FO[RMAT]={GO|BLINARY]|Z[WR]}
-FR[EEZE]

-LA[BEL]=text

-[NOJL[OG]
-S[ELECT]=global-name-1list]
]

{-STLDOUT] | file-name}

+ By default, MUPIP EXTRACT uses -FORMAT=ZWR.

« MUPIP EXTRACT uses the Global Directory to determine which database files to use.

82

General Database Management

« MUPIP EXTRACT supports user collation routines. When used without the -FREEZE qualifier, EXTRACT may operate
concurrently with normal GT.M database access.

+ To ensure that MUPIP EXTRACT reflects a consistent application state, suspend the database updates to all regions involved
in the extract, typically with the FREEZE qualifier, or backup the database with the ONLINE qualifier and extract files from
the backup.

« EXTRACT places its output in the file defined by the file- name. EXTRACT may output to a UNIX file on any device that
supports such files, including magnetic tapes.

+ In UTF-8 mode, MUPIP EXTRACT write sequential output file in the UTF-8 character encoding. Ensure that MUPIP
EXTRACT commands and corresponding MUPIP LOAD commands execute with the same setting for the environment
variable gtm_chset.

Note

Magnetic tapes may have a smaller maximum file size than disks.

For information on extracting globals with the 2GO utility, refer to "M Utility Routines" chapter of the GT.M Programmer's
Guide. MUPIP EXTRACT is typically faster, but %GO can be customized.

The following sections describe the qualifiers of MUPIP EXTRACT command.

-FOrmat

Specifies the format of the output file. The format of the FORMAT qualifier is:
-FO[RMAT]=format_code
The format code is any one of the following:

1. B[INARY] - Binary format, used for database reorganization or short term backups. MUPIP EXTRACT -FORMAT=BINARY
works much faster than MUPIP EXTRACT -FORMAT=GO and MUPIP EXTRACT -FORMAT=ZWR. Note: There is no
defined standard to transport binary data from one GT.M implementation to another. Further, FIS reserves the right to
modify the binary format in new versions. The first record of a BINARY format data file contains the header label. The
header label is 87 characters long. The following table illustrates the components of the header label.

BINARY Format Data File Header Label

CHARACTERS EXPLANATION

1-26 Fixed-length ASCII text: "GDS BINARY EXTRACT LEVEL 4".

27-40 Date and time of extract in the $ZDATE() format: "YEARMMDD2460SS".

41-45 Decimal maximum block size of the union of each region from which data was extracted.

46-50 Decimal maximum record size of the union of each region from which data was extracted.

51-55 Decimal maximum key size of the union of each region from which data was extracted.

56-87 Space-padded label specified by the -LABEL qualifier. For extracts in UTF-8 mode, GT.M prefixes
UTF-8 and a space to -LABEL. The default LABEL is "GT.M MUPIP EXTRACT"

83

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

2. GO - Global Output format, used for files to transport or archive. -FORMAT=GO stores the data in record pairs. Each global
node produces one record for the key and one for the data. MUPIP EXTRACT -FORMAT=GO has two header records - the
first is a test label (refer to the LABEL qualifier) and the second contains a data, and time.

3. ZWR - ZWRITE format, used for files to transport or archive that may contain non-graphical information. Each global node
produces one record with both key and data. MUPIP EXTRACT -FORMAT=ZWR has two header records, which are the
same as for FORMAT=GO, except that the second record ends with the text " ZWR"

-FReeze

Prevents database updates to all database files from which the MUPIP EXTRACT command is copying records. FREEZE ensures
that a MUPIP EXTRACT operation captures a "sharp" image of the globals, rather than one "blurred" by updates occurring
while the copy is in progress.

The format of the FREEZE qualifier is:
-FRLEEZE]

By default, MUPIP EXTRACT does not "freeze" regions during operation.

-LAbel

Specifies the text string that becomes the first record in the output file. MUPIP EXTRACT -FORMAT=BINARY truncates the
label text to 32 characters. The format of the LABEL qualifier is:

-LA[BEL]=text
+ By default, EXTRACT uses the label "GT.M MUPIP EXTRACT."

+ For more detailed information about the -FORMAT=BINARY header label, refer to the description of EXTRACT -
FORMAT=BINARY.

-LOg

Displays a message on stdout for each global extracted with the MUPIP EXTRACT command. The message displays the number
of global nodes, the maximum subscript length and maximum data length for each global. The format of the LOG qualifier is:

-[NOJLO[G]

By default, EXTRACT operates -LOG.

-Select

Specifies globals for a MUPIP EXTRACT operation. The format of the SELECT qualifier is:
-S[ELECT]= global-specification

« By default, EXTRACT selects all globals, as if it had the qualifier -SELECT="

« The caret symbol (") in the specification of the global name is optional.

The global-specification can be:

84

General Database Management

A parenthetical list, such as (a,B,C). In this case, MUPIP EXTRACT selects all globals except “a, "B, and "C.
+ A global name, such as MEF. In this case, MUPIP EXTRACT selects only global *MEF.

« A range of global names, such as A7:B6. In this case, MUPIP EXTRACT selects all global names between *A7 and "B6,
inclusive.

« A list, such as AB,C. In this case, MUPIP EXTRACT selects globals "A, "B, and "C.

+ Global names with the same prefix, such as PIGEON™. In this case, EXTRACT selects all global names from "PIGEON
through "PIGEONzzzzz.

Note

If the rules for selection are complex, it may be easier to construct an ad hoc Global Directory that maps the
global variables to be extracted to the database file. This may not be permissible if the database file is part of
a replicated instance. If this is the case, work with a backup of the database.

-STdout

Redirects database extract to the standard output stream. The format of the STDOUT qualifier is:

-ST[DOUT]

Examples for MUPIP EXTRACT

Example:

$ mupip extract -format=go -freeze big.glo

This command prevents database updates during a MUPIP EXTRACT operation.
Example:

$ mupip extract -format=GO mumps_i.go

This command creates an extract file called mumps_i.go in "Global Output" format. Use this format to transport or archive files.
The first record of a GO format file contains the header label, "GT.M MUPIP EXTRACT," as text.

Example:
$ mupip extract -format=BINARY v5.bin

This command creates an extract file called v5.bin in Binary format. Use this format for reorganizing a database or for short-
term backups.

Example:

$ mupip extract -format=ZWR -LABEL=My_Label My_Extract_File

This example extracts all globals from the current database to file My_Extract_File (in ZWRITE format) with label My_Label.
Example:

$ mupip extract -nolog FL.GLO

85

General Database Management

This command creates a global output file, FL.GLO, (which consists of all global variables in the database) without displaying
statistics on a global-by-global basis. As there is no label specified, the first record in FL.GLO contains the text string "GT.M
MUPIP EXTRACT."

Example:
$ mupip extract -select=Tyrannosaurus /dev/tty

This command instructs EXTRACT to dump the global *Tyrannosaurus to the device (file-name) /dev/tty.

FREEZE

Temporarily suspends (freezes) updates to the database. If you prefer a non-GT.M utility to perform a backup or reorganization,
you might use this facility to provide standalone access to your GT.M database. You might use MUPIP FREEZE to suspend (and
later resume) database updates for creating mirrored disk configuration or re-integrating a mirror.

GT.M BACKUP, INTEG, and REORG operations may implicitly freeze and unfreeze database regions. However, for most
operations, this freeze/unfreeze happens internally and is transparent to the application.

The format of the MUPIP FREEZE command is:
FLCREEZE] {-OF[F] [-OVLERRIDE]]|-ON [-R[ECORD]]} region-list
+ The region-list identifies the target of the FREEZE.

« MUPIP FREEZE waits for one minute so that concurrent KILL or MUPIP REORG operations can complete. If the KILL or
MUPIP REORG commands do not complete within one minute, MUPIP FREEZE terminates operations and unfreezes any
regions it had previously marked as frozen.

+ To ensure that a copy or reorganized version of a database file contains a consistent set of records, concurrent MUPIP
utilities, such as BACKUP (without the ONLINE qualifier) and EXTRACT, include mechanisms to ensure that the database
does not change while the MUPIP utility is performing an action. FIS recommends the use of the -ONLINE qualifier with
BACKUP.

« A MUPIP FREEZE can be removed only by the user who sets the FREEZE or by using -OVERRIDE.

« After MUPIP FREEZE -ON, processes that are attempting updates "hang" until the FREEZE is removed by the MUPIP FREEZE
-OFF command or DSE. Make sure that procedures for using MUPIP FREEZE, whether manual or automated, include
provisions for removing the FREEZE in all appropriate cases, including when errors disrupt the normal flow.

+ A -RECOVER/-ROLLBACK for a database reverts to a prior database update state. Therefore, a -RECOVER/-ROLLBACK
immediately after a MUPIP FREEZE -ON removes the freeze. However, -RECOVER/-ROLLBACK does not succeed if there are
processes attached (for example when a process attempt a database update immediately after a MUPP FREEZE -ON) to the
database.

FREEZE must include one of the qualifiers:

~OF[F]
~ON

The optional qualifiers are:

-OV[ERRIDE]
-R[ECORD]

86

General Database Management

-OFf

Clears a freeze set by another process with the same userid.

The format of the OFF qualifier is:

OF[F]

+ When used with -OVERRIDE, -OFF stops a freeze operation set by a process with a different userid.

« Incompatible with: -ON, -RECORD

-ON
Specifies the start of a MUPIP FREEZE operation. The format of the ON qualifier is:
-ON

Incompatible with: -OFF, -OVERRIDE

-OVerride

Release a freeze set by a process with a different userid. GT.M provides OVERRIDE to allow error recovery in case a procedure
with a freeze fails to release. The format of the OVERRIDE qualifier is:

-OV[ERRIDE]
« OVERRIDE should not be necessary (and may even be dangerous) in most schemes.

« Incompatible with: -ON, -RECORD

-Record

Specifies that a MUPIP FREEZE operation should record an event as a reference point. You might use MUPIP FREEZE to set up
your database for a custom-backup mechanism (SAN or mirror-based).

The format of the RECORD qualifier is:

-R[ECORD]

+ You might use -RECORD to integrate MUPIP BACKUP -BYTESTREAM with an external backup mechanism.
« -RECORD replaces the previously RECORDed transaction identifier for the database file.

 Incompatiable with: -OFF and -OVERRIDE.

Examples for MUPIP FREEZE
Example:
$ mupip freeze -off DEFAULT

This command stops an ongoing MUPIP FREEZE operation on the region DEFAULT.

87

General Database Management

Example:
$ mupip freeze -on "x"

This command prevents updates to all regions in the current Global Directory.

Example:

$ set +e

$ mupip freeze -on -record "x"

$ tar cvf /dev/tape /prod/appl/*.dat
$ mupip freeze -off

$ set -e

The set +e command instructs the shell to attempt all commands in the sequence , regardless of errors encountered by any
command. This ensures that the freeze -off is processed even if the tar command fails. FREEZE prevents updates to all database
files identified by the current Global Directory. The -record qualifier specifies that the current transaction in each database

be stored in the RECORD portion of the database file header. The tar command creates a tape archive file on the device /
dev/tape, containing all the files from /prod/app that have an extension of .dat. Presumably all database files in the current
Global Directory are stored in that directory, with that extension. The second FREEZE command re-enables updates that were
suspended by the first FREEZE. The set -e command re-enables normal error handling by the shell.

Example:
$ mupip freeze -override -off DEFAULT

This command unfreezes the DEFAULT region even if the freeze was set by a process with a different userid.

FTOK

Produces the "public" (system generated) IPC Keys (essentially hash values) of a given file.
The format of the MUPIP FTOK command is:

FTLOK] [-DB] [-JNLPOOL] [-RECVPOOL] file-name

-DB

Specifies that the file-name is a database file. By default, MUPIP FTOK uses -DB.

-JNLPOOL

Specifies that the reported key is for the Journal Pool of the instance created by the current Global Directory.

-RECVPOOL

Specifies that the reported key is for the Receive Pool of the instance created by the current Global Directory.

INTEG

Performs an integrity check on a GT.M database file. You can perform structural integrity checks on one or more regions in the
current Global Directory without bringing down (suspending database updates) your application. However, a MUPIP INTEG on

88

General Database Management

a single file database requires standalone access but does not need a Global Directory. The order in which the MUPIP INTEG
command selects database regions is a function of file system layout and may vary as files are moved or created. Execute a
MUPIP INTEG operations one database file at a time to generate an report where the output always lists database files in a
predictable sequence. For example, to compare output with a reference file, run INTEG on one file at a time.

Always use MUPIP INTEG in the following conditions:

« Periodically - to ensure ongoing integrity of the database(s); regular INTEGs help detect any integrity problems before they
spread and extensively damage the database file.

«+ After a crash - to ensure the database was not corrupted. (Note: When using before-image journaling, when the database is
recovered from the journal file after a crash, an integ is not required).

« When database errors are reported - to troubleshoot the problem.

Improving the logical and physical adjacency of global nodes may result in faster disk I/O. A global node is logically adjacent
when it is stored within a span of contiguous serial block numbers. A global node is physically adjacent when it resides on
adjacent hard disk sectors in a way that a single seek operation can access it. Database updates (SETs/KILLs) over time affect
the logical adjacency of global nodes. A MUPIP INTEG reports the logical adjacency of your global nodes which may indicate
whether a MUPIP REORG could improve the database performance. A native file system defragmentation improves physical
adjacency.

Note

Most modern SAN and I/O devices often mask the performance impact of the adjustments in logical and
physical adjacency. If achieving a particular performance benchmark is your goal, increasing the logical
and physical adjacency should be only one of many steps that you might undertake. While designing the
database, try to ensure that the logical adjacency is close to the number of blocks that can physically reside
on your hard disk's cylinder. You can also choose two or three cylinders, with the assumption that short
seeks are fast.

The format of the INTEG command is:

I[NTEG]
L
-A[DJACENCY]=integer
-BL[OCK]=hexa;block-number
-BR[IEF]
-FA[LST]
-FU[CLL]
-[NOJK[EYRANGES]
-[NOIMAP[=integer]
-[NOIMAXK[EYSIZE][=integer]
-S[UBSCRIPT]=subscript]
-TN[_RESET]
-[NOJTR[ANSACTION][=integer]
-[NOJO[NLINE]
]
{[-FILE] file-name|-REGLION] region-name}

« MUPIP INTEG requires specification of either file(s) or region(s).

+ Press <CTRL-C> to stop MUPIP INTEG before the process completes.

89

General Database Management

« The file-name identifies the database file for a MUPIP INTEG operation.The region-list identifies one or more regions that, in
turn, identify database files through the current Global Directory.

« MUPIP INTEG operation keeps track of the number of blocks that do not have the current block version during a non-fast
integ (default or full) and matches this value against the blocks to upgrade counter in the file-header. It issues an error if the
values are unmatched and corrects the count in the file header if there are no other integrity errors.

ﬁ Important

Promptly analyze and fix all errors that MUPIP INTEG reports. Some errors may be benign while others may
be a signs of corruption or compromised database integrity. If operations continue without fixes to serious
errors, the following problems may occur:

« Invalid application operation due to missing or incorrect data.
+ Process errors, including inappropriate indefinite looping, when a database access encounters an error.

« Degrading application level consistency as a result of incomplete update sequences caused by the prior
symptoms.

FIS strongly recommends fixing the following errors as soon as they are discovered:

« Blocks incorrectly marked free - these may cause accelerating damage when processes make updates to any part of the
database region.

« Integrity errors in an index block - these may cause accelerating damage when processes make updates to that area of the
database region using the faulty index. For more information, refer to Chapter 11: “Maintaining Database Integrity” (page
324).

MUPIP INTEG -FAST and the "regular" INTEG both report these errors (These qualifiers are described later in this section).
Other database errors do not pose the threat of rapidly spreading problems in GDS files. After the GT.M database repair,

assess the type of damage, the risk of continued operations, and the disruption in normal operation caused by the time spent
repairing the database. For information on analyzing and correcting database errors, refer to Chapter 11: “Maintaining Database
Integrity” (page 324). Contact your GT.M support channel for help assessing INTEG errors.

The following sections describe the qualifiers of the INTEG command.

-ADjacency

Specifies the logical adjacency of data blocks that MUPIP INTEG should assume while diagnosing the database. By default,
MUPIP INTEG operates with -ADJACENCY=10 and reports the logical adjacency in the "Adjacent" column of the MUPIP
INTEG report.

+ The complexity of contemporary disk controllers and the native file system may render this report superfluous. But when it
is meaningful, this report measures the logical adjacency of data.

« A MUPIP REORG improves logical adjacency and a native file system defragmentation improves physical adjacency.
The format of the ADJACENCY qualifier is:

-AD[JACENCY]=integer

90

General Database Management

-BLock

Specifies the block for MUPIP INTEG command to start checking a sub-tree of the database. MUPIP INTEG -BLOCK cannot
detect "incorrectly marked busy errors"

The format of the BLOCK qualifier is:
-BLLOCK]=block-number
+ Block numbers are displayed in an INTEG error report or by using DSE.

+ Incompatible with: -SUBSCRIPT and -TN_RESET

-BRief

Displays a single summary report by database file of the total number of directory, index and data blocks. The format of the
BRIEF qualifier is:

-BRLIEF]
+ By default, MUPIP INTEG uses the BRIEF qualifier.

+ Incompatible with: -FULL

-FAst

Checks only index blocks. FAST does not check data blocks.
The format of the FAST qualifier is:

-FA[ST]

« -FAST produces results significantly faster than a full INTEG because the majority of blocks in a typical database are data
blocks.

« While INTEG -FAST is not a replacement for a full INTEG, it very quickly detects those errors that must be repaired
immediately to prevent accelerated database damage.

« By default, INTEG checks all active index and data blocks in the database.

+ Incompatible with: -TN_RESET.

-Flle

Specifies the name of the database file for the MUPIP INTEG operation. FILE requires exclusive (stand-alone) access to a
database file and does not require a Global Directory. The format of the FILE qualifier is:

-FI[LE]

« With stand-alone access to the file, MUPIP INTEG -FILE is able to check whether the reference count is zero. A non-zero
reference count indicates prior abnormal termination of the database.

o+ The -FILE qualifier is incompatible with the -REGION qualifier.

+ By default, INTEG operates on -FILE.

91

General Database Management

-FUII

Displays an expanded report for a MUPIP INTEG operation. With -FULL specified, MUPIP INTEG displays the number of index
and data blocks in the directory tree and in each global variable tree as well as the total number of directory, index and data
blocks. The format of the FULL qualifier is:

-FULLL]
+ The -FULL qualifier is incompatible with the -BRIEF qualifier.
+ By default, INTEG reports are -BRIEF.

« Use -FULL to have INTEG report all global names in a region or list of regions.

-Keyranges

Specify whether the MUPIP INTEG report includes key ranges that identify the data suspected of problems it detects. The
format of the KEYRANGES qualifier is:

-[NOJK[EYRANGES]

By default, INTEG displays -KEYRANGES.

-MAP

Specifies the maximum number of "incorrectly marked busy errors" that MUPIP INTEG reports. The format of the MAP
qualifier is:

-[NOIMAP[=max_imb_errors]
« <max_imb_errors> specifies the threshold limit for the number of incorrectly marked busy errors.
+ -NOMAP automatically sets a high threshold limit of 1000000 (1 million) incorrectly marked busy errors (-MAP=1000000).

+ By default, INTEG reports a maximum of 10 map errors (-MAP=10).
Note

MUPIP INTEG reports "incorrectly marked free" errors as they require prompt action. MAP does not restrict
them.

An error in an index block prevents INTEG from processing potentially large areas of the database. A single "primary”

error may cause large numbers of "secondary” incorrectly marked busy errors, which are actually useful in identifying valid
blocks that have no valid index pointer. Because "real" or primary incorrectly marked busy errors only make "empty" blocks
unavailable to the system, they are low impact and do not require immediate repair.

Note

After a database recovery with -RECOVER (for example, using -BEFORE_TIME) or -ROLLBACK (for
example, using -FETCHRESYNC), the database may contain incorrectly marked busy errors. Although these
errors are benign, they consume available space. Schedule repairs on the next opportunity.

92

General Database Management

-MAXkeysize

Specifies the maximum number of "key size too large" errors that a MUPIP INTEG operation reports. The format of the
MAXKEYSIZE qualifier is:

-[NOIMAX[KEYSIZE][=integer]

+ By default, INTEG reports a maximum of 10 key size errors (-MAXKEYSIZE=10).

+ -NOMAXKEYSIZE removes limits on key size reporting so that INTEG reports all key size too large errors.
+ -NOMAXKEYSIZE does not accept assignment of an argument.

« "Key size too large" errors normally occur only if a DSE CHANGE -FILEHEADER -KEY_MAX_SIZE command reduces the
maximum key size.

-Online

Specifies that while a MUPIP INTEG operation is active, other processes can update the database without affecting the result
of the backup. Allows checking database structural integrity to run concurrently with database updates. The format of the
ONLINE qualifier is:

-[NOJO[NLINE]
« -NOONLINE specifies that the database should be frozen during MUPIP INTEG.

+ By default, MUPIP INTEG is online except for databases containing V4 blocks for which the default is -NOONLINE. Note that
databases containing V4 blocks should exist only in databases that are in the process of being migrated from V4 to V5; please
complete your migration to the V5 format before using MUPIP INTEG -ONLINE.

« Since MUPIP INTEG -ONLINE does not freeze database updates, it cannot safely correct errors in the "blocks to upgrade" and
"free blocks" fields in the file header, while MUPIP INTEG -NOONLINE can correct these fields.

+ As it checks each database file, MUPIP INTEG -ONLINE creates a sparse file of the same size as the database. As each
GT.M process updates the database, it places a copy of the old block in the sparse file before updating the database. For any
database blocks with a newer transaction number than the start of the INTEG, MUPIP uses the copy in the sparse file. Thus,
analogous with MUPIP BACKUP -ONLINE, INTEG reports on the state of the database as of when it starts, not as of when it
completes. Note: a command such as Is -] command shows sparse files at their full size, but does not show actual disk usage.
Use a command such as du -sh to see actual disk usage.

+ The environment variable GTM_BAKTMPDIR (unlike most GT.M environment variables, this is upper case; it is the same
directory used for MUPIP BACKUP -ONLINE) can be used to indicate a directory where MUPIP should place the snapshot
files (used by MUPIP INTEG -ONLINE). If GTM_BAKTMPDIR does not exist, MUPIP places the snapshot files in the current
directory at the time you issue the INTEG command. MUPIP and GT.M processes automatically cleans up these temporary
snapshot files under a wider variety of conditions.

« Temporary directory security settings must allow write access by the MUPIP process and read access by all processes
updating the database. MUPIP creates the temporary file with the same access as the database file so processes updating
the database can write to the temporary file. If the database is encrypted, the updating processes write encrypted blocks
to the snapshot file and the MUPIP INTEG process must start with access to appropriate key information as it does even -
NOONLINE.

93

General Database Management

« MUPIP INTEG -NOONLINE [-FAST] {-REGION|-FILE} clears the KILLs in progress and Abandoned Kills flags if the run
includes the entire database and there are no incorrectly marked busy blocks.

+ Only one online integ can be active per database region. If an online integ is already active, a subsequent one issues an error
and immediately terminates. If an online integ does not successfully complete, GT.M cleans it up in one of the following
ways:

1. A subsequent online integ detects that an earlier one did not successfully complete and releases the resources held by the
prior online integ before proceeding.

2. If a MUPIP STOP was issued to the online integ process, the process cleans up any resources it held. Note: since the
process was stopped the results of the integ may not be valid.

3. subsequent MUPIP RUNDOWN ensures the release of resources held by prior unsuccessful online integs for the specified
regions.

4. For every 64K transactions after the online integ initiation, online integ checks GT.M health for improperly abandoned
online integs and releases resources held by any it finds.

 Incompatible with: -FILE, -TN_RESET (there should be no need to use -TN_RESET on a GT.M V5 database).

-Region

Specifies that the INTEG parameter identifies one or more regions rather than a database file. The format of the REGION
qualifier is:

-R[EGION]

« MUPIP INTEG -REGION does not require stand alone access to databases. Instead, it freezes updates (but not reads) to the
database during the check. The region-list argument may specify more than one region of the current Global Directory
in a list separated with commas. INTEG -REGION requires the environment variable gtmgbldir to specify a valid Global
Directory. For more information on defining gtmgbldir, refer to the "Global Directory Editor" chapter.

+ Because a KILL may briefly defer marking the blocks it releases "free" in the bit maps, INTEG -REGION may report spurious
block incorrectly marked busy errors. These errors are benign. If these errors occur in conjunction with a "Kill in progress"
error, resolve the errors after the "Kill in progress" error is no longer present.

+ By default, INTEG operates -FILE.

+ Incompatible with: -FILE, -TN_RESET

-Subscript

Specifies a global or a range of keys to INTEG. The global key may be enclosed in quotation marks (" "). Identify a range
by separating two subscripts with a colon (:). -SUBSCRIPT cannot detect incorrectly marked busy errors. The format of the
SUBSCRIPT qualifier is:

-S[UBSCRIPT]=subscript

Specify SUBSCRIPT only if the path to the keys in the subscript is not damaged. If the path is questionable or known to be
damaged, use DSE to find the block(s) and INTEG -BLOCK.

Incompatible with: -BLOCK, -TN_RESET

94

General Database Management

-TN_reset

Resets block transaction numbers and backup event recorded transaction numbers to (one) 1, and the current transaction
number to two (2) which makes the backup event recorded transaction numbers more meaningful and useful. It also issues an
advisory message to perform a backup.

The format of the TN_RESET qualifier is:
-TN[_RESET]

+ Transaction numbers can go up to 18,446,744,073,709,551,615. This means that a transaction processing application that runs
flat out at a non-stop rate of 1,000,000 updates per second would need a TN reset approximately every 584,554 years.

« The -TN_RESET qualifier rewrites all blocks holding data. If the transaction overflow resets to zero (0) database operation is
disrupted.

+ The -TN_RESET qualifier is a protective mechanism that prevents the transaction overflow from resetting to 0.

« By default, INTEG does not modify the block transaction numbers.

ﬁ Important

There should never be a need for a -TN_RESET on a database with only V5 blocks, even when cleaning up
after a runaway process.

« The -TN_RESET qualifier is incompatible with the -FAST, -BLOCK, -REGION, and -SUBSCRIPT qualifiers.

Note

Any time a GT.M update opens a database file that was not properly closed, GT.M increments the transaction
number by 1000. This automatic increment prevents problems induced by abnormal database closes, but
users must always consider this factor in their operational procedures. The rate at which GT.M "uses up"
transaction numbers is a function of operational procedures and real database updates.

-TRansaction

Specifies the maximum number of block transaction- number-too-large errors that MUPIP INTEG reports. The format of the
TRANSACTION qualifier is:

-[NOJTR[ANSACTION][=integer]
« -NOTRANSACTION removes limits on transaction reporting so MUPIP INTEG reports all transaction number errors.
« -NOTRANSACTION does not accept assignment of an argument.

« A system crash may generate many "block transaction number too large" errors. These errors can cause problems for
BACKUP -INCREMENTAL and for transaction processing. Normally, the automatic increment of 1000 blocks that GT.M adds
when a database is reopened averts these errors. If a problem still exists after the database is reopened, users can use a value
in the DSE CHANGE -FILEHEADER -CURRENT_TN= command to quickly fix "block transaction number too large number"
errors.

95

General Database Management

+ By default, INTEG reports a maximum of 10 block transaction errors (-TRANSACTION=10).

Examples for MUPIP INTEG

Example:

$ mupip integ -block=4 mumps.dat

This command performs a MUPIP INTEG operation on the BLOCK 4 of mumps.dat.
Example:

$ mupip integ -adjacency=20

A sample output from the above command follows:

Type Blocks Records % Used Adjacent
Directory 2 5 4.150 NA
Index 18 1151 77.018 1
Data 1137 94189 97.89%4 1030
Free 43 NA NA NA
Total 1200 95345 NA 1031

This example performs a MUPIP INTEG operation assuming that logically related data occupies 20 data blocks in the current
database. The sample output shows that out of 1137 data blocks, 1030 data blocks are adjacent to each other. One can improve
the performance of a database if the all blocks are as adjacent as possible.

Example:
$ mupip integ -brief mumps.dat

This command performs a MUPIP INTEG operation on the database mumps.dat. A sample output from the above command
follows:

No errors detected by integ.

Type Blocks Records % Used Adjacent
Directory 2 2 2.490 NA
Index 1 1 2.343 1
Data 1 3 6.738 1
Free 96 NA NA NA
Total 100 6 NA 2
Example:

$ mupip integ -fast mumps.dat

This command performs a MUPIP INTEG operation only on the index block of the database file mumps.dat. A sample output
from the above command follows:

No errors detected by fast integ.

Type Blocks Records % Used Adjacent

96

General Database Management

Directory 2 2 2.490 NA
Index 1 1 2.343 1
Data 1 NA NA NA
Free 96 NA NA NA
Total 100 NA NA 1

Note the NA entries (highlighted in bold) for Data type. It means that the MUPIP INTEG -FAST operation checked only index
blocks.

$ mupip integ -full mumps.dat
The sample output from the above command follows:

Directory tree

Level Blocks Records % Used Adjacent
1 1 1 2.343 NA
0 1 1 2.636 NA

Global variable “Dinosaur

Level Blocks Records % Used Adjacent
1 1 6 8.398 1
0 6 500 83.902 6

No errors detected by integ.

Type Blocks Records % Used Adjacent
Directory 2 2 2.490 NA
Index 1 6 8.398 1
Data 6 500 83.902 6
Free 91 NA NA NA
Total 100 508 NA 7
Example:

$ mupip integ -map=20 -maxkeysize=20 -transaction=2 mumps.dat

This command performs a MUPIP INTEG operation and restricts the maximum number of "key size too large" errors to 20.
Example:

$ mupip integ -map=20 -transaction=2 mumps.dat

This command performs a MUPIP INTEG operation and restricts the maximum number of "block transaction- number-too-large
errors" to 2.

$ mupip integ -file mumps.dat -tn_reset

This command resets the transaction number to one in every database block.
Example:

$ mupip integ -subscript="*Parrots” mumps.dat

This example performs a MUPIP INTEG operation on the global variable "Parrots in the database file mumps.dat.

97

General Database Management
Example:

$ mupip integ -subscript="*Amsterdam(100)":"*Bolivia(”"Chimes"")" -region DEFAULT

This example performs a MUPIP INTEG operation all global variables greater than or equal to " Amsterdam (100) and less than
or equal to "Bolivia("Chimes") in the default region(s).

Note

To specify a literal in the command string, use two double quotation marks for example, *b(""c"").

INTRPT

Sends an interrupt signal to the specified process. The signal used is [POSIX] SIGUSR1. The format of the MUPIP INTRPT
command is:

INTRPT process-id

it Important

Ensure that signal SIGUSR1 is not be used by any C external function calls or any (initially non-GT.M)
processes that use call-in support, as it is interpreted by GT.M as a signal to trigger the $ZINTERRUPT
mechanism.

« To INTRPT a process belonging to its own account, a process requires no UNIX privilege.

« To INTRPT a process belonging to its own GROUP, a process requires UNIX membership in the user group of the target
process privilege. To INTRPT a process belonging to an account outside its own GROUP, a process requires UNIX superuser
privilege.

JOURNAL

Analyzes, extracts, reports, and recovers data using journal files. For a description of the JOURNAL command, refer to
Chapter 6: “GT.M Journaling” (page 130).

LOAD

Puts the global variable names and their corresponding data values into a GT.M database from a sequential file.
The format of the LOAD command is:

L[OAD]

L
-BE[GIN]=integer
-E[ND]=integer
-FI[LLFACTOR]=integer
-FOLRMAT]={GO|BLINARY]|Z[WR]]1}
-S[TDINI]

]

98

General Database Management

file-name

n Caution

From an application perspective, performing a MUPIP LOAD operation while an application is running may
result in an inconsistent application state for the database.

« MUPIP LOAD uses the Global Directory to determine which database files to use.
« LOAD supports user collation routines.

« LOAD takes its input from the file defined by the file-name

« LOAD may take its input from a UNIX file on any device that supports such files.

« MUPIP LOAD command considers a sequential file as encoded in UTF-8 if the environment variable gtm_chset is set to
UTF-8. Ensure that MUPIP EXTRACT commands and corresponding MUPIP LOAD commands execute with the same setting
for the environment variable gtm_chset.

« For information on loading with an M "percent utility," refer to the %GI section of the "M Utility Routines" chapter in GT.M
Programmer's Guide. LOAD is typically faster, but the %GI utility can be customized.

« Press <CTRL-C> to produce a status message from LOAD. Entering <CTRL-C> twice in quick succession stops LOAD. A
LOAD that is manually stopped or stops because of an internal error is incomplete and may lack application level integrity,
but will not adversely affect the database structure unless terminated with a kill -9.

Note

The MUPIP EXTRACT or MUPIP LOAD procedure for large databases are time consuming due to the volume
of data that has to be converted from binary to ZWR format (on source) and vice versa (on target). One must
also consider the fact that the extract file can be very large for a large database. Users must ensure adequate
storage support the size of the extract file and the space occupied by the source and target databases. In order
to reduce the total time and space it takes to transfer database content from one endian platform to another,
it is efficient to convert the endian format in-place for a database and transfer the converted database. See
MUPIP ENDIANCVT for more information on converting the endian format of a database file.

The following sections describe the optional qualifiers of the MUPIP LOAD command.

-FOrmat

Specifies the format of the input file. The format must match the actual format of the input file for LOAD to operate.
The format codes are:

GO - Global Output format

BLINARY] - Binary format

Z[WR] - ZWRITE format

« By default, LOAD uses FORMAT=ZWR.

« -FORMAT=GO expects the data in record pairs. Each global node requires one record for the key and one for the data.

99

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

« -FORMAT=ZWR expects the data for each global node in a single record.

« -FORMAT=BINARY only applies to Greystone Database Structure (GDS) files. A BINARY format file loads significantly faster
than a GO or ZWR format file. -FORMAT=BINARY works with data in a proprietary format. -FORMAT=BINARY has one
header record, therefore LOAD -FORMAT=BINARY starts active work with record number two (2).

-BEgin

Specifies the record number of the input file with which LOAD should begin. Directing LOAD to begin at a point other than the
beginning of a valid key causes an error. The format of the BEGIN qualifier is:

-BE[GIN]=integer

ﬁ Important

Always consider the number of header records for choosing a -BEGIN point. See FORMAT qualifier for more
information.

« For -FORMAT=GO input, the value is usually an odd number. As -FORMAT=BINARY requires important information from
the header, this type of load requires an intact file header regardless of the -BEGIN value.

« For -FORMAT = ZWR input, each record contains a complete set of reference and data information. The beginning values are
not restricted, except to allow two records for the header.

+ By default, LOAD starts at the beginning of the input file.

-End

Specifies the record number of the input file at which LOAD should stop. -END=integer must be greater than the -
BEGIN=integer for LOAD to operate. LOAD terminates after processing the record of the number specified by -END or
reaching the end of the input file. The format of the END qualifier is:

-E[ND]=integer

The value of -FORMAT=GO input should normally be an even number. By default, LOAD continues to the end of the input file.

-Flll_factor

Specifies the quantity of data stored in a database block. Subsequent run-time updates to the block fill the remaining available
space reserved by the FILL_FACTOR. Blocks that avoid block splits operate more efficiently. The format of the FILL_FACTOR
qualifier is:

-FI[LL_FACTOR]=integer

+ Reserves room and avoid unnecessary block split to accommodate the forecasted growth in a global variable that may
experience significant rate of additions over a period.

« Users having database performance issues or a high rate of database updates must examine the defined FILL,_FACTORs.
Unless the application only uses uniform records, which is not typical for most applications, FILL_FACTORs do not work
precisely.

100

General Database Management

+ By default, LOAD uses -FILL_FACTOR=100 for maximum data density.
Note

FILL_FACTOR is useful when updates add or grow records reasonably uniformly across a broad key range. If
updates are at ever ascending or descending keys, or if the record set and record sizes are relatively static in
the face of updates, FILL_FACTOR won't provide much benefit.

-Stdin

Specifies that MUPIP LOAD takes input from standard input (stdin). The format of the STDIN qualifier is:

-S[TDIN]

Examples for MUPIP LOAD

Example:

$ mupip load ex_file.go

This command loads the content of the extract file ex_file.go to the current database.
Example:

$ mupip load -format=go big.glo

This command loads an extract file big.glo in the current database.

Example:

$ mupip load -begin=5 -end=10 rs.glo

This command begins MUPIP LOAD operation from record number 5 and ends at record number 10. Note that the value for
BEGIN is an odd number. A sample output from the above command follows:

GT.M MUPIP EXTRACT
02-MAR-2011 18:25:47 ZWR

Beginning LOAD at record number: 5

LOAD TOTAL Key Cnt: 6 Max Subsc Len: 7 Max Data Len: 1
Last LOAD record number: 10

Example:

$ mupip load -fill_factor=5 reobs.glo

This command set the FILL_FACTOR to 5 for loading an extract file in the current database.
Example:

$cat big.glo | mupip load -stdin
$mupip load -stdin < big.glo

101

General Database Management

These commands loads the extract file big.glo using -stdin.

REORG

Improves database performance by defragmenting and reorganizing database files and attempts to reduce the size of the
database file. MUPIP REORG runs concurrently with other database activity, including updates. Competing activity generally
increases the time required to perform a REORG, as well as that of the competing operations.

The format of the REORG command is:

REO[RG]

L

-D[OWNGRADE]
-E[XCLUDE]=global-name-1list
-FI[LL_FACTOR]=integer
-I[NDEX_FILL_FACTOR]=integer
-R[ESUME]
-S[ELECT]=global-name-1list
-TLRUNCATE][=percentage]
-UP[GRADE]
-REGLION]=region-list

]

Note

While REORG optimizes the GDS structure of database files, it does not handle native file system file
fragmentation. In most cases, fragmentation at the native file system level is more likely than fragmentation
at the GDS structure level. Therefore, FIS recommends users create files with appropriate allocations and
extensions, on disks with large amounts of contiguous free space. Use native utilities and MUPIP utilities
(depending on operational procedures) to eliminate file fragmentation when database files have been
extended more than a dozen times.

+ Using REORG concurrently with normal database access affects the performance of normal operation. To reduce this impact,
lower the priority of the process performing the REORG.

« MUPIP REORG does not change the logical contents of the database, and can run on either the originating instance or
replicating instance of an LMS application. In such cases, resuming REORGs in process should be part of the batch restart.
See "GT.M Database Replication" chapter for more information about running REORG on a dual site application.

+ If you run MUPIP STOP for an ongoing MUPIP REORG process, it may leave the database blocks in an inconsistent state. In
this situation, GT.M converts the ongoing KILLs flag to abandoned KILLs flag. If a subsequent MUPIP REORG encounters
these abandoned KILLs flags, it gives a message and then starts its REORG actions.

« <CTRL-C> terminates REORG. A REORG terminated abnormally by operator action or error is incomplete but does not
adversely affect the database structure, unless terminated with a kill -9.

n Caution

REORG focuses on optimum adjacency and a change to even a single block can cause it to perform a large
number of updates with only marginal benefit. Therefore, FIS recommends not running successive REORGs
close together in time as that can provide minimal benefit for a significant increase in database and journal

102

General Database Management

activity. For the same reason, FIS recommends careful research and planning before using the -RESUME
qualifier or complex uses of -EXCLUDE and -SELECT.

Assume two scenarios of putting values of *x(1) to *x(10000). In the first scenarios, fill values in a sequential manner. In the
second scenario, enter values for odd subscripts and then enter values for the even subscripts.

Scenario 1:

At the GT.M prompt, execute the following command sequence:
GTM>for i=1:1:10000 set *x(i)=$justify(i,200)

Then, execute the following MUPIP INTEG command.

$ mupip integ -region "x"

This command produces an output like the following:

Integ of region DEFAULT

No errors detected by integ.

Type Blocks Records % Used Adjacent
Directory 2 2 2.490 NA
Index 29 2528 95.999 1
Data 2500 10000 82.811 2499
Free 69 NA NA NA
Total 2600 12530 NA 2500

Note the high density (percent used) for index and data blocks from the report.
Scenario 2:

At the GT.M prompt, execute the following command sequence:

GTM>for i=1:2:10000 s *x(i)=$justify(i,200)

GTM>for 1=2:2:10000 set *x(i)=$justify(i,200)

Then, execute the following command:

$ mupip integ -region "x"

This command produces an output like the following:

Integ of region DEFAULT

No errors detected by integ.

Type Blocks Records % Used Adjacent
Directory 2 2 2.490 NA
Index 153 3902 29.211 57
Data 3750 10000 55.856 1250
Free 95 NA NA NA

103

General Database Management

Total 4000 13904 NA 1307

Note that there are more and less dense index and data blocks used than in scenario 1. MUPIP REORG addresses such issues and
makes the database (depending on the FILL_FACTOR) more compact.

The optional qualifiers for MUPIP REORG are:

-Exclude

Specifies that REORG not handle blocks that contain information about the globals in the associated list-this means they are
neither reorganized nor swapped in the course of reorganizing other globals; -EXCLUDE can reduce the efficiency of REORG
because it complicates and interferes with the block swapping actions that try to improve adjacency.

The format of the EXCLUDE qualifier is:
-E[XCLUDE]=global-name-list

+ Assume that a single MUPIP command organizes a subset of the globals in a database or region. If a second MUPIP REORG
command selects the remaining globals, it may tend to disrupt the results of the first REORG by de-optimizing the previously
organized blocks. This is because there is no information passed from the previous MUPIP REORG command to the next
command. The EXCLUDE qualifier allows users to list the name of the previously REORGed globals, so that the MUPIP
REORG bypasses the GDS blocks containing these globals.

« If global-name-list contains globals that do not exist, REORG issues a message to the terminal and continues to process any
specified globals that exist. If REORG is unable to process any globals, it terminates with an error.

« Global-name-list can be an individual global name, a range of global names, or a list of names and prefixes followed by the
wildcard symbol. For example:

1. A global name, such as ACN.

2. A range of global names, such as A7:B7.

3. A list, such as A,B,C.

4. Global names with the same prefix such as TMP*.

In the first case, REORG only excludes global *ACN. In the second case, REORG excludes all global names in the collating
sequence A7 to B7. For the third case, REORG excludes A, B, and C. In the last case, REORG excludes all globals prefixed with
TMP.

"

« Enclose wildcards in double-quotes (
specification of the global is optional.

) to prevent inappropriate expansion by the shell. The caret symbol (") in the

By default, REORG does not EXCLUDE any globals.

« In case any global appears in the argument lists of both -SELECT and -EXCLUDE, REORG terminates with an error.

-Fill_factor

Specifies how full you want each database block to be. This is a target number. Individual blocks may be more or less full than
the fill factor. The format of the FILL_FACTOR qualifier is:

FLILL_FACTOR]=integer

104

General Database Management

« The arguments for the FILL_FACTOR qualifier must be integers from 30 to 100. These integers represent the percentage of
the data block that REORG can fill. By default, the FILL_FACTOR value is 100 for maximum data density.

+ Users who come upon database performance issues or a high rate of database updates must examine the defined
FILL_FACTORSs. Unless the application uses entirely uniform records, which is not typical for most applications,
FILL_FACTORs do not work precisely.

« The FILL_FACTOR for data that is relatively static, or grows by the addition of new nodes that collate before or after pre-
existing nodes, should be 100 percent. The FILL_FACTOR for data that is growing by additions to existing nodes may be
chosen to leave room in the typical node for the forecast growth for some period. Generally, this is the time between the
LOAD and first REORG, or between two REORGs. This is also true for additions of nodes that are internal to the existing
collating sequence.

-Index_fill_factor

Directs REORG to leave free space within index blocks for future updates. Arguments to this qualifier must be integers
from 30 to 100 that represent the percentage of the index block that REORG can fill. REORG uses this number to decide
whether to place more information in an index block, or create space by moving data to another block. The format of the
INDEX_FILL_FACTOR qualifier is:

-I[NDEX_FILL_FACTOR]=integer

Under certain conditions, especially with large database block sizes, it may be possible to achieve faster throughput by using
a smaller fill factor for index blocks than for data blocks. By default, the INDEX_FILL_FACTOR is the value of FILL_FACTOR
regardless of whether that value is explicitly specified or implicitly obtained by default.

-Resume

For an interrupted REORG operation, -RESUME allows the user to resume the REORG operation from the point where the
operation stopped. REORG stores the last key value in the database file header. The format of the RESUME qualifier is:

-RLESUME]

« With RESUME specified, the program retrieves the last key value, from the database file header, and restarts operations from
that key.

-Region

Specifies that REORG operate in the regions in the associated list and restricts REORG to the globals in those regions that are
mapped by the current global directory; it does not have the same interactions as -EXCLUDE and -SELECT, but it does not
mitigate those interactions when combined with them.

The format of the REGION qualifier is:

-R[EGION]=region-list

-Select

Specifies that REORG reorganizes only the globals in the associated list; globals not on the list may be modified by block swaps

with selected globals unless they are named with -EXCLUDE; -SELECT can be difficult to use efficiently because it tends to
deoptimize unselected globals unless they are name in an -EXCLUDE list (which introduces inefficiency).

105

General Database Management

The format of the SELECT qualifier is:

-S[ELECT]=global-name-list

By default, REORG operates on all globals in all database files identified by the current Global Directory for the process
executing the MUPIP command.

One of the functions performed by REORG is to logically order the globals on which it operates within the file. Unless the
EXCLUDE and SELECT qualifiers are properly used in tandem, repeating the command with different selections in the same
file wastes work and leaves only the last selection well organized.

If you enter the REORG -SELECT=global-name-list command and the specified globals do not exist, REORG issues a
message to the screen and continues to process any specified globals that exist. If REORG is unable to process any globals, it
terminates with an error.

Arguments for this qualifier may be an individual global name, a range of global names, or a list of names and prefixes
followed by the wildcard symbol. The caret symbol (*) in the specification of the global is optional.

The global name can be:

1. A global name, such as ACN

2. A range of global names, such as A7:B7

3. A list, such as A,B,C.

4. Global names with the same prefix such as TMP*.

In the first case, REORG only includes global *ACN. In the second case, REORG includes all global names in the collating
sequence A7 to B7. For the third case, REORG includes A, B, and C. In the last case, REORG includes all globals prefixed with

TMP.

By default, REORG selects all globals.

-Truncate

Specifies that REORG, after it has rearranged some or all of a region's contents, should attempt to reduce the size of the
database file and return free space to the file system. The format of the TRUNCATE qualifier is:

-TLRUNCATE][=percentage]

The optional percentage (0-99) provides a minimum amount for the reclamation; in other words, REORG won't bother
performing a file truncate unless it can give back at least this percentage of the file; the default (0) has it give back anything it
can. TRUNCATE always returns space aligned with bit map boundaries, which fall at 512 database block intervals. TRUNCATE
analyses the bit maps, and if appropriate, produces before image journal records as needed for recycled (formerly used) blocks;
The journal extract of a truncated database file may contain INCTN records having the inctn opcode value 9 indicating that the
specific block was marked from recycled to free by truncate.

Note

TRUNCATE does not complete if there is a concurrent online BACKUP or use of the snapshot mechanism,
for example by INTEG.

106

General Database Management
Examples for MUPIP REORG
Example:
$ mupip reorg -exclude=""b2a,”*Ad4gsEQ2e:*A93"

This example performs a MUPIP REORG operation on all globals excluding “b2a and all globals ranging from *A4gsEQ2e to
"A93.

Example:

If the forecasted growth of a global is 5% per month from relatively uniformly distributed updates, and REORGs are scheduled
every quarter, the FILL_FACTOR for both the original LOAD and subsequent REORGs might be 80 percent 100 - ((3 months + 1
month "safety” margin) * five percent per month). The REORG command based on the above assumptions is as follows:

$ mupip reorg -fill_factor=80

REPLICATE

Control the logical multi-site operation of GT.M. For more information on the qualifiers of the MUPIP REPLICATE command,
refer to Chapter 7: “Database Replication” (page 173) .

RESTORE

Integrates one or more BACKUP -INCREMENTAL files into a corresponding database. The transaction number in the first
incremental backup must be one more than the current transaction number of the database. Otherwise, MUPIP RESTORE
terminates with an error.

The format of the RESTORE command is:
RE[LSTORE] [-[NOJE[LXTEND]] file-name file-list
+ file-name identifies the name of the database file that RESTORE uses as a starting point.

« file-list specifies one or more files produced by BACKUP -INCREMENTAL to RESTORE into the database. The file-name are
separated by commas (,) and must be in sequential order, from the oldest transaction number to the most recent transaction
number. RESTORE may take its input from a UNIX file on any device that supports such files.

« The current transaction number in the database must match the starting transaction number of each successive input to the
RESTORE.

« If the BACKUP -INCREMENTAL was created using -TRANSACTION=1, create a new database with MUPIP CREATE and do
not access it, except the standalone MUPIP commands INTEG -FILE, EXTEND, and SET before initiating the RESTORE.

-Extend

Specifies whether a MUPIP RESTORE operation should extend the database file automatically if it is smaller than the size
required to load the data.

The format of the EXTEND qualifier is:

-[NOJELXTEND]

107

General Database Management

M activity between backups may automatically extend a database file. Therefore, the database file specified as the starting point
for a RESTORE may require an extension before the RESTORE. If the database needs an extension and the command specifies -
NOEXTEND, MUPIP displays a message and terminates. The message provides the sizes of the input and output database files
and the number of blocks by which to extend the database. If the RESTORE specifies more than one incremental backup with a
file list, the database file may require more than one extension.

By default, RESTORE automatically extends the database file.

Examples for MUPIP RESTORE
$ mupip restore backup.dat $backup_dir/backup.bkl, $backup_dir/backup.bk2, $backup_dir/backup.bk3

This command restores backup.dat from incremental backups stored in directory specified by the environment variable
backup_dir.

" "

$ mupip restore gtm.dat '"gzip -d -c online5pipe.inc.gz |

This command uses a pipe to restore gtm.dat since its last DATABASE backup from the bytestream backup stored in
online5pipe.inc.gz.

RUNDOWN

When database access has not been properly terminated, RUNDOWN properly closes currently inactive databases, removes
abandoned GT.M database semaphores, and releases any IPC resources used. Under normal operations, the last process to
close a database file performs the RUNDOWN actions, and a MUPIP RUNDOWN is not required. If a database file is already
properly rundown, a MUPIP RUNDOWN has no effect. If in doubt, it is always to safe to perform a rundown. FIS recommends
the following method to shutdown a GT.M application or the system:

« Terminate all GT.M processes, and

« Rundown any and all database files that may be active.

MUPIP RUNDOWN checks for version mismatch. If there is a mismatch, it skips the region and continues with the next region.
This makes it easier for multiple (non-interacting) GT.M versions to co-exist on the same machine. Note that GT.M does not
support concurrent access to the same database file by multiple versions of the software.

The format of the RUNDOWN command is:

RULCNDOWN] {-FILE file-name|-REGION region-list]}

MUPIP RUNDOWN clears certain fields in a file that is already closed. This facilitates recovery from a system crash or other
operational anomaly.

Use RUNDOWN after a system crash or after the last process accessing a database terminates abnormally. RUNDOWN ensures
that open databases are properly closed and ready for subsequent use. RUNDOWN has no effect on any database that is actively
being accessed at the time the RUNDOWN is issued.

To ensure database integrity, all system shutdown algorithms should include scripts that stop at GT.M processes and perform
RUNDOWN on all database files.

The RUNDOWN command may include one of the following qualifiers:

108

General Database Management

-F[ile]
-R[egion]

If the RUNDOWN command does not specify either -File or -Region, it checks all the IPC resources (shared memory) on the
system and if they are associated with a GT.M database, attempts to rundown that file.

-File

Specifies that the argument is a file-name for a single database file. The -FILE qualifier is incompatible with the REGION
qualifier. If the rundown parameter consists of a list of files, the command only operates on the first item in the list.

Incompatible with: -REGION

-Region

Specifies that the argument contains one or more region-names that identify database files mapped by the current Global
Directory. Use the wild card "*" to rundown all inactive regions in a global directory.

Incompatible with: -FILE

When MUPIP RUNDOWN has no qualifier, it performs rundown on all inactive database memory sections on the node.
Because this form has no explicit list of databases, it does not perform any clean up on regions that have no abandoned memory
segments but may not have been shutdown in a crash.

-Override

Overrides the protection that prevents MUPIP RUNDOWN from performing a rundown of a replication-enabled (with
BEFORE_IMAGE) database or a non-replicated NOBEFORE-journaled database that was abnormally shutdown. The protection
involves issuing the MUUSERLBK error for a previously crashed replication-enabled (with BEFORE IMAGE journaling)
database and the MUUSERECOV error for a non-replicated or NOBEFORE-journaled database. Both these errors prevent
complications related to data recovery from a journal file or a replication-enabled database.

SET
Modifies certain database characteristics. MUPIP SET operates on either regions or files.

Note

— In regions that have journaling enabled and on, users can switch journal files without either requiring
standalone access or freezing updates.

The format of the SET command is:

SE[T] {-FI[LE] file-name|-REGLION] region-list}
-A[CCESS_METHOD]={BG|MM}
-B[YPASS]
-DE[FER_TIME]=seconds
-E[XTENSION_COUNT]=integer(no of blocks)
-F[LUSH_TIME]=integer
-G[LOBAL_BUFFERS]=<integer>

109

General Database Management

-JNLLFILE]
-JOLURNAL]=journal-option-list
-L[OCK_SPACE]=integer
-MLUTEX_SLOTS]=integer
-[NOJINST[_FREEZE_ON_ERROR]
-PALRTIAL_RECOV_BYPASS]
-REP[LICATION]={ON|OFF}
-RES[ERVED_BYTES]=integer]
-S[LTANDALONENOT]
-VLERSION]={V4|V6}
-WLAIT_DISK]=integer

+ The file-name (or region-list) identifies the target of the SET.

« The SET command must include one of the following qualifiers which determine whether the argument to the SET is a file-
name or a region-list.

« Exclusive access to the database is required if the MUPIP SET command specifies -ACCESS_METHOD, -GLOBAL_BUFFERS,
-LOCK_SPACE or -NOJOURNAL, or if any of the -JOURNAL options ENABLE, DISABLE, or BUFFER_SIZE are specified.

The following section describe the qualifiers of the MUPIP SET command.

-Access_method

Specifies the access method (GT.M buffering strategy) for storing and retrieving data from the global database file. The format
of the ACCESS_METHOD qualifier is:

-A[CCESS_METHOD]=code

-PArtial_recov_bypass

Sets the CORRUPT _FILE flag in the database fileheader to FALSE. The CORRUPT_FILE flag indicates whether a region
completed a successful recovery. For more information, refer to the CORRUPT_FILE qualifier in Chapter 10, Database Structure
Editor [279].

-File
Specifies that the argument is a file-name for a single database file. The format of the FILE qualifier is:
-F[ILE]

Incompatible with: -REGION

-Region

Specifies that the argument is a region-list which identifies database file(s) mapped by the current Global Directory. The format
of the REGION qualifier is:

-RLEGION]

SET -REGION changes multiple files when the parameter contains a list and/or wildcards.

110

General Database Management

Incompatible with: -FILE

-Extension_count

Specifies the number of GDS blocks by which an existing database file extends. A file or region name is required. This qualifier
requires standalone access.

The format of the EXTENSION_COUNT qualifier is:

—E[XTENSION_COUNT]=integer

-Flush_time

Specifies the amount of time between deferred writes of stale cache buffers. The default value is 1 second and the maximum
value is 1 hour. -FLUSH_TIME requires standalone access. The format of the FLUSH_TIME qualifier is:

-F[LUSH_TIME]=[[[HOURS: JMINUTES: JSECONDS: JCENTISECONDS

-Global_buffers

Specifies the number of cache buffers for a BG database. This qualifier requires standalone access.The format of the
GLOBAL_BUFFERS qualifier is:

-G[LOBAL_BUFFERS]=integer

For more information on ways to determine good working sizes for GLOBAL_BUFFERS, refer to Chapter 4: “Global Directory
Editor” (page 32).

In general, increasing the number of global buffers improves performance by smoothing the peaks of I/O load on the system.
However, increasing the number of global buffers also increases the memory requirements of the system, and a larger number
of global buffers can increase the probability of the buffers getting swapped out. If global buffers are swapped out, any
performance gain from increasing the number of global buffers will be more than offset by the performance impact of swapping
global buffers. Most applications use from 1,000 to 4,000 global buffers for database regions that are heavily used. FIS does not
recommend using fewer than 256 buffers except under special circumstances.

The minimum is 64 buffers and the maximum is 65536 buffers. By default, MUPIP CREATE establishes GLOBAL_BUFFERS
using information entered in the Global Directory.

On many UNIX systems, default kernel parameters may be inadequate for GT.M global buffers, and may need to be adjusted by
a system administrator.

-Lock_space

Specifies the number of pages allocated to the management of M locks associated with the database. The size of a page is always
512 bytes.

The format of the LOCK_SPACE qualifier is:
-L[OCK]_SPACE=integer

+ The maximum LOCK_SPACE is 65,536 pages.

111

General Database Management

« The minimum LOCK_SPACE is 10 pages.

+ The default LOCK_SPACE is 40 pages.

« A file or region name is required to assign lock space.

« For more information on LOCK_SPACE, refer to Chapter 4: “Global Directory Editor” (page 32).

+ This qualifier requires standalone access.

-INST _freeze_on_error

Enables or disables custom errors in a region to automatically cause an Instance Freeze. This flag modifies the "Inst Freeze on
Error" file header flag.

For more information on creating a list of custom errors that automatically causae an Instance Freeze, refer to “Instance
Freeze” (page 193).

For more information on promptly setting or clearing an Instance Freeze on an instance irrespective of whether any region is

enabled for Instance, refer to the “Starting the Source Server” (page 230) section of the Database Replication chapter.

-Mutex_slots

Sets the size of a structure that GT.M uses to manage contention for the principal critical section for a database. Performance
issues may occur when there are many processes contending for database access and if this structure cannot accommodate all
waiting processes. Therefore, FIS recommends setting this value to a minimum of slightly more than the maximum number of
concurrent processes you expect to access the database.

The minimum value is 64 and the maximum value is 32768. The default value is 1024.

-Journal

Specifies whether the database allows journaling and, if it does, characteristics for the journal file. The format of the JOURNAL
qualifier is:

-[NOJJ[OURNALI[=journal-option-list]
« -NOJOURNAL specifies that the database does not allow journaling. And also it does not accept an argument assignment.

+ -JOURNAL specifies journaling is allowed. It takes one or more arguments in a journal-option-list.

« For detailed description of the all JOURNAL qualifiers and its keywords, refer to Chapter 6: “GT.M Journaling” (page 130).

-Qdbrundown

Quickens normal process shutdown where a large number of processes accessing a database file are required to shutdown
almost simultaneously, for example, in benchmarking scenarios. When a terminating GT.M process observes that a large
number of processes are attached to a database file and QDBRUNDOWN is enabled, it bypasses checking whether it is the last
process accessing the database. Such a check occurs in a critical section and bypassing it also bypasses the usual RUNDOWN
actions which accelerates process shutdown removing a possible impediment to process startup. By default, QDBRUNDOWN is
disabled.

112

General Database Management

Note that with QDBRUNDOWN there is a possibility of race condition that might leave the database fileheader and IPC
resources in need of cleanup. Although QDBRUNDOWN minimizes the probability of such a race condition, it cannot eliminate
it. When using QDBRUNDOWN, FIS recommends an explicit MUPIP RUNDOWN of the database file after the last process exits,
to ensure the cleanup of database fileheader and IPC resources.

-REServed_bytes

Specifies the size to be reserved in each database block. RESERVED_BYTES is generally used to reserve room for compatibility
with other implementations of M or to observe communications protocol restrictions. The format of the RESERVED_BYTES
qualifier is:

-RES[ERVED_BYTES]=size
« RESERVED_BYTES may also be used as a user-managed fill factor.

o The minimum RESERVED_BYTES is 0 bytes. The maximum RESERVED_BYTES is the block size minus the size of the block
header which is 7 or 8 depending on your platform. Realistic determinations of this amount should leave room for at least
one record of maximum size.

-Version

Sets the block format version (Desired DB Format field in the file header) for all subsequent new blocks. The format of the
VERSION qualifier is:

-VLERSION]={V4|V6}

« MUPIP UPGRADE and MUPIP REORG -UPGRADE set the Desired DB Format field in the database file header to V6 while
MUPIP REORG -DOWNGRADE sets it to V4.

« To set the version to V4, the current transaction number (CTN) of the database must be within the range of a 32-bit
maximum.

+ V6 block format is compatible with the V5 block format. The longer key and longer records (spanning nodes) features of V6
format are automatically disabled when used with GT.M V5.* versions.

 For more information on the upgrading or downgrading your database, refer to the release notes document of your current
GT.M version.

Examples for MUPIP SET

Example:

$ mupip set -journal=on,nobefore -region "*"

This example enables NOBEFORE image journaling and turns on journaling for all regions.
$ mupip set -version=V4 -file mumps.dat

Database file mumps.dat now has desired DB format V4

This example sets the block format to V4 for all subsequent new blocks in V6 database file mumps.dat.

113

General Database Management

Example:

$ mupip set -version=v6 -file mumps.dat

Database file mumps.dat now has desired DB format V5

This example sets the block format to V6 for all subsequent new blocks in V4 database file mumps.dat.
Example:

mupip set -flush_time=01:00:00:00 -region DEFAULT

This example sets flush time to 1 hour. You can also specify flush time in any combination of
[[[HOURS:]MINUTES:]SECONDS:]CENTISECONDS. MUPIP interprets -FLUSH_TIME=360000 or -FLUSH_TIME=00:60:00:00 as
-FLUSH_TIME=01:00:00:00.

Example:
$ mupip set -region REPTILES -inst_freeze_on_error

This example enables custom errors in region REPTILES to cause an Instance Freeze.

SIZE

Estimates and reports the size of global variables using a format that is similar to the one that appears at the end of the MUPIP
INTEG -FULL report. In comparison with MUPIP INTEG -FAST -FULL, MUPIP SIZE provides the option of choosing any one of
the three estimation techniques to estimate the size of global variables in a database file. These techniques vary in measurement
speed and estimate accuracy. The format of the MUPIP SIZE command is:

MUPIP SI[ZE] [-h[euristic]=estimation_technique] [-s[elect]=global-name-1list]
[-rlegion]=region-list]

The optional qualifiers of MUPIP SIZE are:

-Heuristic=estimation_technique

Specifies the estimation technique that MUPIP SIZE should use to estimate the size of global variables. The format of the -
HEURISTIC qualifier is:

-h[euristic]={scl[an][,level=<1vl>] | alrsamplel[,samples=<smpls>] |
i[mpsample][, samples=<smpls>]}

« smpls is the number of samples and must be greater than zero (0)
« Ivlis a positive or negative tree level designation and -(level of the root block) <= lvl <= (level of the root block)
estimation-technique is one of the following:

o scan,level=<Ivl>

114

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX293.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX294.txt

General Database Management

Traverses the global variable tree and counts the actual number of records and blocks at levels from the root down to the
level specified by Ivl (default is 0, the data blocks). If the given level is non-negative, it is the lowest block level of the global
for which the count is requested. So, 0 means all blocks, 1 means all index blocks, 2 means all index blocks of level 2 and
above, and so on. SCAN counts a negative level from the root of the global tree where -1 means children of the root.

« arsample,samples=<smpls>

Uses acceptance/rejection sampling of random tree traversals to estimate the number of blocks at each level. It continues
until the specified number of samples (default is 1,000) is accepted.

« impsample,samples=<smpls>

Uses importance sampling of random tree traversals to weight each sample of the specified number of samples (default is
1,000) in order to estimate size of the tree at each level.

« If -HEURISTIC is not specified, MUPIP SIZE uses the ARSAMPLE,SAMPLE=1000 estimation technique.

ﬁ Important

For large databases, MUPIP SIZE is faster than MUPIP INTEG -FAST -FULL. IMPSAMPLE is expected to be
the fastest estimation technique, followed by ARSAMPLE and then SCAN.

In terms of accuracy, MUPIP INTEG -FAST -FULL is the most accurate.

-Select

Specifies the global variables on which MUPIP SIZE runs. If -SELECT is not specified, MUPIP SIZE selects all global variables.
The format of the SELECT qualifier is:

-s[elect]=global-name-list

global-name-list can be:

+ A comma separated list of global variables.

« A range of global variables denoted by start:end syntax. For example, -select="g1:g4".

A global variable with wildcards, for example, "g*" (the name must be escaped to avoid shell filename expansion)

« """ to select all global variables.
-Region

Specifies the region on which MUPIP SIZE runs. If REGION is not specified, MUPIP SIZE selects all regions. The format of the
REGION qualifier is:

-R[EGION]=region-list
Examples:

$ mupip size -heuristic="impsample,samples=2000" -select="yx" -region="AREG"

115

General Database Management

This example estimates the size of all global variable starting with "y". It uses importance sampling with 2000 samples on the
region AREG.

$ mupip size -heuristic="scan,level=-1"
This example counts the number of blocks and records at 1 level below the root of the database tree.
$ mupip size -heuristic="arsample” -select="gl:g3"

This example estimates the size of global variables g1, g2 and g3 using accept/reject sampling with the default number of
samples regardless of the region in which they reside.

Note

o Apart from randomness caused by sampling heuristics, MUPIP SIZE also has randomness from concurrent
updates because it does not use the snapshot technique that MUPIP INTEG uses.

STOP

Terminates a GT.M image. The image executes an orderly disengagement from all databases that are currently open by the
process, and then exits. A MUPIP STOP performs a kill -15 and therefore may also be used to stop non-GT.M images.

The format of the STOP command is:
MUPIP ST[OP] process-id
« Use the shell command ps to display a list of active process names and process identifiers (PIDs).

« To STOP a process belonging to its own account, a process requires no privileges. To STOP a process belonging to another
account, MUPIP STOP must execute as root.

TRIGGER

Examines or loads trigger definitions. The format of the MUPIP TRIGGER command is:

TRIGGER {-TRIG[GERFILE]=<trigger_definitions_file> [-NOPR[OMPT]]|
[-SELE[CT][=name-list|*][<select-output-file>]}

Before you run the MUPIP TRIGGER command:
1. Set the value of the environment variable gtmgbldir: to specify the value of a current global directory.

2. Ensure that the key size, record size, block size of your database is sufficient for storing trigger definition. You may have to
set the key and record sizes larger than the database content would otherwise require.

The qualifiers of the MUPIP TRIGGER command are as follows:
TRIGgerfile=<trigger_definitions_file>

Loads a trigger definition file to the database. The format of the TRIGGERFILE qualifier is:

-TRIG[GERFILE]=<trigger_definitions_file> [-NOPR[OMPT]]

116

General Database Management

« For information on the syntax and usage of a trigger definition file, refer to GT.M Programmer's Guide.

« A MUPIP TRIGGER -TRIGGERFILE operation occurs within a transaction boundary, therefore, if even one trigger from
the trigger definition file fails to parse correctly, MUPIP TRIGGER rolls back the entire trigger definition file load. MUPIP
TRIGGER operations have an implicit timeout of zero (0), meaning the read must succeed on the first try or the command
will act as if it received no input.

« MUPIP TRIGGER -TRIGGERFILE ignores blank lines and extra whitespace within lines. It treats lines with a semi-colon in
the first position as comments and ignores their content.

« MUPIP TRIGGER compiles the XECUTE action string and rejects the load if the compilation has errors.

« Always specify the same value for the environment variable gtm_chset during loading and executing triggers. If you
specify different values of gtm_chset during loading and executing triggers, MUPIP TRIGGER generates a run-time
error (TRIGINVCHSET). GT.M does not prevent a process from updating different nodes with triggers using a different
character set, however, GT.M prevents a process from updating the same triggering node with different character sets. Your
coding practice, for all database updates, should be to ensure that you provide the same value for gtm_chset during load
compilation and run-time compilation.

+ Incompatible with: -SELECT

Note

The trigger update summary reports count not only names and option changes as "modified" but also cases
where a -COMMANDS list changed, even though those are functionally additions or deletions of separate
trigger definitions.

SELECT=name-list

Provides a facility to examine the current trigger definition. SELECT produces a list of the current triggers for a comma-
separate list of global variables or trigger names. The format of the SELECT qualifier is:

-SELE[CT][=name-list[*]|*][<select-output-file>]

1. Name-list can include global names, delimited with a leading caret ("), and/or trigger names (user-defined or auto-
generated) with no leading caret. You can specify a trailing asterisk(*) with either.

2. With no arguments specified, GT.M treats -SELECT as -SELECT=""" and extracts a list of all current triggers.

3. Optionally, you can specify a file name to redirect the output of the command. If you do not specify a file name, MUPIP
TRIGGER prompts for a file name. If you respond with an empty string (RETURN), MUPIP TRIGGER directs the output to
STDOUT.

Note

The output from the MUPIP TRIGGER -SELECT command may not be identical to your trigger definition file.
This is because GT.M converts some semantically identical syntax into a single internal representation; while
-SELECT output may not be identical to the -TRIGGERFILE input, it has the same meaning. Additionally,
MUPIP TRIGGER -SELECT displays a field called "Cycle" as part of a comment. Cycle is the number of trigger
definition updates (addition, modification, or deletion) performed on a global.

117

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

Examples for MUPIP TRIGGER

This section provides step-by-step instructions for creating, modifying, and deleting triggers. Triggers affect all processes
updating a database unlike, for example, environment variables such as $gtmroutines which work on a per process basis.
Therefore, FIS recommends that you should always have carefully planned procedures for changing triggers in your production
environment.

To create a new trigger for global node *Acct("ID"):

1. Using your editor, create a trigger definition file called triggers.trg with the following entry:
+*Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

2. Execute a command like the following:
$ mupip trigger -triggerfile=triggers.trg

This command adds a trigger for " Acct("ID"). On successful trigger load, this command displays an output like the
following:

File triggers.trg, Line 1: *Acct trigger added with index 1

1 triggers added

0 triggers deleted

0 trigger file entries not changed
0 triggers modified

Now, every S[et] operation on the global node "Acct("ID") executes the trigger.
3. Execute a command like the following:
$ mupip trigger -select=""Acctx"

This command displays the triggers. A sample output looks like the following:

;trigger name: ValidateAccount# cycle: 1
+*Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

To modify an existing trigger for global node *Acct("ID"):

You cannot directly replace an existing trigger definition with a new one. With the exception of -NAME and -OPTIONS, to
change an existing trigger, you have to delete the existing trigger definition and then add the modified trigger definition as a
new trigger. Note that GT.M performs two different trigger comparisons to match trigger definitions depending on whether
or not S[ET] is the trigger invocation command. If there is a S[ET], then the comparison is based on the global name and
subscripts, PIECES, [Z]DELIM, and XECUTE. If there is no SET, GT.M compares only the global node with subscripts and the -
XECUTE code value.

1. Begin by executing the following command:

$ mupip trigger -select=""Acctx"
Output file:

2. Specify trigger_mod.trg as the output file. This file contains entries like the following:

;trigger name: ValidateAccount# cycle: 1
+*Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

118

General Database Management

3. Using your editor, open trigger_mod.trg and change + (plus) to - (minus) for the trigger definition entry for ValidateAccount
and add a new trigger definition for *Acct("ID"). To avoid inconsistent application behavior, it is important to replace an old
trigger with a new one in the same transaction (Atomic). The trigger_mod.trg file should have entries like:

;trigger name: ValidateAccount# cycle: 1-*Acct("ID") -name=ValidateAccount -commands=Set -xecute="Write
""Hello

Earth!"""
;trigger name: ValidateAccount#+*Acct(”ID") -name=ValidateAccount -commands=Set -xecute="Write ""Hello Mars!"""

4. Execute a command like the following:
$ mupip trigger -triggerfile=trigger_mod.trg
5. This command displays an output like the following:

File trigger_mod.trg, Line 1: “Acct trigger deleted
File trigger_mod.trg, Line 3: *Acct trigger added with index 1

1 triggers added

1 triggers deleted

0 trigger file entries not changed
0 triggers modified

Congratulations! You have successfully modified the xecute string of ValidateAccount with the new one.
To delete an existing trigger for global node *Acct("ID"):
1. Begin by executing the following command:

$ mupip trigger -select=""Acctx"
Output file:

2. Specify trigger_delete.trg as the output file. This file contains entries like the following:

;trigger name: ValidateAccount# cycle: 3
+*Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Mars!"""

3. Using your editor, change + (plus) to - (minus) for the trigger definition entry for Validate Account. Alternatively, you can
create a file with an entry like -Validate Account.

4. Now, execute a command like the following:
$ mupip trigger -triggerfile=trigger_delete.trg
This command displays an output like the following:

File trigger_delete.trg, Line 2: “Acct trigger deleted

0 triggers added

1 triggers deleted

0 trigger file entries not changed
0 triggers modified

119

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX340.txt

General Database Management

You have successfully deleted trigger "ValidateAccount".

To change a trigger name for global node *Acct("ID"):

1. Using your editor, create a new file called trigger rename.trg and add a trigger definition entry for ValidateAcct with the
same trigger signature as ValidateAccount. Your trigger definition would look something like:
+*Acct("ID") -name=ValidateAcct -commands=S -xecute="Write ""Hello Mars!"""
2. Verify that the ValidateAccount trigger exists by executing the following command:
$ mupip trigger -select=""Acctx"
Output file:
3. Respond with an empty string (Press Enter). Confirm that the trigger summary report contains an entry like the following:
;trigger name: ValidateAccount# cycle: 3
+*Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Mars!"""
4. Now, execute a command like the following:
$ mupip trigger -triggerfile=trigger_rename.trg
This command displays an output like the following:
0 triggers added
0 triggers deleted
0 trigger file entries not changed
1 triggers modified
You have successfully changed the trigger name ValidateAccount to ValidateAcct.
UPGRADE

Upgrades the file-header of a database. The format of the MUPIP UPGRADE command is:

UPLGRADE]

It increases the size from 4 bytes to 8 bytes of file-header fields such as current transaction number (CTN), maximum TN and
others that contain transaction numbers.

It resets the various trace counters and changes the database format to V5. This change does not upgrade the individual
database blocks but sets the database format flag to V5.

It also initializes a counter of the current blocks that are still in V4 format. It decrements this counter each time an existing
V4 format block is converted to V5 format. When the counter is 0, the entire database gets converted.

Example for MUPIP UPGRADE

Example:

$ mupip upgrade mumps.dat

This example upgrades the file-header of mumps.dat to V5 format.

120

General Database Management

MUPIP CommandSummary

COMMAND

OBJECTS

MAIN QUALIFIER

B[ACKUP]

region-name

file-name

-BK[UPDBJNL]=DISABLE | OFF
-B[YTESTREAM] -NET[TIMEOUT]=seconds
-C[OMPREHENSIVE]

-DA[TABASE] -REPLA[CE]

-DBG

-I[NCREMENTAL]
-[NO]J[OURNAL][=journal-options-list]
-NETTIMEOUT

-[NOJNEWJNLFILES[=[NO]JPREVLINK],
[NOJS[YNC_IO]

-O[NLINE]
-RECORD

-REPLI[NSTANCE]=OFF | ON

-S[INCE]={DATABASEBYTESTREAMRECORD}

-T[RANSACTION=hexa;transaction_number]

CR[EATE]

-R[EGION]=region-name

EN[DIANCVT]

file-name

-OUTDB=<outdb-file>

-OV[ERRIDE]

EXI[T]

EXTE[ND]

region-name

-B[LOCKS]=blocks

EXTR[ACT]

-FO[RMAT]=GO|B[INARY]|Z[WR]
-FR[EEZE]

-LA[BEL]=text

-[NOJL[OG]
-S[ELECT]=global-name-list

-O[CHSET]=character-set

F[REEZE]

region-list

-DBG
-OF([F]

-OV[ERRIDE]

121

General Database Management

COMMAND

OBJECTS

MAIN QUALIFIER

-ON[-R[ECORD]]

FT[OK]

File-name

-D[B]
-JINLPOOL]

-R[ECVPOOL]

H[ELP]

command-option

I[NTEG]

File-name or region-list

-A[DJACENCY]=integer]
-BL[OCK]=hexa;block-number]
-BR[IEF]

-FA[ST]

“FI[LE]

-FU[LL]

-NOJK[EYRANGES
-[NO][MAP]=integer
-[NO]MAXK[EYSIZE]=integer
-R[EGION]
-S[UBSCRIPT]=subscript
“TN[_RESET]

-[NO]TR[ANSACTION][=integer]

JIOURNAL]

file-name

-EX[TRACT][=file-specification|-stdout]
-REC[OVER] | -RO[LLBACK]
-SH[OW][=show-option-list]
-[NO]V[ERIFY]

-BA[CKWARD] | -FO[RWARD]

L[OAD]

file-name

-BE[GIN]=integer
-BLOCK_DENSITY
-E[ND]=integer
-FI[LLFACTOR]=integer
-FO[RMAT]=GO|B[INARY]|Z[WR]

-S[TDIN]

REO[RG]

-DOWNGRADE

122

General Database Management

COMMAND

OBJECTS

MAIN QUALIFIER

-E[XCLUDE]=global-name-list
-FI[LL_FACTOR]=integer
-I[NDEX_FILL_FACTOR]=integer
-REG[ION]

-RES[UME]

-SA[FEJNL]
-S[ELECT]=global-name-list
-STA[RTBLK]=hexa
-STO[PBLK]=hexa
-T[RUNCATE][=percentage]
-UP[GRADE]

-USER_DEFINED_REORG=reorg_list

REP[LICATE]

file-name

-E[DITINSTANCE]
-I[NSTANCE_CREATE]
-R[ECEIVER
-S[OURCE]
-UPDA[TEPROC]

-UPDH[ELPER]

RE[STORE]

file-name or file-list

-[NOJE[XTEND]

RU[NDOWN]

file-name or region-name

-F[ILE]

-R[EGION]

SE[T]

file-name or region-name

-A[CCESS_METHOD=BG|MM]
-B[YPASS]
-DB[FILENAME]=database_file

-DE[FER_TIME]=seconds

-E[XTENSION_COUNT]=integer(no of blocks)

-FILE
-F[LUSH_TIME]= integer
-G[LOBAL_BUFFERS]=integer

-JN[LFILE]

123

General Database Management

COMMAND OBJECTS MAIN QUALIFIER

-JO[URNAL]=journal-option-list
-L[OCK_SPACE]=integer
-PA[RTIAL_RECOV_BYPASS]
-PR[EV]JNLFILE]=jnl_file_name
-RE[GION]
-REPLI[CATION]=ON|OFF
-REPL_[STATE]=ON|OFF
-RES[ERVED_BYTES]=integer
-S[TANDALONENOT]
-V[ERSION]=V4|V5

-W[AIT_DISK]=integer

ST[OP] process-id process-id
UP[GRADE] - _
Main Qualifier MUPIP Command Options/Qualifiers
-EDITINSTANCE REPLICATE -CHANGE

-DETAIL

-OFFSET=hexa

-VALUE=hexa
-SIZE=hexa
-VALUE=hexa
-FENCES=<fence-options-list> JOURNAL-RECOVER- ALWAYS
ROLLBACK
NONE
PROCESS
-JOURNAL=<journal-options-list> BACKUP ALIGNSIZE=integer
SET ALLOCATION-=integer

AUTOSWITCHLIMIT=integer
BEFORE_IMAGES

BUFFER_SIZE=integer

DISABLE

124

General Database Management

Main Qualifier MUPIP Command Options/Qualifiers

ENABLE
EPOCH_INTERVAL=integer
EXTENSION=integer
FILENAME-=file_name

OFF

ON

SYNC_IO

YIELD_LIMIT=integer

-LOOKBACK_LIMIT=lookback-option-list -RECOVER TIME="time"
-ROLLBACK OPERATIONS=integer
-RECEIVER REPLICATE -BUFFSIZE=integer
-CHANGELOG
-CHECKHEALTH

-CMPLVL=integer
-FILTER=filter name
-he[lpers]=[m[,n]]
-LISTENPORT=integer
-LOG=logfile
-LOG_INTERVAL=integer
-SHOWBACKLOG
-SHUTDOWN

-START
-STATSLOG=[ON|OFF]
-STOPSOURCEFILTER
TIMEOUT=seconds
-UPDATEONLY

-UPDATERESYNC

-RECOVER JOURNAL -AFTER=time

-APPLY_AFTER_IMAGE

-BACKWARD

125

General Database Management

Main Qualifier MUPIP Command Options/Qualifiers

-BEFORE=time
-BROKENTRANS=file

-CHAIN

-CHECKTN
-[NOJER[ROR_LIMIT][=integer]
-FENCES=fence-option-list
-FORWARD

-FULL

-GLOBAL=<global_list>
-ID=<pid_list>

-INTERACTIVE
-LOOKBACK_LIMIT=<lookback_limit_options>
-LOSTTRANS(=file]
-RED[IRECT]=file-pair-list
-SINCE=time

-VERBOSE

-VERIFY

-EXTRACT JOURNAL -AFTER=time

-BEFORE=time
-BROKENTRANS-=file

-CHAIN

-CHECKTN
-[NOJER[ROR_LIMIT]=integer]
-FENCES=fence-option-list
-FULL

-GLOBAL=<global_list>
-ID=<pid_list>

-INTERACTIVE

-LOOKBACK_LIMIT=<lookback_limit_options>

126

General Database Management

Main Qualifier

MUPIP Command

Options/Qualifiers

-LOSTTRANS[=file]
-SINCE=time
-VERBOSE

-VERIFY

-ROLLBACK

JOURNAL

-APPLY_AFTER_IMAGE

-BACKWARD

-BEFORE=time

-BROKENTRANS-=file
-[NOJER[ROR_LIMIT][=integer]
-FENCES=fence-option-list

-FETCHRESYNC
-LOOKBACK_LIMIT=<lookback_limit_options>
-LOSTTRANS[=file]
-RES[YNC]=hexa;journal_sequence_number
-VERBOSE

-VERIFY

-SHOW=<show-option-list>

JOURNAL

-ACTIVE_PROCESSES

-ALL
-BROKEN_TRANSACTIONS
-HEADER

-PROCESSES

-STATISTICS

-AFTER=time
-USER=user-list
-TRANSACTION=[KILL|SET]
-INTERACTIVE
-GLOBAL=<global_list>
-ID=<pid_list>

-INTERACTIVE

127

General Database Management

Main Qualifier

MUPIP Command

Options/Qualifiers

-SINCE

BACKUP

-BYTESTREAM

-COMPREHENSIVE

-DATABASE

-INCREMENTAL

-RECORD

-SO[URCE]

REPLICATE

-ACTIVATE

-BUFFSIZE=Buffer_size

-CHANGELOG

-CHECKHEALTH

-CMPLVL=integer
-CONNECTPARAMS=connection_options
-DEACTIVATE

-DETAIL

-FILTER=filter name
-INSTSECONDARY=secondary_instance name
-JNLPOOL-LOG=log_file
-LOG_INTERVAL=integer
-LOSTTNCOMPLETE

-NEEDRESTART

-PASSIVE

-PROPAGATEPRIMARY
-ROOTPRIMARY
-SECONDARY=secondary_instance_name
-SHOWBACKLOG

-SHUTDOWN

-START

-STATSLOG

-STOPSOURCEFILTER

128

General Database Management

Main Qualifier

MUPIP Command

Options/Qualifiers

-TIMEOUT=seconds

129

Chapter 6. GT.M Journaling

Revision History

Revision V6.0-001/1 22 March 1013 « Improved the formatting of all command
syntaxes.

« In “SET Object Identifying Qualifiers ” (page
141), added information about the -
repl_state and -dbfilename qualifiers.

Revision V6.0-001 27 February 2013 In “-EXtract[=<file-name>|-stdout]” (page
153), added information about the
gtm_extract_nocol environment variable.

Revision V6.0-000/1 21 November 2012 Updated “SET -JOURNAL Options ” (page
143) and the journaling limits for V6.0-000.

Revision V5.5-000/4 6 June 2012 « In “ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]
” [155], added the description of the new -
ONLINE qualifier for -ROLLBACK.

« In “Journal Extract Formats” [168], added
the definitions of unam, clntnam, and ALIGN

records.
Revision V5.5-000/3 2 May 2012 Added the definition of tid.
Revision V5.5-000/2 19 March 2012 Updated the Journal Extract Formats section for
V5.5-000.
Revision 3 26 December 2011 Added the Journal Extract format for ZTRIG.
Revision 2 2 December 2011 Improved the description of -EXTRACT and

corrected the heading levels of some sections
under MUPIP JOURNAL.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

The four key properties of transaction processing systems, the so-called "ACID" properties are: Atomicity, Consistency,
Isolation, and Durability. GT.M transaction processing provides the first three by means of the TStart and TCommit commands
and Durability through journaling.

GT.M, like virtually all high performance databases, uses journaling (called “logging” by some databases) to restore data
integrity and provide continuity of business after an unplanned event such as a system crash.

Note that, journaling is not a substitute for good system configuration and design. For example, if a database and its journal
files are on the same disk controller, a hardware failure on that controller can damage both files, and prevent recoverability.
Journaling complements other techniques to build a robust system.

130

GT.M Journaling

Journaling requires no M programming. However, the GT.M commands described later in this chapter may enhance the value
of journaling.

Journal Files

GT.M journaling uses journal files to record information pertaining to database updates. A journal file has a default
extension of mjl. If the new journal filename (the one specified in the FILENAME option or the default) already exists, GT.M
renames the existing journal file by appending a string that denotes the time of creation of the journal file in the form of
"_YYYYJJJHHMMSS" where:

YYYY 4-digit-year such as 2010
JJJ 3-digit-Julian-day (between 1 and 366) such as 199
HH 2-digit-hour in 24 hr format such as 14
MM 2-digit minute such as 40
SS 2-digit seconds such as 30

The following animation describes how GT.M uses journal files to record information pertaining to database updates on
gtm.dat (the default database file created by gtmprofile).

sssssss

gtm.mijl_ gtm.mijl_ gtm.mjl_ gtm.mjl_ gtm.mjl_ gtm.mijl_ gtm.mijl
2010227202423 2010227082618 2010227083423 2010227084205 2010227085850 2010227151756

-

Time
. Database updates

- Journal Files

At any given time the database file (gtm.dat) has a single active journal file (gtm.mjl) with links to predecessor ("previous
generation") journal files. The black arrow between the journal files demonstrate how a journal file is back-linked to its
predecessor with file name in the form of gtm.mjl_YYYYJJJHHMMSS to form a chain of journal files. When a switch of journal
files occurs, either implicitly (for example, when AUTOSWITCHLIMIT is reached) or explicitly (for example, on a backup
event or MUPIP SET -JOURNAL=ON), GT.M renames the existing journal file with the timestamp of its last modification.GT.M
creates a new journal file with the name of the journal file for that database, and specifies the previous generation journal

file name (after the rename), in the newly created journal file’s header.GT.M journaling provides mechanisms for durable
recovery/extract from the journal files, replaying database updates to an active database, reverting the database state to a
previous consistent state for when replication is in use, and so on. GT.M automatically turns off journaling on encountering
run-time conditions such as no available disk space or no authorization for a process attempting to auto-switch a journal file.
In such a case, GT.M also logs an appropriate message to the operator log to alert the operational staff. If GT.M detects that the
rename-logic yields a filename that already exists (a condition when journal files are switched in the same second), the string
"_N[N[NI[N...]]]" is appended to the renamed filename where "N[N[N...]]" denotes a sequence of numbers as follows:

0,1,2,3,4,5,6,7,8,9,90,91,92,93,94,95,96,97,98,99,990,991, ...

131

GT.M Journaling

GT.M tries all numbers from the order in the above sequence until it finds a non-existing rename-filename. In the above
illustration, if gtm.mjl_2010227 082618 is switched in the same second and gtm.mjl_2010227 082618_0 already exists, the
renamed journal file would be gtm.mjl_2010227 082618_1. If the existing file renaming scheme or the default journal file
naming scheme discussed above results in a filename longer than 255 characters (due to the suffix creation rules), GT.M
produces an error and turns off journaling.

Note

In a very short time window just before switching a journal file, GT.M create a temporary file with

an .mjl_new extension and attempts to write a few initialization journal records. After performing an initial
verification, GT.M renames the .mjl_new file to the current .mjl file. In rare cases, you might see an .mjl_new
file if the journal file creation process was interrupted midway (possibly due to permission or disk space
issues). If a subsequent MUPIP process detects an .mjl_new file and no .mjl file, it automatically deleted it and
creates a new .mjl file.

There are two switches to turn on journaling - ENable / DISable and ON/OFF. Enabling or disabling journaling requires stand
alone access to the database. Turning journaling on and off can be done when the database is in use. Note: Whenever GT.M
implicitly turns off journaling due to run-time conditions such as no available disk space or no authorization for a process
attempting to auto-switch a journal file (and so on) , it produces an error with accompanying messages to alert operation

staff. GT.M on selected platforms can encrypt data in database and journal files. Encryption protects against unauthorized access
to data by an unauthorized process which is able to access disk files, that is, encryption protects data at rest (DAR). Rather than
build encryption into GT.M, a plug-in architecture facilitates use of your preferred encryption software. For more information,
refer to Chapter 12: “Database Encryption” (page 363).

Recovery from a Journal File
The following two procedures enable recovery of a database from a journal file:
1. Forward Recovery (roll forward by applying)

2. Backward Recovery (roll back to a checkpoint, optionally followed by a subsequent roll forward)

Note

In a multi-site database replication configuration, you might use these recovery procedures to refresh a
replicating instance from the backup of an originating instance. However, the steps for both these recovery
procedures are different.

Forward Recovery

Forward recovery "replays" all database updates in forward direction till the specified point in the journal file. Forward recovery
on a backup database starts from when the backup was taken and continues till the specified point in the journal files. Forward
recovery on an empty database starts from the beginning of the journal files.

Suppose a system crash occurred at 08:50 hrs and a backup of the database was taken at 08:26 hrs. Using forward recovery,
you can replay the database updates between 08:26 hrs to 8:50 hrs (in blue) on the backup copy of the database and restore the
database to a state prior to the crash. In the process you can also identify unfinished or broken transactions that might have
occurred at the time of the crash. In the following illustration, X denotes the crash time and the blue updates denote forward
processing.

132

GT.M Journaling

X

08:26 08:50

l

A command like mupip journal -recover -forward -before="--8:50" gtm.mjl performs this operation. From the current
journal file, forward recovery moves back to the point where the begin transaction number of a journal file matches the
current transaction number of the active database (the point when the backup was taken) and begins forward processing.
Since a journal file is back-linked to its predecessor, GT.M facilitates forward processing by activating temporary forward
links between journal files that appear only during recovery. These forward links are temporary because they are expensive
to maintain as new journal files are created. Note: Forward recovery, by design, begins from a journal file whose "Begin
Transaction" matches the "Current Transaction" of the active database. This condition occurs only when a new journal file is
created (switched) immediately after a backup. If a database is backed up with MUPIP BACKUP -NONEW]JNLFILES (a backup
option where journal files are not switched), forward recovery cannot find a journal file whose Begin Transaction matches the
Current Transaction and therefore cannot proceed with forward recovery. Always use a backup option that switches a journal
file or switch journal files explicitly after a backup. Also, once a database has been recovered using forward recovery, you can
no longer use it for a future recovery unless you restore the database again from the backup.

Backward Recovery

Backward recovery restores a journaled database to a prior state. Backward processing starts by rolling back updates to a
checkpoint (specified by -SINCE or -AFTER) prior to the desired state and replaying database updates forward till the desired
state.

Backward Recovery uses "BEFORE_IMAGE" journaling. With BEFORE_IMAGE journaling, GT.M captures the database

updates, as well as "snapshots" of portions of the database immediately prior to the change caused by the update. Unlike
forward recovery which works on a backup database, backward recovery works only on production (current) database

provided it is usable and BEFORE_IMAGE journaling is enabled.

Suppose a system crash occurred at 10:35 hrs, a command like mupip journal recover backward -lookback_limit="TIME=0
10:10" -since="-- 10:20" -before="-- 10:30" performs backward recovery. The following illustration demonstrates how GT.M
performs a recovery after a system crash at 10:35. Backward recovery "un-does" the database updates backward to 10:20, then
applies updates forward until the crash. By adding -BEFORE="- - 10:30" to the command, the recovery stops when forward
processing encounters updates that originally occurred after 10:30. If the application includes ZTSTART and ZTCOMMIT
commands to fence a group of transactions, backward processing may continue back prior to 10:10 searching to resolve fenced
transactions that were incomplete at 10:20.

133

GT.M Journaling

-LOCKBACK LIMIT="TIME=0 1o:-107
—3INCE="- - 10:Z20"
-BEFORE="- - 10:307

! X — wtime

Y

10:10 1o0:zZ0 10:30 10:35

-LOOKBACK_LIMIT controls the maximum amount of additional backward processing, in this case, 10 minutes. Note that the
-SINCE time in this example is slightly exaggerated for the sake of the graphical representation. If the application includes
TSTART and TCOMMIT commands to fence transactions, backward processing does not require LOOKBACK_LIMIT because
TSTART/TCOMMIT transactions automatically resolve open transaction fences. So, in the above example if the transactions are
fenced with TSTART/TCOMMIT, backward recovery automatically increases the backward processing by 10 minutes.

é Important

ZTSTART and ZTCOMMIT are deprecated in favor of TSTART and COMMIT. FIS no longer validates
ZTSTART/ZTCOMMIT and -LOOPBACK_LIMIT (since it applies to ZTSTART/ZTCOMMIT).

rolled_bak™ files

GT.M adds a prefix rolled_bak_ to the journal file whose entire contents are eliminated (rolled back) by a backward recovery.
GT.M does not use these files after a successful recovery therefore you might want to consider moving or deleting them. You
should never use rolled_bak™ files for any future database recovery. If there is a need to process rolled_bak™ files, you should
extract the journal records and process them using an M program. FIS recommends that you rename the roll back journal file
immediately after a rollback if you want to save it, to prevent a subsequent rollback from overwriting it.

Journal Files Access Authorization

GT.M propagates access restrictions to the journal files, backup, and snapshot temporary files. Therefore, generally journal files
should have the same access authorization characteristics as their corresponding database files. In the rare case where database
access is restricted but the owner is not a member of either the database group nor the group associated with the $gtm_dist
directory, you should provide world read-write access to the journal files. As long as the operating system permits the access,
GT.M allows access to database files and journals in cases where the system has no user or group information available for the
file. Such an unusual situation can arise, for example, when the user and group are provided via NIS, but if NIS is not currently
operational the owner and group cannot be determined; or perhaps a user id is deleted while the GT.M process is active.

Triggers in Journal Files

GT.M manages "trigger definitions" and "triggered updates" differently during journaling and replication. Trigger definitions
appear in both journal files and replication streams so the definitions propagate to recovered and replicated databases.
Triggered updates appear in the journal file, since MUPIP JOURNAL -RECOVER/-ROLLBACK does not invoke triggers.

134

GT.M Journaling

However, they do not appear in the replication stream since the Update Process on a replicating instance apply triggers and
process their logic.

GT.M implicitly wraps a trigger as an M transaction. Therefore, a journal extract file for a database that uses triggers always
has Type 8 and 9 (TSTART/TCOMMIT) records even if the triggers perform no updates (that is, are effectively No-ops).

When journaling is ON, GT.M generates journal records for database updates performed by trigger logic. For an explicit
database update, a journal record specifies whether any triggers were invoked as part of that update. GT.M triggers have no
effect on the generation and use of before image journal records, and the backward phase of rollback / recovery.A trigger
associated with a global in a region that is journaled can perform updates in a region that is not journaled. However, if triggers
in multiple regions update the same node in an unjournaled region concurrently, the replay order for recovery or rollback
might differ from that of the original update and therefore produce a different result; therefore this practice requires careful
analysis and implementation. Except when using triggers for debugging, FIS recommends journaling any region that uses
triggers.If you database uses triggers, always ensure that unjournaled globals do not perform triggered updates in journaled
globals and create procedures to handle trigger updates in the broken/lost transaction files. In broken/lost transaction files, you
can identify these entries as + or - and appropriately deal with them using MUPIP TRIGGER and $ZTRIGGER().

BEFORE_IMAGE Journaling

BEFORE_IMAGE is a form of Journaling that creates "mini-backups" preceding each database update. Backward Recovery

uses these mini-backups to restore the database as far back in time then it replays the database updates."BEFORE_IMAGE"
journaling requires more disk I/O and storage space than M-level (or NOBEFORE) journaling but delivers faster recovery times
from system failures .

Note

As stated in the GDE chapter, the MM database access method bypasses the BG buffer pool and relies entirely
on the operating/file system to manage traffic between memory and disk. Because with MM, GT.M has no
control over the timing of disk updates, BEFORE_IMAGE journaling is not an option with MM; attempts to
use these two facilities together produce an error.

NOBEFORE_IMAGE Journaling

"NOBEFORE_IMAGE" is a form of M-level Journaling that sequentially stores each database update in a journal file. A
forward recovery operation restore the database by replaying these database updates."NOBEFORE_IMAGE" consumes less I/O
bandwidth in normal use and helps obtain more throughput from the available servers.

Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE

The choice between BEFORE_IMAGE journaling and NOBEFORE_IMAGE journaling is important especially in a logical
multi-site database replication deployment. If an application pushes the I/O bandwidth of the servers on which it runs,
NOBEFORE_IMAGE journaling may help obtain more throughput from available servers. BEFORE_IMAGE journaling could be
the likely choice if an application requires quicker recovery in the unlikely event of a crash. For a comprehensive discussion on
the choosing the type of Journaling, refer to “Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE journaling” (page
200).

135

GT.M Journaling

Broken Transaction File

In the case of a catastrophic event, it is unlikely that GT.M can properly complete writing all journal records to the file. GT.M
reports the unfinished records or incomplete fenced transactions as "broken transactions". GT.M extracts broken transactions
into a file called the broken transaction file.

Lost Transaction File

Any complete transaction that occurs after a broken transaction is a lost transaction. GT.M does not play it into the database
but extracts it as a lost transaction into a file called the lost transaction file.

All broken and lost transactions are made available as the result of a database recovery.

The operational procedures and the application tools should provide a means of recovering and reprocessing the information in
the broken and lost transaction files after a recovery or rollback that places content in these files.

If there are no fences, repair any application-level integrity problems. In either case, MUPIP INTEG -FAST provides an excellent
quick test of whether the database can support new updates with relative safety.

Journaling Benefits

It is important to understand the benefits of Journaling before you enable Journaling on your database. M database
management ensures that multiple concurrent updates and retrievals of the same information (or information "close together"
in ordered sequence) occur in a predictable and logical fashion. Sometimes a database manager may have to change multiple
records, usually indices, as a result of a single update. Interrupting a process that is performing such a "multi-point" update
violates a design assumption of the M implementation and also results in a malformed database. Under normal operation, the
database logic handles interruptions by deferring their recognition until the update is complete. However, occurrences such
as power failures or a KILL-9 can cause such interruptions. GT.M Journaling helps maintain data integrity and continuity of
business in the event of such interruptions.

Other benefits include (but not limited to):

« Automatic replay of work to the last committed update recorded in a journal file. Note that with the use of transaction
processing and journaling, GT.M provides full ACID properties.

+ Quick recovery options, such as processing only the information recorded immediately prior to failure. For example, you can
recover just the last minute of work instead of replaying the entire journal file.

« Recorded database updates formatted appropriately for processing by an M program. For example, MUPIP JOURNAL -
EXTRACT produces records specified by time, user, the process identification number, global variable, process name, and

transaction type.

« Identification of processes active when the system failed. -SHOW identifies these processes, as well as what transactions
were not completed, and other information about the database updates and processes contained in the journal file.

Backup Journal Files

FIS recommends separate backup schemes for database files and journal files. MUPIP BACKUP creates a backup copy of the
database. You should backup journal files separately.

136

GT.M Journaling

MUPIP BACKUP uses the -BKUPDBJNL and -NEWJNLFILES to interact with journal files. As stated in the General
Database Management chapter, BRUPDBJNL enables or turns off the journaling characteristics of the backup database and
NEW]NLFILES sets the journaling characteristics of the database being backed up. The following illustration describes how
MUPIP BACKUP -NEWJNLFILES=NOPREVLINK cuts the back link between the newly created journal file and the prior

generation journal files.

gtm.mijl_ gtrm.mijl_ gtm.mijl_ gtrm.mjl_ gtm.mjl
2010227202423 2010227082618 2010227083423 2010227084205
S -

. Prior Generation Journal Files

Since -NEW]JNLFILES=NOPREVLINK cuts back link of the newly created journal file, any subsequent recovery or rollback will
not be able to go back past this discontinuity.

Note

When MUPIP SET changes the journal state from DISABLED or OFF to ON, GT.M creates new journal files
with no back-links which, like the above example, indicates a fresh start of journaling for the database.

Select database files for Journaling

You should journal any databases whose integrity you care about. Conversely, you need not journal any database that you are
prepared to delete in the event of an untoward event like a system crash.

FIS recommends considering the following aspects before you select database files for Journaling.

« Always journal data that is worth preserving: You can journal some or all database files. A quickly understood method
of selecting database files for Journaling is as follows:

« Do not journal any database that you are prepared to delete in the event of an untoward event like a system crash. Never
journal temporary data.

« Truly static does not require journaling but produces no journal impact when held in journaled regions.

« Move temporary information to separate database files that do not require journaling. If the globals contains process-
local(temporary) information or possibly static information, move them to one or more separate database files and use
other means (for example, MUPIP CREATE or MUPIP BACKUP) to manage the information in their region(s).

« Weigh the deltas associated with manual re-entry and automatic re-play of transactions: Most of the overhead costs
associated with recovering from a failure usually derive from maintaining a state of preparedness for the manual recovery
and the potential risk to the organization from damage to the information during the relatively infrequent and "abnormal"

137

GT.M Journaling

handling of a recovery. Therefore, always weigh the cost of reduced computer throughput or alternatively the additional
hardware to support journaling with the same level of performance, against the reduced likelihood of a prolonged manual re-
entry with its associated drawbacks.

+ Journal both frequently updated globals and infrequently updated globals: You might journal only heavily updated
globals. However, infrequently changed globals generate little additional load and may present significant control problems if
not journaled, you might decide that these globals should also be journaled to maintain application integrity.

« Separate the point of failure: Always use different disks and different disk controllers (where possible) for the journal and
the associated database files.

Fencing Transactions

The programming practice of fencing logical transactions protects database integrity during a system interruption. A logical
transaction is a logical unit that is not complete unless all parts of the transaction are captured. For instance, the logical
transaction "transfer funds between accounts" consists of a debit update to one account and a credit update to another account.

Establishing fences around a logical transaction assures that the transaction is committed as a unit, thereby avoiding logical
inconsistencies. These logical inconsistencies, sometimes referred to as application-level database integrity problems, manifest
themselves as run-time errors, inappropriate branching, and incorrect reports.

The four ACID properties are Atomicity, Consistency, Isolation and Durability. GT.M provides Durability with Journaling and
Atomicity, Consistency, and Isolation with TSTART and TCOMMIT commands. The TSTART and TCOMMIT commands are
replacements for the ZTSTART and ZTCOMMIT commands. The following table shows the benefits and drawbacks of each set
of TSTART/TCOMMIT versus ZTSTART/ZTCOMMIT commands with their application transaction-fencing requirement.

TSTART/TCOMMIT ZTSTART/ZTCOMMIT
Provide a transaction management facility that is fully ACID- Provide journal enhancement to improve the quality of recoveries.
compliant. With ZTSTART/ZTCOMMIT, programming logic, usually LOCK

protocols, must ensure Consistency and Isolation.

All updates stay private until the time of TCOMMIT. This ensures Atomicity is only ensured (within operationally set parameters)
Atomicity. during journal recovery

No cascading rollbacks A long-running transaction can trigger cascading rollbacks.

TS[TART][:tvexpr] [([lvn...])[lvn|*|]|[:keyword|(keyword...)] ZTS[TART][:tvexpr]

TSTART can manage local variable state on restarts.

Depth of "nested" transactions for TSTART and TCOMMIT is 127. Depth of "nested" transactions for ZTSTART and ZTCOMMIT is 25.

ﬁ Important

The term cascading roll-back describes the situation that occurs when dropping one transaction causes
previous transactions to be sequentially dropped, until potentially all transactions are dropped. If an
application violates this assumption, a JOURNAL -RECOVER may create a database with application-level
integrity problems. M LOCKs ensure the isolation of a sequence of updates from interaction with any other
updates. TSTART and TCOMMIT transaction fences implicitly exhibit the required isolation whether fences
are used with or without associated LOCKs.

138

GT.M Journaling

For more information on TSTART/TCOMMIT, refer to the "Commands" chapter of the GT.M Programmer's Guide for more
information.

Note

As stated in the beginning of this chapter, ZTSTART and TZTCOMMIT are deprecated in favor of TSTART
and TCOMMIT. FIS no longer validate the ZTSTART and ZTCOMMIT functionality so you should always
use TSTART and TCOMMIT to fence your transactions.

Deciding Whether to Use Fencing

You might fence some, all, or no application programs. When you program with fences, it is possible to force a recovery
to ignore the fences by using additional qualifiers to MUPIP JOURNAL -RECOVER. The following lists advantages and
disadvantages for fencing transactions.

Fencing Advantages

 Faster recovery

« Minimum risk recovery

« Databases recovered from journals that include fences do not require post-recovery checks and repairs for logical consistency

Note that TSTART/TCOMMIT pairs are the preferred method of fencing; see the sections on Transaction Processing in the
GT.M Programmer's Guide for addition benefits of this approach.

Fencing Disadvantages
+ Must be programmed into the M code

« If the application is already structured to minimize logical transaction breakage problems, inserting the fencing commands
may be a largely mechanical task. In less structured applications, inserting fences immediately "inside"” the M LOCKs
associated with transactions may provide an excellent first approximation of proper fencing.

+ Fencing adds some entries to the journal file(s)
« Fencing may duplicate methods of recovery already established to address these issues

+ An application structured so that all information for each logical transaction is stored in a single global node (while other
nodes hold only redundant information), permits rebuild programs to completely correct logical inconsistencies. With less
restrictive designs, logical inconsistencies may be corrected manually or by using semi-automated techniques.

VIEW Keywords

GT.M provides the JNLFLUSH and JNLWAIT keywords as arguments to the VIEW command. Normal operation does not
require VIEW commands to control journaling. However, under special circumstances, such as debugging, VIEW commands
with journal keywords allow an M program to ensure that GT.M has transferred all its updates to the journal file(s).

VIEW "JNLFLUSH":region initiates a complete transfer of all buffered journal records for a given region from memory to the
disk. Normally, the transfer of journal buffers to disk happens automatically. The transfer is triggered by room requirements

139

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Journaling

to hold new journal records and/or the passage of time since the last update. VIEW "JNLFLUSH" (without a specified region)
flushes all regions in the current Global Directory.

VIEW "JNLWAIT" causes GT.M to suspend process execution until all updates initiated by the process in all regions have been
transferred to the journal file (on disk). Updates within M TRANSACTIONS typically behave as if they included an implicit
VIEW "JNLWAIT" with their final TCOMMIT. TRANSACTIONS with a TRANSACTION ID="BATCH" or "BA" are exempted
from the implicit "JNLWAIT". Normally, process execution for updates outside of M transactions continues asynchronously
with the transfer of journal records to disk.

For more information on the VIEW command, refer to the "Commands" chapter in the GT.M Programmer's Guide.

$VIEW() Keywords

GT.M provides the JNLACTIVE, JNLFILE, REGION and JNLTRANSACTION keywords as arguments to the $VIEW function.
Normal operation does not require $VIEW() to examine journaling status. However, under certain circumstances, such as
during debugging of logical transaction design and implementation, $VIEW() may provide a useful tool.

$VIEW("JNLACTIVE", region) returns a zero (0) indicating journaling is disabled for the region, one (1) indicating journaling is
enabled but OFF, or two (2) indicating journaling is enabled and ON for the named region.

$VIEW("JNLFILE", region) returns the journal file name. If no journal filename has been established it returns a null string.
Otherwise it is a fully translated filename.

$VIEW("REGION", expr) where expr evaluates to a gvn, returns the name of the region associated with the named gvn. This
parameter may be used in conjuction with the above two parameters JNLACTIVE & JNLFILE), to get journaling status in a
configuration-independent manner.

$VIEW("INLTRANSACTION") returns the difference between the number of ZTSTARTS that have been issued and the number
of ZTCOMMITs. If no fenced transaction is in progress, then a zero (0) is returned. This serves an analogous function to
$TLEVEL for transactions that use TSTART and TCOMMIT.

For more information on $VIEW(), refer to the "Functions" chapter in the GT.M Programmer's Guide.

SET

MUPIP SET is the primary utility used to establish and activate journaling (using the -JOURNAL) and replication (using the -
REPLICATION).

When GDE creates a Global Directory, it stores either the explicitly specified journaling information, or the GDE default value
(refer to “SET -JOURNAL Options ” (page 143)) for any unspecified characteristics.

MUPIP CREATE copies existing journaling information from the Global Directory to the database file, establishing journaling
characteristics for all GDE supported journal-options.

ﬁ Important

GT.M applies journaling information in the Global Directory to a database file only when it is created.
Thereafter use MUPIP, or possibly DSE, to change journaling characteristics in database files. Be sure to use

140

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Journaling

GDE to reflect current journaling needs so that the next time you use MUPIP CREATE you get the desired
journaling characteristics.

DSE DUMP -FILEHEADER displays the current values for all established journaling characteristics.

This section provides a description of the MUPIP SET command with specific reference to the journaling related qualifiers. For
information on the other MUPIP SET qualifiers, refer to Chapter 5: “General Database Management” (page 67).

MUPIP SET -JOURNAL can change some database characteristics when journaling is active for a specific file or region(s). The
first run of MUPIP SET -JOURNAL on an older database automatically changes the maximum/minimum journal settings to
match those required by the current GT.M version. MUPIP SET operates on either regions or files.

The format for the MUPIP SET command is:
MUPIP SE[T] -qualifier... {-F[ILE] file-name|-REG[LION] region-list}

The file-specification or region-list identifies the target of the SET. Region-names separated by commas (,) make up a region-
list.

To establish journaling characteristics, use the MUPIP SET command with the -[NO]JOURNAL[=journal-option-list] qualifier
and one of the following SET object identifying qualifiers:

-FLILE]
-R[EGION]

Together with one or more of the SET action qualifiers:

-[NOJJOURNAL[=journal-option-1ist] -REPLICATION=<replication-option>'

SETObject Identifying Qualifiers

The following qualifiers identify the journaling targets:
-FLILE]

Specify that the argument to the SET is a file-specification for a single database file. A Journal file's name can now include
characters in Unicode.

Old journal files stay open for about 10 seconds after a switch to a new journal file.
-RLEGION]

Specify that the argument to the SET is a list of one or more region-names, possibly including wildcards, which, through the
mapping of the current Global Directory, identifies a set of database files. SET -REGION modifies multiple files when the
parameter contains more than one name.

The -REGION qualifier is incompatible with the -FILE qualifier.

-J[NLFILE]

Specifies that the target for SET is a journal file. The format of the JNLFILE qualifier is:

-jnlfile jnl_file [-[no]prevjnlfile=jnlfilename] [-bypass] [-repl_state={on|off}] [-dbfilename=file name]

141

GT.M Journaling

Jjnl_file specifies the name of the target journal file.
-prevjnlfile=jnlfilename

Changes the name of the previous generation of the journal file in the header of jnl_file to jnlfilename (for example, when
moving the previous generation journal file to a different location). The file name can be a full path-name or a relative path
name; however, before the file-name is stored in the header, it is expanded to its full path-name.

-noprevjnlfile

Cuts the generation link of the journal file jnl_file.The name of the previous generation journal file is nullified in the header
of jnl_file. Such an operation is appropriate when it is assured that there will never be a reason for a rollback to the previous
generation journal file.

-bypass

Override the requirement that database files (or their corresponding journal files) affected by the set command be available
standalone.

Caution

Changing the previous generation file link when a rollback operation is in progress or when the Source
Server is actively replicating, can damage the journal file and hamper recoverability.

-repl_state={on|off}

Change the replication state of a journal file; this command is intended for use only under instructions from your GT.M support
provider.

-dbfilename=file name

Associates a journal file with a different database file; this command may be useful in arranging unusual RECOVER or
ROLLBACK scenarios.

SETAction Qualifiers

The -JOURNAL and -REPLICATION qualifiers are the only SET qualifiers relevant for journaling. For information on the other
MUPIP SET qualifiers, refer to Chapter 5: “General Database Management” (page 67).

-[NO]J[OURNAL][=journal-option-list]

Enables or disables journaling for the specified database file or region(s). MUPIP SET commands with this qualifier also
establish the characteristics for journal files. FIS believes the defaults and minimum for journal file characteristics are in line
with current hardware capabilities and suitable for a production environment.

The journal-option-list contains keywords separated with commas (,) enclosed in double quotes "". These double quotes are
optional when the list contains only one keyword. This option list is a super set of the journal-option-list available through
GDE.

+ -NOJOURNAL specifies that the database does not allow journaling, or disables journaling for a database that currently has it
enabled. It is equivalent to -JOURNAL=DISABLE.

142

GT.M Journaling

« -NOJOURNAL does not accept an argument assignment. It does not create new journal files. When a database has been SET -
NOJOURNAL, it appears to have no journaling file name or other characteristics.

+ -JOURNAL= enables journaling for a database file. -JOURNAL-= takes one or more arguments in a journal-option-list. As long
as journaling is ENABLED and turned ON at the end of the command, SET -JOURNAL= always creates a new version of the
specified journal file(s).

« -NOJOURNAL specifies that the database does not allow journaling, or disable journaling for a database where journaling is
active.

« Enable BEFORE_IMAGE or NOBEFORE_IMAGE journaling for a database file.

+ Aslong as journaling is ENABLED and turned ON at the end of the command, SET -JOURNAL= always creates a new
version of the specified journal file(s).

« Every MUPIP SET -JOURNAL command on a database file that specifies an ON or OFF journal-activation option causes
the values of all explicitly specified journal-file-options to be stored in the database overriding any previously established
characteristics for those options.

« If you specify both -JOURNAL and -NOJOURNAL in the same command line, the latter takes effect.

+ Whenever MUPIP SET creates a new journal file, it uses all values for journal-file-options that the user explicitly specifies in
the command line for the new journal file. If you do not specify a journal-file-option, MUPIP SET takes the characteristics of
the existing journal file.

« MUPIP SET supports qualifiers (like -ACCESS_METHOD, and so on) to change non-journaling characteristics of database
file(s). If you specify these qualifiers -JOURNAL , MUPIP SET modifies the non-journaling characteristics first and then
moves on to modify the journaling characteristics. Command execution stops when it encounters an error. If MUPIP SET
encounters an error in processing the command line or the non-journaling characteristics, it makes no changes to any
characteristics. However, if MUPIP SET encounters an error in processing the journaling characteristics, the non-journaling
characteristics have already been successfully changed.

« -NOJOURNAL is equivalent to -JOURNAL=DISABLE.

« -NOJOURNAL does not accept an argument assignment. It does not create new journal files. When a database has been SET -
NOJOURNAL, it appears to have no journaling file name or other characteristics.

For details on the journal-option-list refer to “SET -JOURNAL Options ” (page 143).
-REPLI[CATION]=replication-option
-REPLICATION sets journal characteristics and changes the replication state simultaneously. It can also be used with the -

JOURNAL qualifier. If journaling is ENABLED and turned ON, SET -REPLICATION=ON creates new set of journal files, cuts
the back-link to the prior generation journal files, and turns replication ON.

SET -JOURNAL Options
ALI[GNSIZE]=blocks
« Specifies the number of 512-byte-blocks in the ALIGNSIZE of the journal file.

« If the ALIGNSIZE is not a perfect power of 2, GT.M rounds it up to the nearest power of 2.

143

GT.M Journaling

+ The default and minimum ALIGNSIZE value is 4096 blocks. The maximum value is 4194304 (=2 GigaBytes).

+ A journal file consists of a sequential stream of journal records each of varying size. It is typically not easy to detect the
beginning of the last valid journal record in an abnormally terminated journal file (for example, system crash). To facilitate
journal recovery in the event of a system crash, the GT.M run-time system ensures that offsets in the journal file which are
multiple of ALIGNSIZE (excepting offset 0 which houses the journal file header) is always the beginning of a valid journal
record. In order to ensure this, GT.M run-time system writes padding data (if necessary) in the form of ALIGN journal
records just before the ALIGNSIZE boundary. These ALIGN records also help in skipping past invalid records in the middle
of a journal file allowing MUPIP JOURNAL -EXTRACT -FORWARD -FULL to extract as much data of a corrupt journal file as
possible.

« While a larger align size trade off crash recovery time in favor of increased journaling throughput, especially when before
image journaling is in use, there is marginal value in using an align size larger than a few MB.

+ The minimum ALIGNSIZE supported is always be greater than or equal to the maximum journal record size, which in turn
depends on the maximum database block size.

+ Note that a large value of ALIGNSIZE implies less aligned boundaries for recovery to use and hence slows backward recovery
down so drastically that, for example, the maximum value of 4194304 causes backward recovery (in case of a crash) to take as
much time as forward recovery on that journal file.

ALL[OCATION]=blocks

Sets the allocation size of the journal file. GT.M uses this information to determine when it should first review the disk space
available for the journal file. The size of the journal file at creation time is a constant (depending on the GT.M version) but once
the journal file reaches the size specified by ALLOCATION, every extension produces a check of free space available on the
device used for the journal file.

GT.M issues informational messages to the system log whenever the free space available is not much more than the extension
size. GT.M provides these extension checks as an operational aid for identifying, before space runs out, that a file system
holding the journal file is low on space. When there is no more free space available on the file system holding a journal file,
GT.M shuts off journaling for the corresponding database file.

The default ALLOCATION value is 2048 blocks. The minimum value allowed is 2048. The maximum value is 8,388,607 (4GB-512
bytes, the maximum journal file size).

AU[TOSWITCHLIMIT]=blocks

Specifies the limit on the size of a journal file. When the journal file size reaches the limit, GT.M automatically performs an
implicit online switch to a new journal file.

Note

It is possible to set the AUTOSWITCHLIMIT to a value higher than the maximum file size (in blocks) for
the file system. Currently GT.M does not attempt to check for this condition at specification time. GT.M
produces a run-time error when a journal file reaches the maximum size for the file system. Therefore,
ensure that the AUTOSWITCHLIMIT never exceeds the file-system limit.

The default value for AUTOSWITCHLIMIT is 8386560 & the maximum value is 8388607 blocks (4GB-512 bytes). The minimum
value for AUTOSWITCHLIMIT is 16384. If the difference between the AUTOSWITCHLIMIT and the allocation value is not
a multiple of the extension value, GT.M rounds-down the value to make it a multiple of the extension value and displays an

144

GT.M Journaling

informational message. GT.M produces an error when the rounded value of AUTOSWITCHLIMIT is less that the minimum
value.

If you specify values for ALLOCATION, EXTENSION, and AUTOSWITCHLIMIT for a region such that (ALLOCATION
+EXTENSION>AUTOSWITCHLIMIT), either using GDE or MUPIP SET -JOURNAL, GT.M sets ALLOCATION to match the
AUTOSWITCHLIMIT, and produces a JNLALLOCGROW message.

At journal extension time, including journal autoswitch time, if (ALLOCATION+EXTENSION>AUTOSWITCHLIMIT) for a
region, GT.M uses the larger of EXTENSION and AUTOSWITCHLIMIT as the increment to warn of low available journal disk
space. Otherwise, it uses EXTENSION.

[NO]BEFORE_IMAGES

Controls whether the journal should capture BEFORE_IMAGES of GDS blocks that an update is about to modify. A SET -
JOURNAL=ON must include either BEFORE_IMAGES or NOBEFORE_IMAGES in the accompanying journal-option-list.

If you specify both NOBEFORE_IMAGES and BEFORE_IMAGES in the same journal-option-list, the last specification overrides
any previous one(s).

As GT.M creates new journal files only with the ON option and every ON specification must include either BEFORE_IMAGES
or NOBEFORE_IMAGES. If the user specifies [NO]BEFORE_IMAGES along with the OFF option serve no purpose.

Although it is possible to perform an online switch of a database from (or to) NOBEFORE-IMAGE journaling to (or from)
BEFORE-IMAGE journaling, it is important to understand that backward recovery can never succeed if it encounters even one
in a set of journal files for a database without BEFORE-IMAGES.

BU[FFER_SIZE]=blocks
Specifies the amount of memory used to buffer journal file output.

MUPIP requires standalone access to the database to modify BUFFER_SIZE. Therefore, GT.M restricts the use of the
BUFFER_SIZE option to change the current journal-buffer-size as part of an online switch of the journal files.

The default value is 2308 blocks. The minimum BUFFER_SIZE is 2307 blocks. The maximum BUFFER_SIZE is 32K blocks which
means that the maximum buffer you can set for your journal file output is 16MB.

DISABLE

Equivalent to the -NOJOURNAL qualifier of MUPIP SET. It specifies that journaling is not an option for the region or file
named. If the user specifies DISABLE, then MUPIP SET ignores all other options in the journal-option-list.

ENABLE

Makes the database file or region available for journaling. By default, ENABLE turns journaling ON unless OFF is specified in
the same option list. A command that includes ENABLE must also specify BEFORE_IMAGES or NOBEFORE_IMAGES.

EP[OCH_INTERVAL]=seconds

seconds specifies the elapsed time interval between two successive EPOCHs. An EPOCH is a checkpoint, at which all updates
to a database file are committed to disk. All journal files contain epoch records.

A smaller EPOCH_INTERVAL reduces the time to recover after a crash at the cost of increased I/O load on the run-time system
(due to more frequent checkpoints). A larger EPOCH_INTERVAL has the opposite effect. Therefore, set EPOCH=interval for a
more efficient run-time with larger values of interval and more efficient ROLLBACK processing with smaller values of interval.

145

GT.M Journaling

The default EPOCH_INTERVAL value is 300 seconds (5 minutes). The minimum value is 1 second. The maximum value

is 32,767 (one less than 32K) seconds, or approximately 9.1 hours. If you enable journaling and do not specify a value for
EPOCH_INTERVAL, GT.M inherits the value of EPOCH_INTERVAL of the last journal file in that region. EPOCH_INTERVAL
only makes takes effect when the user turns journaling ON and there is no earlier journal file.

EX[TENSION]=blocks
blocks specifies the size of the journal file extension by which file expands and becomes full.

EXTENSION-=blocks specifies when GT.M should review disk space available for the journal file after the ALLOCATION has
been used up. It also specifies how much space should be available at each review.

As UNIX file systems use lazy allocation schemes, allocation and extension values do not result in physical disk block allocation
for the journal file.

The values determine when GT.M checks the file systems to see if it has enough space to hold an extension worth of journal
data. When a journal file reaches the size of ALLOCATION and any multiple of EXTENSION, GT.M checks the file system for
room, and if the available space is less than three times the EXTENSION, it writes warnings to the operator log. GT.M provides
these extension checks as an operational aid for identifying, before space runs out, that a file system holding the journal file is
low on space. When there is no more free space available) on the file system holding a journal file or there is no authorization
of a process attempting to autoswitch a journal file, GT.M shuts off journaling for the corresponding database file.

The default EXTENSION value is 2048 blocks. The minimum EXTENSION is zero (0) blocks and the maximum is 1073741823
(one less than 1 giga) blocks.

F[ILENAME]=journal_filename

journal_filename specifies the name of the journal file. ILENAME is incompatible with SET -REGION, if you specify more
than one region.

GT.M treats the filename as having two components - basename and extension. The format of the journal filename is
basename.extension, where extension does not contain any periods (.), but if the filename contains more than one period (.),
basename contains all but the last period (.). Also note that "extension" is the empty string ("") if the filename does not contain
any periods (.).

The convention of the default value for the FILENAME is as follows:

« GT.M takes the basename of the database filename as the basename for the journal file with an extension of mjl if the
database has a dat extension. For example, database name mumps.dat results in a default name mumps.mjl. If the database
filename does not have a dat extension, GT.M replaces all occurrences of periods (.) with underscores (_) with an extension of
mjl and takes the full database filename. For example, database name mumps.acn results in a default name mumps_acn.mjl.
Therefore, by default, a journal file has an extension of mjl unless you explicitly specify a different extension with the
FILENAME journal option. If the new journal filename (the one specified in the FILENAME option or the default) already
exists, GT.M renames the existing file with the string "_YYYYJJJHHMMSS" appended to the existing file extension where the
string denotes the time of creation of the existing journal file in the following format:

YYYY 4-digit-year such as 2011
JJ 3-digit-Julian-day (between 1 and 366) such as 199
HH 2-digit-hour in 24 hr format such as 14
MM 2-digit minute such as 40
SS 2-digit seconds such as 30

Assuming the above example for the string value, GT.M renames a journal file mumps.mjl to mumps.mjl_2010199144030
when it switches to a new journal file.

146

GT.M Journaling

« If GT.M detects that the rename-logic yields a filename that already exists, the string "_N[N[N[N...]]]"
is appended to the renamed filename where "N[N[N...]]" denotes the sequence of numbers
0,1,2,3,4,5,6,7,8,9,90,91,92,93,94,95,96,97,98,99,990,991,...

GT.M tries all numbers from the order in the above sequence until it finds a non-existing rename-filename.

Taking the same example as above, in case mumps.mjl_2010199144030 and mumps.mjl_2010119144030_0 already exists, the
rename string would be mumps.mjl_2010199144030_1.

« If the existing file renaming scheme or the default journal file naming scheme discussed above results in a filename longer
than 255 characters (due to the suffix creation rules), GT.M produces an error and turns off journaling.

A journal file name can include characters in Unicode.

Note

Whenever GT.M implicitly turns off journaling due to run-time conditions such as no available disk space or
no authorization for a process attempting to auto-switch a journal file (and so on) , it produces an error and
accompanying messages identify the reason for that condition.

For journal recovery, GT.M maintains a field in every journal file's header that stores the name of the previous generation
journal file for the same database file. When a MUPIP SET changes the journal state from DISABLED or OFF to ON, GT.M
creates new journal files with no previous generation journal file name. This indicates that this is a fresh start of journaling for
the particular database. When journaling is already ON, and GT.M is implicitly (due to AUTOSWITCHLIMIT being reached) or
explicitly (due to MUPIP SET JOURNAL) required to create new journal files, GT.M maintains the previous generation journal
filename (after any appropriate rename), in the new journal file's header.

In all cases where journaling is ON both before and after a journal file switch, GT.M maintains the previous generation journal
file name in the new journal file's header except when GT.M creates a new journal file due to an implicit switch because it
detects an abnormal termination of the current journal file or if the current journal file was not properly closed due to a system
crash and the database was the subject of a MUPIP RUNDOWN afterwards.

Note

In the event of a crash, FIS strongly recommends performing a MUPIP JOURNAL ROLLBACK on a database
with replication, MUPIP JOURNAL RECOVER on a journaled database, and MUPIP RUNDOWN only if using
neither journaling nor replication. GT.M error messages provide context-specific instructions to promote this
decision-making model which helps protect and recover data after a crash.

The previous generation journal filename is a back link from the current generation journal.

GT.M produces an error and makes no change to the journaling state of the database when the FILENAME is an existing file
and is not the active journal file for that database. In this way, GT.M prevents possible cycles in the back-links (such as, a3.mjl
has a back-link to a2.mjl which in turn has a back-link to al.mjl which in turn has a back-link to a3.mjl thereby creating a
cycle). Cycles could prevent journal recovery. Also, note that cycles in back-links are possible only due to explicit FILENAME
specifications and never due to an existing FILENAME characteristics from the database or by using the default ILENAME.

NOPREV]JNLFILE
Eliminates the back link of a journal file.

[NO]S[YNC_IO]

147

GT.M Journaling

Directs GT.M to open the journal file with certain additional IO flags (the exact set of flags varies by the platform where
SYNC_IO is supported, for example on Linux you might utilize the O_DIRECT flag). Under normal operation, data is written
to but not read from the journal files. Therefore, depending on your actual workload and your computer system, you may see
better throughput by using the SYNC_IO journal option.

You should empirically determine the effect of this option, because there is no way to predict the performance gain or impact
in advance. There is no functional difference in GT.M behavior with the use of SYNC_IO. If you determine that different
workloads perform best with a different setting of SYNC_IO, you can change it with MUPIP SET at any time.

The default is NOSYNC_IO. If you specify both NOSYNC_IO and SYNC_IO in the same journal-option-list, GT.M uses the last
occurrence.

OFF

Stops recording subsequent database updates in the journal file. Specify OFF to establish journaling characteristics without
creating a journal file or starting journaling.

The default for SET -JOURNAL-= is ON.
ON

Records subsequent database updates in that journal file. MUPIP SET -JOURNAL=ON must include either BEFORE_IMAGES or
NOBEFORE_IMAGES in the accompanying journal-option-list. By default GT.M sets journal operation to BEFORE_IMAGE if
this command changes the database replication state (refer to Chapter 7: “Database Replication” [173] for more information)
from OFF to ON and JOURNAL=NOBEFORE_IMAGE is not specified.

C Important

ON keyword works only on previously ENABLEd regions. GT.M ignores ON if Journaling is DISABLEd. In
other words, an ENable / DISable is like the power switch on the back of many television sets and ON/OFF
is like the ON/OFF on the remote control. The ON/OFF on the remote control works only when the power
switch on the back of the television set is enabled.

If the current generation journal file is damaged/missing, MUPIP SET -JOURNAL=ON implicitly turns off journaling for the
specified region, creates a new journal file with no back pointers to the prior generation journal file, and turns journaling back
on. Further, if replication is enabled, MUPIP SET -JOURNAL=ON temporarily switches the replication WAS_ON state in the
time window when MUPIP SET command turns off journaling and returns normal as long as it operates out of the journal
pool buffer and doesn't need to reference the damaged journal file(s). During this operation, MUPIP SET -JOURNAL=ON also
sends the PREJNLLINKCUT message for the region to the application and the operator log. While this operation ensures that
journaling continues even if the current generation journal file is damaged/missing, creating a new journal file with no back
pointers creates a discontinuity with the previous journal files. Therefore, FIS recommends taking a database backup at the
earliest convenience because a MUPIP RECOVER/ROLLBACK will not be able to go back past this discontinuity. Also, consider
switching the journal files on all regions in the instance (with REGION "*") to ensure the RECOVER/ROLLBACK for other
regions remains unaffected.

The default for SET -JOURNAL-= is ON.
Y[IELD_LIMIT]=yieldcount

yieldcount specifies the number of times a process that tries to flush journal buffer contents to disk yields its timeslice and
waits for additional journal buffer content to be filled-in by concurrently active processes, before initiating a less than optimal I/
O operation.

148

GT.M Journaling

A smaller YIELD_LIMIT is appropriate for light load conditions while larger values are appropriate as the load increases.

Note

— A small YIELD_LIMIT may cause performance loss due to partial page writes while a large YIELD_LIMIT
may cause performance loss due to significant idle times (due to a lot of yields).

The minimum YIELD_LIMIT is zero (0), the maximum YIELD_LIMIT is 2048 and the default YIELD_LIMIT is 8.

As the disk can only write entire blocks of data, many I/O subsystems perform a READ-MODIFY-WRITE operation when data
to be written is a partial block as opposed to simple writes for an entire block. The YIELD_LIMIT qualifier tries to reduce the
frequency of sub-optimal partial block writes by deferring such writes as much as possible in the hope that in the meantime the
journal buffer accumulates more content and qualifies for an optimal entire block write.

Examples for MUPIP SET

$ mupip set -journal="enable,nobefore” -file mumps.dat

This example enables NOBEFORE_IMAGE journaling on mumps.dat. If journaling is already enabled, this command switches
the current journal file.

Example:
$ mupip set -journal=on,enable,before -region "*"

This example turn on journaling with BEFORE_IMAGE journaling. If journaling is already enabled, this command switches the
current journal file for all regions.

$ mupip set -file -journal="nobefore,buff=2307" gtm.dat

This example initiates NOBEFORE_IMAGE journaling for the database file gtm.dat with a journal buffer size of 2307 blocks.
It also switches to new journal file. This command assumes that some prior MUPIP SET -JOURNAL specified ENABLE for
gtm.dat.

Example:

$ mupip set -region -journal=enable,before_images,allocation=50000,ext=5000 "*x"

This example enables journaling with BEFORE_IMAGES on all regions of the current Global Directory and gives each journal
file an ALLOCATION of 50000 blocks and an EXTENSION of 5000 blocks. If the regions have significantly different levels of
update, use several MUPIP SET -FILE or -REGION commands.

Example:

$ mupip set -region -journal="enable,before” areg,breg

This example declares journaling active with BEFORE_IMAGES for the regions areg and breg of the current Global Directory.

Example:

$ mupip set -file -nojournal mumps.dat

149

GT.M Journaling

This example disables journaling on the database file mumps.dat.
Example:

$ mupip set -journal="ENABLE,BEFORE_IMAGES" -region "AREG"
$ mupip set -journal="ON,BEFORE_IMAGES" -region "*"

This example turns on journaling only for the region AREG. Note that AGREG is the only region that is "available" for
journaling.

Example:

$ mupip set -access_method=MM -file gtm.dat

This example sets MM (Memory Mapped) as the access method or GT.M buffering strategy for storing and retrieving data from
the database file gtm.dat. Since MM is not supported with BEFORE_IMAGE journaling, this example produces an error on a
database with BEFORE_IMAGE journaling enabled. You can also use -access_method=BG to set BG (Buffered Global) as your
buffering strategy. For more information on the implications of these access methods, refer to “Segment Qualifiers” (page 58).
Example:

$ mupip set -journal=before,noprevjnlfile,file=newmumps.mjl -file mumps.dat

The above command cuts the back link of the newly created journal file newmumps.mjl.

JOURNAL

MUPIP JOURNAL command analyzes, extracts from, reports on, and recovers journal files. The format for the MUPIP JOURNAL
command is:

MUPIP J[OURNAL] -qualifier[...] file-selection-argument
file-selection-argument is a comma-separated list of journal files.
-qualifier [...] is a combination of Action, Direction, Time, Sequence Number, Control, and Selection qualifiers that perform

various MUPIP JOURNAL operations. To create any MUPIP JOURNAL command, select an appropriate combination of
qualifiers by moving horizontally from the Action column extending to the Selection column:

150

GT.M Journaling

Is1[Idsn =[y4asIn-

adA) uonyoesuerny

[Tivi]aa-

[AsolgddA-

sty ared
o1y = [LOoT™I]aTy-

Jureu a1y }0vI)IXd
= [SNVYL]LSOT-

[AALLOVYALINI
[ON]-

[T1]N0d-

uondo
20udy = [SFON]AI-

[1989u1=]
[LIWIT youlud
[ON]-

[NDIO]FHD [ON]-

[NIIVHO [ON]-

swn=[qON]IS-

[as11
uotnjdo yoeqoor=]

[xargg]A[ON]-

[3s11 wonpdo
moys=] [MO]HS-

= [NOLLOVSNVY]1- [LINIT IOVEI]001 DiovdaTilod-
Juwreu o,:.w JoeI)}xo Hoﬂaﬁ—: Qoﬁvﬂvmww Hozuu

1 pd =ql- | = [SNVIINDIO UG- ufl = [ONX]STH- [ggaoloxd-
_ swn=[y04]a4-

I8T[[STOVINT Yd1AV JToquinu 1rod [@avmua]od [uonyedsryoads

1eqo18 =[TvdOo1]o- “XId]dVION]- | = [ONASTIHOILAI- swmn=[Yq1d]v- - [aavmID]vE- a1y=] [LOVILIXT-

dI0W IO U dI0W IO U auo AJuQ QI0W IO U auo ATuQ QI0W IO U

(reuondo)
(reuonndo) uoroayas (reuondo) [oxyuo) Tqunp dduanboag (reuondo) suury, UOTIIII(Uonoy

151

GT.M Journaling

Also ensure that you adhere to the following rules:

1. -BEFORE is compatible with all other JOURNAL qualifiers except -ROLLBACK.

2. -AFTER is incompatible with -BACKWARD and all action qualifiers, except -EXTRACT, -SHOW, and -VERIFY.
3. -APPLY_AFTER_IMAGE is compatible only with -RECOVER, or -ROLLBACK.

4. -BACKWARD is incompatible with -FORWARD, -AFTER, -CHECKTN, -NOCHAIN, and -REDIRECT.

5. -BROKENTRANS is compatible only with -RECOVER, -ROLLBACK, or -EXTRACT.

6. -CHAIN is only compatible with -FORWARD.

7. -DETAIL is compatible only with -EXTRACT.

8. -FETCHRESYNC or -RESYNC are compatible only with -ROLLBACK.

9. -FORWARD is incompatible with -BACKWARD, -ROLLBACK, -SINCE, and -LOOKBACK_LIMIT.

10. -FULL is compatible only with -EXTRACT, -SHOW, or -VERIFY.

11. -LOSTTRANS is compatible only with -RECOVER, -ROLLBACK, or -EXTRACT.

12. -REDIRECT is compatible only with -RECOVER.

13. -ROLLBACK is incompatible with -RECOVER, FORWARD, -CHAIN, -CHECKTN, -REDIRECT, time qualifiers of -SHOW.
14. -SINCE is incompatible with -FORWARD.

15. -TRANSACTION is compatible only with -EXTRACT and -SHOW.

16. -USER is compatible only with -EXTRACT and -SHOW.

17. file list must not be asterisk (*) for -REDIRECT.

18. file list must be asterisk (*) for -ROLLBACK.

19. Journal selection qualifiers are incompatible with -RECOVER, -ROLLBACK, and -VERIFY.

20. Journal time qualifiers are incompatible with -ROLLBACK.

For example, MUPIP JOURNAL -EXTRACT=gtm.mjf -FORWARD -DETAIL is a valid command which performs
forward processing to extract detailed the journal records to gtm.mjf. However, MUPIP JOURNAL -EXTRACT -
REDIRECT=gtm.dat=test/gtm.dat -FORWARD is an invalid command because -REDIRECT is not compatible with -EXTRACT.

MUPIP JOURNAL manipulates an inactive journal file that is available for exclusive (standalone) use. You can transcribe Journal
files to tape. However, you must always restore them to disk for processing by MUPIP JOURNAL.

Press CTRL+C to stop JOURNAL processing. A JOURNAL command that terminates abnormally by operator action or error
produces an incomplete result. In this case, the resulting database may be corrupt. If you stop a JOURNAL operation by mistake,
reissue the command to produce the proper result for -RECOVER (or -ROLLBACK) -BACKWARD. For -RECOVER -FORWARD,

restore the database from backup and reissue the command.

152

GT.M Journaling

Journal Action Qualifiers

This section describes the journaling action qualifiers.

-EXtract[=<file-name>|-stdout]

Transfers information from journal files into files formatted for processing by M routines. It reports the journal time stamps
using the $H format, as controlled by the time zone setting from the OS and the process environment for the process running
the EXTRACT.

-EXTRACT takes <file-name> or -stdout as an optional argument.

<file-name> specifies the name of the output file. -stdout specifies that -EXTRACT write to standard output (stdout) instead of
writing to a file.

With no arguments, MUPIP JOURNAL derives the output file specification of the extract file using the name of the first journal
file that is processed in the forward processing phase and a file type of .mjf. Note that, if multiple journal names are specified
in the command line the first journal specified might be different from the first journal processed in the forward phase. When
-EXTRACT is specified with -RECOVER (or -ROLLBACK), the -JOURNAL command extracts all the journal records processed
during a -RECOVER -FORWARD command or the forward phase of ((RECOVER or -ROLLBACK) -BACKWARD command.

-EXTRACT applies to forward processing of the journal file; if the combined state of the journal file and the Journal Time
qualifiers does not cause forward processing, -EXTRACT does not create an output file.

When used independent of -RECOVER (or -ROLLBACK), -EXTRACT option can produce a result even though the database file
does not exist, although it does try to access the database if it is available.

If a database having custom collation is inaccessible or the replication instance is frozen with a critical section required for the
access held by another process and the environment variable gtm_extract_nocol is defined and evaluates to a non-zero integer
or any case-independent string or leading substrings of "TRUE" or "YES", MUPIP JOURNAL -EXTRACT issues the DBCOLLREQ
warning and proceeds with the extract using the default collation. If gtm_extract_nocol is not set or evaluates to a value other
than a positive integer or any case-independent string or leading substrings of "FALSE" or "NO", MUPIP JOURNAL -EXTRACT
exits with the SETEXTRENV error if it encounters such a situation. Note that if default collation is used for a database with
custom collation, the subscripts reported by MUPIP JOURNAL -EXTRACT are those stored in the database, which may differ
from those read and written by application programs.

Note that, a broken transaction, if found, is extracted to a broken transaction file (refer to “Journal Control Qualifiers” (page
163) for details), and all future complete transactions are considered as lost transactions, and are extracted to a lost
transaction file (refer to “Journal Control Qualifiers” (page 163) for details).

To avoid broken transaction or lost transaction processing and instead extract all journal records into one file, use the control
qualifier -FENCES=NONE. FIS strongly recommended against using -FENCES=NONE if -RECOVER/-ROLLBACK is also
specified.

-RECover

Instructs MUPIP JOURNAL to initiate database recovery. -RECOVER initiates the central JOURNAL operation for non-
replicated database. From the list of JOURNAL action qualifiers, select RECOVER alone or with any other action qualifiers
except -ROLLBACK.

-RECOVER -FORWARD with time qualifiers initiates forward recovery. Forward recovery ignores the current journaling
state of the target database file. It disables journaling of the target database file, (if currently ENABLE and ON), while playing

153

GT.M Journaling

forward the database updates. However, it restores the journaling state of the database at the end of a successful recovery (if
necessary), except when journaling is ENABLE'd and ON before the recovery. In the latter case, the journaling state at the end
of a successful recovery, is switched to ENABLE and OFF. No journaling is performed for the logical updates to the database for
JOURNAL -RECOVER -FORWARD. If the target database's current transaction number is less than first transaction number to
be processed in the specified journal file for that region, -RECOVER attempts to include previous generation journal file(s) in
its processing, unless the -NOCHAIN qualifier is specified. Following the successive previous links of journal files -RECOVER
tries to include previous generations of journal files until the transaction number when the journal file was created is less
than, or equal to that of the target database. -RECOVER issues one or more informational messages when it includes previous
generation journal files. If target database's current transaction number is not equal to the first transaction number of the
earliest journal file to be processed for a region, -RECOVER exits with an error. If multiple journal files for a single region are
specified with -RECOVER -FORWARD, it behaves as if -NOCHAIN was specified. If the journal files are not a complete set (for
example mumps1.mjl and mumps3.mjl were specified, with mumps2.mjl missing from the command line), MUPIP JOURNAL
produces an error because the journal files specified are discontinuous in terms of database transaction numbers. On the other
hand, specifying just mumps3.mjl automatically includes mumps2.mjl and mumps1.mjl in the recovery.

-RECOVER -BACKWARD with time qualifiers initiates backward recovery. For backward recovery, the target database
file should be the same as when GT.M wrote the last complete transaction to the journal. Because the database may be in

an indeterminate state due to a failure, exact checks for this match are not possible. If the target database has journaling
DISABLE'd (or ENABLE, OFF), -RECOVER -BACKWARD exits with an error message.

If the target database has journaling ENABLE, ON, but the journal file name in database file header does not match the latest
generation journal file name specified for that region, -RECOVER exits with an error.

During forward processing phase of JOURNAL -RECOVER -BACKWARD, MUPIP journals the logical updates to the database.
It also creates before images. It is always required to have journaling ENABLE'd and ON for -RECOVER -BACKWARD or -
ROLLBACK.

If a transaction is found with incomplete fence, it is considered broken. During forward phase of recovery, if a complete
transaction (fenced or unfenced) is found after a broken transaction. -RECOVER increments the error count. If -ERRORLIMIT is
reached, the complete transaction goes to lost transaction file, otherwise, it is applied to the database.

All broken and lost transactions are made available as the result of the -RECOVERY. They are written as journal extract
format in two different text files. They are the broken transaction file and the lost transaction file. Refer to the sections on
BROKENTRANS and LOSTTRANS in “Journal Control Qualifiers” (page 163).

When performing JOURNAL -RECOVER with fences (FENCES="PROCESS" or FENCES="ALWAYS"), it is essential for the
command to include all the journal files corresponding to the complete set of database files that make up the logical database.
If the specified set of journals is incomplete, the recovery reports all transactions that included any missing region as broken.
Typically, this means that the results of the recovery are unsatisfactory or even unusable.

MUPIP JOURNAL -RECOVER requires exclusive access to database files before recovery can occur. It keeps the exclusive access
to the database files, which means that the database files become inaccessible during the time of recovery.

If time qualifiers are not specified, -BACKWARD -RECOVER/-ROLLBACK performs optimal recovery. An optimal recovery
checks whether the datatabase is in a wholesome state and attempts to perform an automatic recovery if there is a crash. If
needed, optimal recovery goes back to include some previous generation files in order to get a consistent starting point and
then comes forward as far as the available journal record allow it to while preserving consistent application state. At the end,
the journaling state of the database stays ENABLE, ON. Note that the gtm script performs an optimal recovery on every run.

When a database file is rolled back by -RECOVER -BACKWARD, the corresponding journal file is also rolled back so that
the two are synchronized. -RECOVER -BACKWARD then creates a new journal file. If no forward play of journal records is
neccessary, the newly created journal file stays empty and the database points to the new journal file. The values for journal

154

GT.M Journaling

allocation and extension in the new journal file, are copied over from the database. The autoswitchlimit value in the new
journal file is the maximum of the autoswitchlimit values of all journal files from the latest generation journal file until the
turnaround point journal file generation (turnaround point is the point in the journal file where backward processing stops
and forward processing begins). The journal allocation/extension values in the new journal file are picked up from the earliest
generation of the set of those journal files sharing the maximum autoswitchlimit value.

GT.M adds a prefix rolled_bak_ to the journal file whose entire contents are eliminated (rolled back) by -RECOVER -
BACKWARD. GT.M does not use these files after a successful recovery therefore you might want to consider moving or
deleting them. You should never use rolled_bak™ files for any future database recovery. If there is a need to process rolled_bak*
files, you should extract the journal records from rolled_back™ files and process them using a M program.

-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]

-ROLLBACK initiates the central JOURNAL operation for a replicated database. MUPIP JOURNAL commands may specify -
ROLLBACK with other action qualifiers but not with -RECOVER. If you do not use -FETCHRESYNC, the database rolls back to
the last consistent state. Only asterisk (*) qualifier is allowed for the journal file selection, that is, -ROLLBACK selects journal
files by itself.

-NOO[NLINE]

Specifies that ROLLBACK requires exclusive access to the database and the replication instance file. This means that the
database and the replication instance files are inaccessible during a -ROLLBACK -NOONLINE.

By default, MUPIP JOURNAL -ROLLBACK is -NOONLINE.

-ON[LINE]

Specifies that ROLLBACK should run without requiring exclusive access to the database and the replication instance file.
GT.M increments ISV $ZONLNRLBK every time a process detects a concurrent MUPIP JOURNAL -ONLINE -ROLLBACK.

If the logical state of the database after the completion of MUPIP JOURNAL -ONLINE -ROLLBACK matches the logical state
of the database at the start of MUPIP JOURNAL -ONLINE -ROLLBACK, that is, only removes or commits an uncommitted TP
transaction or non-TP mini-transaction, any transaction (TP or Non-TP) incurs a restart.

If MUPIP JOURNAL -ONLINE -ROLLBACK changes the logical state of the database, the behavior is as follows:
« -ONLINE -ROLLBACK increments ISV $ZONLNRLBK
« In a TP transaction including trigger code within a transaction, -ONLINE -ROLLBACK restarts the transaction.

+ In a non-TP mini-transaction, including within an implicit transaction caused by a trigger, -ONLINE -ROLLBACK produces a
DBROLLEDBACK error, which, in turn, invokes the error trap if SETRAP or $ZTRAP are in effect.

Any utility/command attempted while MUPIP JOURNAL -ONLINE -ROLLBACK operates waits for ROLLBACK to
complete; the $gtm_db_startup_max_wait environment variable configures the wait period. For more information on
$gtm_db_startup_max_wait, refer to “Environment Variables” (page 17).

Note

Because MUPIP ROLLBACK -ONLINE can take a database backwards in state space, please make sure that
you understand what it is that you intend it to do when you invoke it. FIS developed it as a step towards a
much larger project and anticipates that it will not be broadly useful as is.

155

GT.M Journaling

-ROLLBACK -BACKWARD exits with an error message for following conditions:

1. Any database region corresponding to a journal file processed has replication state turned OFF. Note that, a configuration
where there are replicated regions and at least one non-replicated-but-journaled region is not permitted by the replication
source server. The source server errors out at startup on such a configuration without having set up the journal pool. Since
all GT.M updates to replicated regions need the source server to have set up a journal pool, no updates are possible until the
configuration is changed to have only replicated regions or non-replicated-and-non-journaled regions.

2. Any database region corresponding to a journal file identified by the command argument has journaling state DISABLE'd or
ENABLE'd and OFF.

3. Any database region corresponding to a journal file has journal state ENABLE'd and ON, but the journal file name specified
in the database file header is different than one identified by the command argument.

If a transaction is found with incomplete fence, it is considered broken. For the duration of the rollback, replication is turned
OFF on all regions and turned back ON at the end of the rollback.

During the forward phase of rollback, if a complete transaction (fenced or unfenced) is found after a broken transaction, it

is considered as a lost transaction. During forward phase of rollback, MUPIP journals the logical updates to the database. All
broken and lost transactions are made available as a result of the rollback. These are written as journal extract format in two
different text files.

When a database file is rolled back by -ROLLBACK, the corresponding journal file is also rolled back so that the two are
synchronized. -ROLLBACK then creates a new journal file. If no forward play of journal records is necessary, the newly created
journal file is empty and the database points to the new journal file. The journal allocation/extension/autoswitchlimit values in
the new journal file is set in the way as described for -RECOVER -BACKWARD in the previous section under -RECOVER.

A prefix rolled_bak_ is added to the journal file, whose entire contents are eliminated by a -ROLLBACK. These files are not
used by GT.M after the MUPIP JOURNAL -RECOVER, and can be moved/deleted as needed.

For -ROLLBACK the target database file should be the same as when GT.M wrote the last complete transaction to the journal.

If the -FETCHRESYNC or -RESYNC qualifiers are not specified, MUPIP does an optimal rollback (that is, check whether the
database is in a wholesome state and attempt to automatically recover a database if there is a crash).

Note

If ROLLBACK (either -NOONLINE or -ONLINE) terminates abnormally (say because of a kill -9), it leaves

the database in a potentially inconsistent state indicated by the FILE corrupt field in the database file header.
When a ROLLBACK terminates leaving this field set, all other processes receive DBFLCORRP errors any time
they attempt to interact with the database. You can clear this condition as following in descending order of
risk:

« Rerun ROLLBACK to completion
« MUPIP SET -FILE -PARTIAL_RECOV_BYPASS
« DSE CHANGE -FILEHEADER -CORRUPT=FALSE -NOCRIT

However, the MUPIP and DSE actions do not ensure that the database has consistent state; check for database
integrity with MUPIP INTEG.

156

GT.M Journaling

-SHow=show-option-list

Specifies which information for the JOURNAL command to display about a journal file.

Use -FORWARD with -SHOW together (but without -RECOVER) to process the entire journal file. Specify -SHOW with -
RECOVER (or -ROLLBACK) to consider all the journal files/records processed during a -RECOVER -FORWARD command or
forward phase of a -RECOVER (or -ROLLBACK) -BACKWARD command. Without -RECOVER (or -ROLLBACK), -SHOW does
not require database access.

The show-option-list includes (these are not case-sensitive):

1.

AL[L]
Displays all the available type of information about the journal file. ALL is the default if you omits the show-option-list.
AC[TIVE_PROCESSES]

Displays all processes active at the end of the period specified implicitly or explicitly by the JOURNAL command time
qualifiers.

B[ROKEN_TRANSACTIONS]
Display all processes that had incomplete fenced transactions at the end of the period covered by the JOURNAL command.
H[EADER]

Displays the journal file header information. If the MUPIP JOURNAL command includes only the -SHOW=HEADER action
qualifier, GT.M processes only the journal file header (not the contents) even if you specify -BACKWARD or -FORWARD
with it. The size of a journal file header is 64K.

HEADER displays almost all the fields in the journal file header. The NODE field is printed up to a maximum of the first 12
characters. The following is an example of SHOW=HEADER output:

Journal file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl
Journal file label GDSJINL23
Database file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.dat

Prev journal file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl_2012310190106
Next journal file name

Before-image journal ENABLED

Journal file header size 65536 [0x00010000]
Virtual file size 2048 [0x00000800] blocks
Journal file checksum seed 2272485152 [0x87735F20]

Crash FALSE

Recover interrupted FALSE

Journal file encrypted FALSE

Journal file hash 00000000000000000000000000000000000
Blocks to Upgrade Adjustment 0 [0x00000000]

End of Data 65960 [0x000101A8]

Prev Recovery End of Data 0 [0x00000000]

Endian Format LITTLE

157

Journal Creation Time
Time of last update

GT.M Journaling

2012/11/06 17:30:33
2012/11/06 17:30:33

Begin Transaction 1 [0x0000000000000001]
End Transaction 1 [0x0000000000000001]
Align size 2097152 [0x00200000] bytes
Epoch Interval 300

Replication State CLOSED

Jnlfile SwitchLimit 8386560 [0x007FF800] blocks
Jnlfile Allocation 2048 [0x00000800]1 blocks
Jnlfile Extension 2048 [0x00000800]1 blocks
Maximum Journal Record Length 1048672 [0x00100060]

Turn Around Point Offset 0 [0x00000000]

Turn Around Point Time
Start Region Sequence Number

()
1 [0x0000000000000001]
End Region Sequence Number 1

[0x0000000000000001]
Process That Created the Journal File:

PID NODE USER TERM JPV_TIME

0000006706 jdoe-laptop jdoe 0 2012/11/06 17:30:33
Process That First Opened the Journal File:

PID NODE USER TERM JPV_TIME

0000006706 jdoe-laptop jdoe 0 2012/11/06 17:30:33

PLROCESSES]

Displays all processes active during the period specified implicitly or explicitly by the JOURNAL command time qualifiers.
S[TATISTICS]

Displays a count of all journal record types processed during the period specified implicitly or explicitly by the JOURNAL
command time qualifiers.The following is an example of SHOW=STATISTICS output:

Record type Count
BAD
PINI
PFIN
ZTCOM
KILL 133353
FKILL
GKILL
SET
FSET
GSET
PBLK
EPOCH
EOF

N
w
w
—_ N OO O OO0 WO NN

158

GT.M Journaling

TKILL

UKILL

TSET

USET

TCOM

ALIGN 4
NULL

ZKILL

FZKIL

GZKIL

TZKIL

UZKIL

INCTN 431
AIMG

TZTWO

UZTWO

TZTRI

UZTRI

TRUNC

O O OO OO P~AOOOOODWOOOSOSO

%GTM-S-JNLSUCCESS, Show successful
%GTM-S-JNLSUCCESS, Verify successful
%GTM-I-MUJNLSTAT, End processing at Tue Nov 6 17:42:21 2012

The following example displays the cryptographic hash of the symmetric key stored in the journal file header (the output is one
long line).

$ mupip journal -show -backward mumps.mjl 2>&1 | grep hash

Journal file hash F226703EC502E975784
8EEC733E1C3CABESAC146C60F922DOE7D7CB5E
2A37ABAGO5CE98D908B219249A0464F5BB622B72F5FDA
OFDFO4C8ECE52A4261975B89A2

-[NO]Verify

Verifies a journal file for integrity. This qualifier cannot have a value. -VERIFY scans the files and checks if it is in legal form, if
not, it terminates without affecting the database files.

-VERIFY when specified along with -FORWARD verifies the entire journal file For -NOVERIFY -FORWARD, only the tail of a
journal file is verified for cross region integrity. In both cases, if -RECOVER is also specified, the forward play of journal records
is done in a separate pass only after the verification pass is complete and error-free.

-VERIFY along with -BACKWARD verifies all journal records from the end of the journal file till the turn around point. When
-VERIFY -BACKWARD is specified along with -RECOVER or -ROLLBACK, backward processing involves two passes, the first
pass to do the verification until the turn around point, and the second pass to apply before image (PBLK) records.

When -NOVERIFY -BACKWARD is specified along with -RECOVER or -ROLLBACK, PBLKSs are applied to the database in

the same pass as the verification. This speeds up processing. But the disadvantage of this approach is that in the event of
verification terminating in the middle of backward processing, there is no protection of cross-region integrity. FIS recommends
the use of -VERIFY with -RECOVER or -ROLLBACK.

When used independent of -RECOVER (or -ROLLBACK), -[NO]VERIFY option does not need database access. The default is -
VERIFY.

159

GT.M Journaling

Journal Direction Qualifiers

The following two qualifiers control the journal processing direction:
-BACKWARD

Specifies that MUPIP JOURNAL processing should proceed from the end of the journal file. If the actions include -RECOVER,
JOURNAL -BACKWARD restores before-images from the end-of the file back to an explicitly or implicitly specified point (the
turn around point), before it reverses and processes database updates in the forward direction (the forward phase).

Note

-BACKWARD is incompatible with -FORWARD.

-FOLRWARD]

Specifies that MUPIP JOURNAL processing for the specified action qualifier should proceed from the beginning of the given
journal file. When processing a -RECOVER action qualifier, in certain cases, MUPIP JOURNAL may need to go before the first
record of the specified journal file, that is, it can start from a previous generation journal file(refer to “-RECover ” (page 153)
for details).

If multiple journal files are specified in the command line, -FORWARD sorts the journal files within each region based on
creation time and processes them starting from the earliest journal file. Unless the -NOCHECKTN qualifier is specified, -
FORWARD performs checks on journal files corresponding to each region to ensure they are contiguous, both in terms of time
span, as well as, transaction number span. -FORWARD errors out if it detects a discontinuity.

Note

-FORWARD is incompatible with -BACKWARD and -ROLLBACK.

Journal Time Qualifiers

Journal qualifiers specifying time accept arguments in absolute or delta time format. Enclose time arguments in quotation
marks (" ") . Include a back-slash (\) delimiter before both, the beginning and ending quotation marks to escape it from being
processed by the UNIX shell.

Absolute format is day-mon-yyyy hh:mm:ss , where day denotes the date of the month, mon indicates the abbreviated
3-letter month name (for example, Jan, Feb,..) and the year yyyy and hour hh are separated by a space. Absolute time may
indicate today's date with "-- " before the hours.

Delta format is day hh:mm:ss, indicating the number of days, hours, minutes, and seconds; where the day and the hours (hh) are
separated by a space. If delta time is less than a day, it must start with zero (0) followed by a space.

Delta time is always relative to the maximum time of the last record in all journal files specified by arguments to the MUPIP
JOURNAL command.

Note

All time qualifiers are incompatible with -ROLLBACK.

160

GT.M Journaling

The following section describes the time qualifiers in more detail:
-ALFTER]=time

Specifies reference time stamps in the journal and identifies the point after which JOURNAL starts processing in the journal
file(s). This time qualifier applies to -FORWARD only.

If -AFTER= provides a time following the last time recorded in the journal file or following any -BEFORE= time, JOURNAL
processing produces no result and a warning message is displayed. If -AFTER provides a time preceding the first time recorded
in the journal file specified in the command line, and, previous generation journal file(s) exists for that journal file, then
previous generation journal file(s) are not included for the processing. You must specify previous generation journal files
explicitly in the command line in order for them to be considered.

Using -BEFORE with -AFTER restricts processing to a particular period of time in the journal file.

-BE[FORE]=time

Specifies an ending time for any action -FORWARD or -BACKWARD. The time specified references time stamps in the journal
files. If -BEFORE= specifies a time preceding the first time recorded in the journal file, or preceding any -AFTER= or -SINCE=

time, JOURNAL processing produces no result, and a warning message is displayed.

If -BEFORE= time exceeds the last time recorded in journal files, JOURNAL processing effectively ignores the qualifier and
terminates at the end of the journal file. By default, JOURNAL processing terminates at the end of the journal file.

-[NOJLOO[KBACK_LIMIT][=lookback-option-1list]
Specifies how far JOURNAL -BACKWARD processes past the turnaround point (the explicit or implicit point in journal file up
to which -RECOVER proceeds backward before it reverses and processes database in forward direction), while attempting to
resolve open transaction fences. This option is applicable only for transactions fenced with ZTSTART and ZTCOMMIT. For
transaction fenced with TSTART and TCOMMIT, -RECOVER always resolves open transaction fences.
-LOOKBACK_LIMIT=options, include time and transaction counts. -NOLOOKBACK_LIMIT specifies that JOURNAL -
BACKWARD can process all the way to the beginning of the journal file, if necessary, to resolve open transaction fences. -
LOOKBACK_LIMIT= is incompatible with -FORWARD.
When -FENCES=NONE, JOURNAL processing ignores -LOOKBACK_LIMIT.
The -LOOKBACK_LIMIT options are:
« TIME=time

This limits LOOKBACK by a specified amount of delta or absolute journal time.
« OPERATIONS=integer

This limits LOOKBACK to the specified number of database transactions.

The TIME LOOKBACK option name and its value must be enclosed in quotes ("").

For example:

-lookback=\"time=0 00:00:30\"

161

GT.M Journaling

When -LOOKBACK_LIMIT= specifies both options, they must be separated by a comma (,), for example:

-lookback=\"time=0 00:00:30,0perations=35\"

When -LOOKBACK_LIMIT= specifies both options, the first limit reached terminates the LOOKBACK.

By default, MUPIP JOURNAL uses -LOOKBACK_LIMIT=\"TIME=0 00:05\" providing five minutes of journal time prior to -
SINCE-= to resolve open fences. A -LOOKBACK_LIMIT that specifies a limit much before the beginning of the earliest journal
file acts as if -NOLOOKBACK_LIMIT was specified.

-STI[NCE]=time

Specifies a starting (or checkpoint) time for an action qualifier with -BACKWARD, that is, -SINCE specifies how far back in
time JOURNAL -BACKWARD should process (from the end of the journal file), before starting the forward processing.

The time specified references time stamps in the journal files. If there are open fenced transactions when JOURNAL -
BACKWARD locates the -SINCE= time, it continues processing backward to resolve them, unless the command also specifies -
FENCES=NONE. If -SINCE= time exceeds the last time recorded in the journal files or, follows any -BEFORE=time, JOURNAL
processing effectively ignores the qualifier, and displays a warning message.

By default, -SINCE= time is 0 00:00:00 which denotes the time at the end of the journal file (the time when the last journal

record was updated).

Journal Sequence Number Qualifiers

These qualifiers are compatible only with -ROLLBACK.
-FET[CHRESYNC]=<port number>

In an LMS configuration, rollbacks the replicating instance to a common synchronization point from which the originating
instance can transmit updates to allow it to catch up. This command rolls back a former originating instance to the journal
sequence number at which the current originating instance took over. The format of the fetchresync qualifier is:

-fetchresync=<port number> -losttrans=<extract file> file-list

The <port number> is the communication port number that the rollback command uses when fetching the reference point.
Always use the same <port number> on the originating instance for rollback as the one used by the Receiver Server.

Important

FIS recommends you to unconditionally script the mupip journal -rollback -fetchresync command prior to
starting any Source Server on the replicating instance to avoid a possible out-of-sync situation.

The reference point sent by the originating instance is the RESYNC_SEQNO (explained later) that the originating instance once
maintained. The database/journal files are rolled back to the earlier RESYNC_SEQNO (that is, the one received from originating
instance or the one maintained locally). If you do not use -fetchresync, the database rolls back to the last consistent replicating
instance state.

The system stores extracted lost transactions in the file <extract file> specified by this mandatory qualifier. The starting point
for the search for lost transactions is the JNL_SEQNO obtained from the originating instance in the -fetchresync operation.

If -fetchresync is not specified, <extract file> lists the post-consistent-state transactions that were undone by the rollback
procedure to reach a consistent state.

162

GT.M Journaling

Note

The extracted lost transactions list may contain broken transactions due to system failures that occurred
during processing. Do not resolve these transactions --they are not considered to be committed.

n Caution

The database header may get corrupted if you suspend an ongoing ROLLBACK -FETECHRESYNC
operation or if the TCP connection between the two instances gets broken. The workaround is to restart the
ROLLBACK -FETCHRESYNC operation or wait 60 seconds for the FETCHRESYNC operation to timeout.

Example:

$ mupip journal -rollback -fetchresync=2299 -losttrans="glo.lost" -backward

This command performs a ROLLBACK -FETCHRESYNC operation on a replicating instance to bring it to a common
synchronization point from where the originating instance can begin to transmit updates to allow it to catch up. It also
generates a lost transaction file glo.lost of all those transactions that are present on the replicating instance but not on the
originating instance at port 2299.

-RES[YNCJ]=<journal sequence number>

Specifies the journal sequence number to which GT.M must rollback the database/journal files need to be rolled back to a
specific point. If you specify a journal sequence number that is greater than the last consistent state, GT.M rolls back the
database/journal files to the last consistent state. Under normal operating conditions, this qualifier is not needed.

Journal Control Qualifiers

The following qualifiers control journal processing:
-[NOJAP[PLY_AFTER_IMAGE]

Specifies that after image records (AIMG) be applied to the database as part of forward processing of backward recovery or
rollback. AIMG are "snapshots" of the database updates captured by GTM immediately after the change caused by a DSE
update. By default, during forward phase of backward recovery or rollback, AIMG records are applied to the database.

By default, -RECOVER -FORWARD does not apply AIMG record into the database. -APPLY_AFTER_IMAGE is compatible with
-RECOVER, or -ROLLBACK action qualifiers only.

-BRLOKENTRANS]=<extract file>

-BROKENTRANS is an optional qualifier for -ROLLBACK, -RECOVER and -EXTRACT. If this is not specified and a broken
transaction file creation is necessary, MUPIP JOURNAL creates one using the name of the current journal file being processed
with a .broken extension.

Note that, if selection qualifiers are specified, the broken transaction determination (and therefore lost transaction
determination as well) is done based on the journal file that is filtered by the selection qualifiers. This means that a transaction's
journal records may be considered complete or broken or lost, depending on the nature of the selection qualifiers. Using -
FENCES=NONE along with the selection qualifiers will result in every journal record to be considered complete and hence
prevent broken or lost transaction processing.

163

GT.M Journaling

-[NOJCHALIN]

-CHAIN allows JOURNAL processing to include previous generations of journal files with -FORWARD. If JOURNAL -
RECOVER needs to process previous generation journal file(s) and -NOCHAIN is specified, MUPIP JOURNAL exits with an
error.

-CHAIN is the default.
-[NOJCHE[CKTN]

-CHECKTN specifies that JOURNAL -FORWARD must verify for each region that the begin transaction number of the earliest
journal file to be processed for that region is same as the current transaction in the database file and that the end transaction
number of every journal file is equal to the begin transaction number of the next generation journal file for a given region. By
default, -FORWARD uses -CHECKTN.

-NOCHECKTN forces forward recovery by overriding inbuilt mechanisms for checking transaction integrity. Use -
NOCHECKTN with caution because it may lead to integrity issues in the recovered database and journal files.

-CHECKTN is incompatible with -BACKWARD and -ROLLBACK.
-[NOJER[ROR_LIMIT][=integer]

Specifies the number of errors that MUPIP JOURNAL processing accepts. When the number of errors exceeds the -
ERROR_LIMIT, the -INTERACTIVE qualifier determines whether JOURNAL processing halts or defers to the operator. -
NOERROR_LIMIT prevents MUPIP JOURNAL from stopping because of errors. Journal processing continues until it reaches the
end of the journal file, regardless of the number of errors.

Note that, -NOERROR_LIMIT is not the same as -ERROR_LIMIT=0.

By default, MUPIP JOURNAL uses -ERROR_LIMIT=0, causing the first error to initiate the appropriate error action. In case of a
crash there could be some incomplete journal records at the end of a journal file. MUPIP JOURNAL does not consider these as
errors. In addition, fenced transactions that are broken are not considered as errors.

During the forward phase of recovery, if a broken transaction is found, all the logical records processed afterwards are
considered suspect. If a complete transaction is found after any broken transactions, MUPIP JOURNAL -RECOVER increments
the error count and, if it is less than the error limit, it is applied to the database. Otherwise, it is treated as a lost transaction and
extracted. If a complete transaction is found after any broken transactions, MUPIP JOURNAL -ROLLBACK treats it as a lost
transaction and extracts it irrespective of the error limit.

If MUPIP JOURNAL needs to increment error count during its processing, a warning message is issued for every error
encountered except in the following cases when the error count is incremented but no warning message is displayed:

« When a complete transaction is found after a broken transaction
+ When -EXTRACT -FULL encounters errors

If MUPIP JOURNAL completes successfully with a non-zero value of error count, the return status is not a success, but a
warning,.

-FE[LNCES][=fence-option]

Specifies how JOURNAL processes fenced transactions. Fenced transactions are logical transactions made up of database
updates preceded by a TSTART or ZTSTART command and followed, respectively, by a TCOMMIT or ZTCOMMIT command.

164

GT.M Journaling

All updates between a TSTART or ZTSTART and a TCOMMIT or ZTCOMMIT are designed to occur together so that after
journal recovery the database contains either all the updates corresponding to a fenced transaction, or none of them.

The argument values for -FENCES option for MUPIP -RECOVER are not case-sensitive.
The fence options are:
« NONE

This causes MUPIP JOURNAL to apply all individual updates as if transaction fences did not exist. Note that, this means a
SET/KILL within a TP or ZTP transaction would be played as if it was an unfenced SET/KILL. This may cause the database
and new journals created (if -BACKWARD is specified), to be different from the state before the recovery took place.

« ALWAYS
This causes MUPIP JOURNAL to treat any unfenced or improperly fenced updates as broken transactions.

« PROCESS

This causes MUPIP JOURNAL to accept unfenced database updates, and also to observe fences when they appear, generating
broken transaction files in the case of a TSTART with no corresponding TCOMMIT, or a ZTSTART with no corresponding
ZTCOMMIT. It also generates broken transactions if a multi-region transaction with TSTART and TCOMMIT expects N
regions to participate, but the number of TSTART/TCOMMIT pairs found is less than N. The same happens for multi-region
ZTSTART and ZTCOMMIT.

By default, MUPIP JOURNAL uses -FENCES=PROCESS.
-FULLL]

-FULL when used with -EXTRACT, specifies that all journal records be extracted. A journal file's contents can be rolled back in
case of backward recovery or rollback(refer to “-RECover ” (page 153) or “-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}] ” (page
155) for more details) in order to keep the database and journal in sync. This is achieved not by truncating the contents

of the journal file but instead setting a field in the journal file header, which shows up as "Prev Recovery End of Data" in a
MUPIP JOURNAL -SHOW=HEADER output, to indicate the end of the journal file before rolling back and setting another

field in the file header to indicate the new end of the journal file (this field shows up as "End of Data" in a MUPIP JOURNAL -
SHOW=HEADER output). Once a journal file's contents are rolled back, all future MUPIP JOURNAL commands (including -
EXTRACT) operate on the rolled back journal file only. But if -FULL is specified along with -EXTRACT, the entire journal file
contents (including those records that were rolled back) are extracted. This qualifier is to be used only as a diagnostic tool and
not in normal operation.

-FULL qualifier is compatible with -EXTRACT only.
-[NOJIN[LTERACTIVE]

Specifies whether, for each error over the -ERROR_LIMIT, JOURNAL processing prompts the invoking operator for a response
to control continuation of processing. If the operator responds that processing should not continue, the MUPIP JOURNAL
command terminates.

-NOINTERACTIVE terminates the journal processing as soon as the MUPIP JOURNAL command generates the number of
errors specified in -ERROR_LIMIT.

This qualifier is applicable only to interactive mode or terminal mode. The default is -INTERACTIVE.

165

GT.M Journaling

-LOSTLTRANS]=<extract file>

-LOSTTRANS is an optional qualifier for -RECOVER, -ROLLBACK and -EXTRACT. If this is not specified and a lost transaction
file creation is necessary, MUPIP JOURNAL creates one using the name of the current journal file being processed with a .lost
extension.

Any complete transactions after a broken transaction is considered a lost transaction. They are written into the lost transaction
file. For -RECOVER it might be considered as good transaction and applied to the database, if -ERROR_LIMIT qualifier allows it
to do so.

Note that, if selection qualifiers are specified, the broken transaction determination (and therefore lost transaction
determination as well) is done based on the journal file that is filtered by the selection qualifiers. This means that a transaction's
journal records may be considered complete or broken or lost, depending on the nature of the selection qualifiers. Using -
FENCES=NONE along with the selection qualifiers will result in every journal record to be considered complete and hence
prevent broken or lost transaction processing.

In the case of a replicated database, lost transaction can have an additional cause. If failover occurs (that is, the originating
Source Server, A, fails and the replicating Source Server, B, assumes the originating instance's role), some transactions
committed to A's database may not be reflected in B's database. Before the former originating instance becomes the new
replicating instance, these transactions must be rolled back. These transactions are known as "lost transactions". Note that
these are complete transactions and different from a broken transaction. MUPIP JOURNAL -ROLLBACK stores extracted lost
transactions in the extract-file specified by this qualifier. The starting point for the search for lost transactions is the journal
sequence number obtained from the originating Source Server in the -FETCHRESYNC operation.

-RED[IRECT]=file-pair-list
Replays the journal file to a database different than the one for which it was created. Use -REDIRECT to create or maintain

databases for training or testing.

This qualifier applies to -RECOVER action and -FORWARD direction qualifier only. JOURNAL rejects -REDIRECT unless it
appears with -RECOVER.

The file-pair-list consists of one or more pairs of file-names enclosed in parentheses () and separated by commas (,). The pairs
are separated by an equal sign in the form:

old-file-name=new-file-name
where the old file-name identifies the original database file and the new file-specification file-name identifies the target of the -

RECOVER. The old-file-specification can always be determined using -SHOW.

By default, JOURNAL directs -RECOVER to the database file from which the journal was made. -REDIRECT is not compatible
with -ROLLBACK.

Example:
$ mupip journal -recover -forward -redirect="bgdbb.dat=test.dat” bgdbb.mjl
This JOURNAL command does a forward recovery that -REDIRECTSs the updates in bgdbb.mjl from bgdbb.dat to test.dat.

-VERB[OSE]

166

GT.M Journaling

Prints verbose output in the course of processing. It is not negatable and it is set to OFF by default.

Journal Selection Qualifiers

Journal Selection Qualifiers are compatible with -EXTRACT and -SHOW operations only. This is because most applications are
not constructed to safely remove a subset of transactions based on criteria that is exterior to the application design. To exclude
transactions from a recovery based on some selection criteria, the methodology is to -EXTRACT the records, and then reapply
them through application logic rather than by journal recovery. This approach permits the application logic to appropriately
handle any interactions between the removed and the retained transactions. Note that, selection qualifiers might result in only
a subset of a fenced transaction's journal records to be extracted (for example, a TSTART record may not be extracted because
the first update in that transaction was filtered out by a selection qualifier, while the corresponding TCOMMIT record may get
extracted). This can cause a fenced transaction to seem broken when actually it is not.

The following qualifiers control the selection criteria for journal processing.
Except for -TRANSACTION, all qualifiers allow for specifying a comma (,) seperated list of values.
-G[LOBALJ=global-list

Specifies globals for MUPIP JOURNAL to include or exclude from processing. You might find this qualifier useful for extracting
and analyzing specific data.

The global-list contains one or more global-names (without subscripts) preceded by a caret symbol (*). To include more than
one global use one of the following syntaxes.

$ mupip journal -forward -extract -global="*Ax,*C"” mumps.mjl
or
$ mupip journal -forward -extract -global="(*A*,~C)"” mumps.mjl

The names may include the asterisk (*) wildcard. That is, -GLOBAL=""A*" selects all global variables with names starting with

A. The entire list or each name may optionally be preceded by a tilda sign (~), requiring JOURNAL to exclude database updates

to the specified global(s). When the global-list with a MUPIP JOURNAL -GLOBAL does not start with a tilda sign (~), JOURNAL
processes only the explicitly named globals. By default, JOURNAL processes all globals.

To specify subscripts, using -GLOBAL=""A(1)" results in all keys under the "A(1) tree to be included, that is, it is equivalent
to using -GLOBAL=""A(1,")". An asterisk (*) or a percent (%) anywhere in the global specification is permitted. Percent

(%) matches any character, and asterisk (*) matches any string (possibly zero length too). The asterisk (*) or percent (%)
specification can be used for -USER qualifier too.

Example:
To extract all "GBL* except for “GBLTMP:
$ mupip journal -extract -global="*GBL*,~*GBLTMP" -forward mumps.mjl

To extract all *GBL except for *GBL(1,"TMP"):
$ mupip journal -extract -global=\"*GBL,~*GBL\(1,\"\"TMP\"\"\)\" -forward mumps.mjl

The backslash (\) delimiter characters are required in UNIX to pass MUPIP the double quotes (") of the string subscript.

167

GT.M Journaling

An INVGLOBALQUAL error is issued along with the error offset in the command line, whenever a parse error of the global
qualifier string is encountered.

-ID=pid-list

Specifies that JOURNAL processing include or exclude database updates generated by one or more processes, identified by
process identification numbers (PIDs). The entire list or each PID may optionally be preceded by a tilda sign (~), requiring
JOURNAL to exclude database updates initiated by the specified PID. You may use this qualifier for trouble shooting or
analyzing data.

By default, JOURNAL processes database updates regardless of the PID that initiated it.
-T[RANSACTION]=transaction-type

Specifies transaction-types for JOURNAL to include or exclude from processing. For example, you may use this qualifier to
report only on KILL operations to locate possible causes for missing data.

The transaction-types are SET and KILL and can be negated. These types correspond to the M commands of the same names.
When the transaction-type with a JOURNAL -TRANSACTION is not negated, JOURNAL processes only transactions of the
type named (for example, -TRANSACTION=KILL), whereas if it is negated, JOURNAL does not process transactions of the type
named (for exmaple, -TRANSACTION=NOKILL).

By default, JOURNAL processes transactions, regardless of its type.
-U[SER]=user-list

Specifies that MUPIP JOURNAL processing include or exclude database updates generated by one or more users. You can use
this qualifier to audit the actions of a particular user. The user-list contains names of one or more users. Indicate multiple

users by separating the names with commas (,). The names may include the wildcard asterisk (*). The entire list or each name
may optionally be preceded by a minus sign (-) tilda sign (~), requiring JOURNAL to exclude database updates initiated by the
specified user(s). When the user-list with a JOURNAL -USER does not start with a tilda sign (~), JOURNAL processes only those
database updates, which are generated by explicitly named users. The asterisk (*) or percent (%) specification can be used for -
USER qualifier. Percent (%) matches any character, and asterisk (*) matches any string (possibly zero length too).

By default, JOURNAL processes database updates regardless of the user who initiated them.

Journal Extract Formats

Journal EXTRACT files always start with a label. For the current release of GT.M, the label is GDSJEX06 for a simple journal
extract file. This label is necessary to identify the format of the file.

If the environment variable gtm_chset is set of UTF-8, then file format label is followed by another label called "UTF-8" to
indicate UTF-8 mode.

After this label, the journal record extracts follow. These journal record extracts include fields or pieces delimited by a back

slash (\).

The first piece of an -EXTRACT output record contains a two-digit decimal transaction record type (for example, 01 for a
process initialization record). The second piece contains the full date and time of the operation, represented in the SHOROLOG
format. The third piece contains a GT.M assigned number (database transaction number) which uniquely identifies the
transaction within the time covered by the journal file. The fourth piece contains the process ID (PID) of the process that
performed the operation, represented as a decimal number. The remainder of the record depends on the record type.

168

GT.M Journaling

Records of type SET, KILL, ZKILL, TSTART, and TCOMMIT include the token_seq as part of the output. It is the sixth field

in the output of the journal record extract. When replication is in use, token_seq is a journal sequence number (jsnum)

that uniquely identifies each transaction(for more information on journal sequence number refer to Chapter 7: “Database
Replication” (page 173)). When replication is not in use and the transaction is a TP or ZTP transaction, token_seq is an 8-

byte token that uniquely identifies the entire TP or ZTP transaction. For non-replicated, non-TP, and non-ZTP journal records,
token_seq has a zero (0) value.

The format of the plain journal extract is as follows:

NULL 00\ time\tnum\pid\clntpid\jsnum\strm_num\strm_seq
PINI(CU) @1\time\tnum\pid\nnam\unam\term\clntpid\clntnnam\clntunam\clntterm
PINI(V)
01\ time\tnum\pid\nnam\unam\term\mode\logintime\image_count\pname\clntpid\clntnnam\clntunam\clntterm\clntmode
\clntlogintime\clntimage_count\clntpname
PFIN 02\time\tnum\pid\clntpid

EOF 03\time\tnum\pid\clntpid\jsnum
KILL 04\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
SET 05\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg

ZTSTART 06\time\tnum\pid\clntpid\token

ZTCOM @7\time\tnum\pid\clntpid\token\partners

TSTART 0@8\time\tnum\pid\clntpid\token_seg\strm_num\strm_seq

TCOM 09\ time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\partners\tid

ZKILL 10\time\tnum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\nodeflags\node
ZTWORM 11\time\tnum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\ztwormhole
ZTRIG 12\time\tnum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\nodeflags\node

where:

01 record indicates a process/image-initiated update (PINI) into the current journal file for the first time.
02 record indicates a process/image dropped interest (PFIN) in the current journal file.

03 record indicates all GT.M images dropped interest in this journal file and the journal file was closed normally.
04 record indicates a database update caused by a KILL command.

05 record indicates a database update caused by a SET command.

06 record indicates a ZTSTART command.

07 record indicates a ZTCOMMIT command.

08 record indicates a TSTART command.

09 record indicates a TCOMMIT command.

10 record indicates a database update caused by a ZKILL command.

11 records indicates a value for/from $ZTWORMHOLE (when replication is turned on).

12 record indicates a ZTRIGGER command.

169

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX392.txt

GT.M Journaling

Journal extracts contain NULL records only in a multisite replication configuration where triggers or external M-filters are
active. Here are two examples when NULL records are sent to the journal files:

« An external filter on an instance transforms a SET record to a NULL record that has a different schema.

« If the source side has triggers enabled and its receiver side either runs a pre-trigger version of GT.M or runs on a platform
where triggers are not supported (for example, AXP VMS or HPUX HPPA), trigger definition journal records from the source
side are transformed to NULL records on the receiver side.

C Important

A NULL record does not have global information. Therefore, it resides in the alphabetically last replicated
region of the global directory.

The format of the detail journal extract is as follows:

PINI(CU) time\tnum\chksum\pid\nnam\unam\term\clntpid\clntnnam\clntunam\clntterm

PINI(V)
time\tnum\chksum\pid\nnam\unam\term\mode\logintime\image_count\pname\clntpid\clntnnam\clntunam\clntterm\clntmode

\clntlogintime\clntimage_count\clntpname

PFIN time\tnum\chksum\pid\clntpid

EOF time\tnum\chksum\pid\clntpid\jsnum

SET time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seg\updnum\nodeflags\node=sarg

KILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

ZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

ZTWORM time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\ztwormhole

ZTRIG time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

TSTART time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seq

TSET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seg\updnum\nodeflags\node=sarg

TKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

TZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

TZTWORM time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\ztwormhole

TZTRIG time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

USET time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seg\updnum\nodeflags\node=sarg

UKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

UZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

UZTWORM time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seq\updnum\ztwormhole

UZTRIG time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seqg\updnum\nodeflags\node

TCOM time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\partners\tid

INCTN time\tnum\chksum\pid\clntpid\opcode\incdetail

EPOCH time\tnum\chksum\pid\clntpid\jsnum\blks_to_upgrd\free_blocks\total_blks\fully_upgraded[\strm_num

\strm_seq]...

PBLK time\tnum\chksum\pid\clntpid\blknum\bsiz\blkhdrtn\ondskbver

AIMG time\tnum\chksum\pid\clntpid\blknum\bsiz\blkhdrtn\ondskbver

NULL time\tnum\pid\clntpid\jsnum\strm_num\strm_seq

ZTSTART time\tnum\chksum\pid\clntpid\token

FSET time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seg\updnum\nodeflags\node=sarg

FKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

FZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

GSET time\tnum\chksum\pid\clntpid\token_seqg\strm_num\strm_seg\updnum\nodeflags\node=sarg

GKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

GZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seqg\updnum\nodeflags\node

ZTCOM time\tnum\chksum\pid\clntpid\token\partners

ALIGN time\tnum\chksum\pid\clntpid

170

where:

GT.M Journaling

AIMG records are unique to DSE action and exist because those actions do not have a "logical" representation.

EPOCH records are status records that record information related to check pointing of the journal.

NCTN records are the transaction numbers of the sequence of critical sections in which the process and marked the database
blocks of the globals as previously used but no longer in use in the bit maps.

PBLK records are the before image records of the bit maps.

ALIGN records pad journal records so every alignsize boundary (set with MUPIP SET -JOURNAL and is visible in DSE DUMP -
FILEHEADER output) in the journal file starts with a fresh journal record. The sole purpose of these records is to help speed up

journal recovery.

Legend (All hexadecimal fields have a 0x prefix. All numeric fields otherwise are decimal):

tnum Transaction number

chksum Checksum for the record.

fully_upgraded 1 if the db was fully upgraded (indicated by a dse dump -file -all) at the time of writing the EPOCH

pid Process id that wrote the jnl record.

clntpid If non-zero, clntpid is the process id of the GT.CM client that initiated this update on the server side.

jsnum Journal sequence number.

token Unique 8-byte token.

strm_num If replication is true and this update originated in a non-supplementary instance but was replicated to and updated
a supplementary instance, this number is a non-zero value anywhere from 1 to 15 (both inclusive) indicating
the non-supplementary stream number. In all other cases, this stream # value is 0. In case of an EPOCH record,
anywhere from 0 to 16 such "strm_num" numbers might be displayed depending on how many sources of
supplementary instance replication have replicated to the instance in its lifetime.

strm_seq If replication is true and this update originated in a non-supplementary instance but was replicated to and updated
a supplementary instance, this is the journal sequence number of the update on the originating non-supplementary
instance. If replication is true and this update originated in a supplementary instance, this is the journal sequence
number of the update on the originating supplementary instance. In all other cases, this stream sequence number is
0. Note that the journal seqno is actually 1 more than the most recent update originating on that stream number. In
case of an EPOCH record, anywhere from 0 to 16 such "strm_seq" numbers might be displayed depending on how
many sources of supplementary instance replication have replicated to the instance in its lifetime.

tid TRANSACTIONID string (BATCH or any string of descriptive text chosen by the application) specified as
an argument of the corresponding TSTART command. If TRANSACTIONID is not specified with TSTART,
GT.M sets tid to null. TRANSACTIONID can specify any value for tid but affects GT.M behavior only when
TRANSACTIONID specifies BATCH or BA.

token_seq If replication is turned on, it is the journal sequence number. If not, it is a unique 8-byte token.

updnum =n where this is the nth update in the TP or ZTP transaction. n=1 for the 1st update etc. 0 for non-TP.

nodeflags Decimal number interpreted as a binary mask.. Currently only 5 bits are used.

171

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX393.txt

GT.M Journaling

« 00001 (1) => update journaled but NOT replicated (For example, update inside a trigger)
« 00010 (2) => update to a global that had at least one trigger defined, even if no trigger matched this update

« 00100 (4) => $ZTWORMHOLE holds the empty string ("") at the time of this update or was not referenced during
this update

« 01000 (8) => update did not invoke any triggers even if they existed (For example, MUPIP LOAD)

« 10000 (16) => whether the update (set or kill) is a duplicate. In case of a KILL, it is a kill of some non-existing
node aka duplicate kill. Note that the dupkill occurs only in case of the Update Process. In case of GT.M, the
KILL is entirely skipped. In both cases (duplicate set or kill), only a jnl record is written, the db is untouched.

Combinations of the above bits would mean each of the individual bit characteristics. For example, 00011 =>
update within a trigger context, and to a global with at least one trigger defined. For example, 00011 => update
inside a trigger and to a global with at least one trigger defined. Certain bit combinations are impossible. For
example, 01001 since GT.M replicates any update that does not invoke triggers.

node Key that is being updated in a SET or KILL.

sarg Right-hand side argument to the SET (that is, the value that the key is being SET to).

partners Number of journaled regions participating in this TP or ZTP transaction (TCOM/ZTCOM record written in this TP
or ZTP) .

opcode Inctn opcode. See gdsthead.h inctn_opcode_t for all possible values.

blknum Block number corresponding to a PBLK or AIMG or INCTN record.

bsiz Block size from the header field of a PBLK or AIMG record.

blkhdrtn Transaction number from the block header of a PBLK or AIMG record.

ondskbver On disk block version of this block at the time of writing the PBLK or AIMG record. 0 => V4, 1 => V5.

incdetail 0 if opcode=1,2,3; blks2upgrd if opcode=4,5,6; blknum if opcode=7,8,9,10,11,12,13

ztwormhole string corresponding to $ZTWORMHOLE

blks2upgrd # of new V4 format bitmap blocks created if opcode=4,5; csd->blks_to_upgrd if opcode=6

uname Name of the user that wrote this PINI record.

clntunam If non-empty, clntunam is the name of the GT.CM client that initiated this update on the server side.

172

Chapter 7. Database Replication

Revision History

Revision V6.1-000/1

04 September 2014

In “Procedures ” (page 203), corrected the
downloadable scripts example (msr_proc2.tar.gz)
for setting up an A->P replication configuration.

Revision V6.1-000

01 August 2014

« In “Starting the Source Server” (page
230), added the description of -TLSID,
-[NO]PLAINTEXTFALLBACK, and -
RENEGOTIATE_INTERVAL qualifiers.

« In “Starting the Receiver Server ” (page
243), added the descriptions of -TLSID, -
START, and -LOG qualifiers..

« In “Procedures ” (page 203), added a
new topic called “Setting up a secured TLS
replication connection” (page 223). This
topic includes a downloadable example
that creates two databases and sets up TLS
replication between them.

. Added a new section called “TLS/SSL
Replication” (page 194).

Revision V6.0-003/1

19 February 2014

« In “Starting the Source Server” (page 230),
added information about the use of the
gtm_ipv4_only environment variable.

« In “REORG ” (page 102), added a caution note
about running successive reorgs.

Revision V6.0-003

27 January 2014

« In “Procedures ” (page 203), added
downloadable script examples for A->B and A-
>P replication scenarios.

« In “Activating a Passive Source Server” (page
237), added information about the
ACTIVE_REQUESTED mode.

« In “Deactivating an Active Source
Server” (page 238), added information
about the PASSIVE_REQUESTED mode.

« In “Starting the Source Server” (page 230),
added information about the IPv6 support.

Revision V6.0-001/1

22 March 1013

Improved the formatting of all command
syntaxes and corrected the description of the -
helper qualifier.

Revision V6.0-001

27 February 2013

« In “Instance Freeze” [193], added a note
about the behavior when a process configured
for instance freeze encounters an error with
journaling.

« Improved the description of -
UPDATERESYNC.

173

Database Replication

« In “Procedures ” [203], added the following
topics:

« “Setting up a new replicating instance of
an originating instance (A->B, P->Q, or A-
>P)” [221]

+ “Replacing the replication instance file
of a replicating instance (A->B and P-

~Q)” [221]

+ “Replacing the replication instance file of a
replicating instance (A->P)” [221]

+ “Setting up a new replicating instance from
a backup of the originating instance (A-
>P)” [222]

« “Changing the database schema of
a replicating instance (A->B and A-
>P)” [223]

« In “Displaying/Changing the attributes
of Replication Instance File and Journal
Pool” [228], corrected the description of the
-offset and -size qualifiers of -EDITINSTANCE.

Revision V6.0-000/1

21 November 2012

« In “Commands and Qualifiers” [226], added
the description of the -log_interval qualifier.

« In “Starting the Receiver Server ” [243],
added the description of the -initialize
qualifier and updated the description of -
updateresync for V6.0-000.

Revision V6.0-000

19 October 2012

« In “Starting the Source Server” [230], added
the description of the -freeze qualifier.

. Added a new section called “Instance
Freeze” (page 193).

Revision V5.5-000/10

28 September 2012

In “Starting the Receiver Server ” (page 243),
improved the description of -UPDATERESYNC.

Revision V5.5-000/9

14 August 2012

Improved the description of the replication
WAS_ON state and added the “Recovering from
the replication WAS_ON state ” (page 219)
section.

Revision V5.5-000/6 19 July 2012 Removed excessive spacing around SVG
diagrams in screen and print pdfs.

Revision V5.5-000/5 17 July 2012 Updated for V5.5-000.

Revision V5.5-000/4 6 June 2012 Removed -LOG as an option for -STATSLOG.

Revision V5.5-000/3 2 May 2012 « In “Rolling Back the Database After System

Failures” (page 249), corrected the
command syntax and the example.

« In “Starting the Source Server” (page 230),
corrected the quoting of -filter examples.

174

Database Replication

Revision V5.5-000/1 5 March 2012 Improved the description of the -instsecondary
qualifier. Added the “Stopping a Source
Server” [241] section and the “Shutting Down
an instance” [209] procedure.

Revision V5.5-000 27 February 2012 In “Starting the Source Server” [230], added
information about using external filters for pre-
V5.5-000 versions.

Revision 4 13 January 2012 In “Starting the Source Server” [230], added
an example of a replication filter.

Revision 2 2 December 2011 Corrected the usage of the term propagating
instance, improved the description

of -stopsourcefilter, and changed -
nopropagatingprimary to -propagatingprimary.

Revision 1 10 November 2011 In the “Startup” [204] section, changed
"Restore the replication instance file" to
"Recreate the replication instance file".

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

GT.M replication provides logical equivalence between multiple databases. It facilitates continuous application availability, real-
time decision support, warehousing, analytics, and auditing. There are two types of replication:

1. Business Continuity (BC) replication
2. Supplementary Instance (SI) replication

BC replication provides business continuity for systems of record. Updates applied at an originating instance replicate in near
real-time to a replicating instance. To help ensure this consistency, BC replication prohibits locally generated database updates
on a replicating secondary instance. For example with instances named A and B, business logic processed on instance A can be
streamed to instance B so that should A ever go down, B can immediately take over and provide continuity. In order to ensure
that B produces results consistent with A, B can contain only material state information that is also in A.

Updates applied at an originating instance replicate in near real-time to as many as sixteen replicating instances each of which
can propagate further down to as many as sixteen replicating instances. Each replicating instance can further replicate to as any
as sixteen replicating instances and so on. When an originating instance becomes unavailable, any downstream instance can
become the replacement originating instance to keep the application available.

In the following illustration, A is the originating primary instance and B and C are its replicating instances. C is also a
propagating primary instance because it further replicates to D. This BC replication configuration can also be described as a B<-
A->C->D configuration.

175

Database Replication

‘4444444@???????@
v
v
\4
v
\4
\4

BC replication is intended for mission-critical applications that must be available 24 hours a day, 365 days a year, in the face of
both unplanned events (such as system crashes) as well planned events (such as system and software upgrades).

With BC replication, you can create a logical multi-site (LMS) replication configuration for mission critical applications that
must always be available not only in face of unplanned events (such as system or data center failures) but also in the face of
planned events such as computing platform upgrades, OS upgrades, GT.M upgrades and even application upgrades. Deploying
a BC replication configuration should take into account available network capacities, operational preferences, risk assessments,
and business continuity requirements.

SI replication allows replication from an instance A to another originating primary instance P. P can execute its own business
logic, compute, and commit its own updates to its database, while receiving a replication stream. In turn, P can have its own
replicating secondary instance Q and A can have its own replicating instance B. In such an SI replication configuration, only
originating primary instances A and P can execute business logic and compute database updates. Replicating secondary
instances B and Q are only permitted to receive and apply replication streams from their originating primary instances. The
following diagram illustrates this configuration.

176

Database Replication

‘4444444@>>>>>>>

4 4 44 <«
4 4 4 <4<«

In this diagram, A is an originating primary instance having B and P as its replicating instance. P is another originating primary
instance (supplementary instance) having Q as its replicating instance. This SI replication can also be described as a B<-A->P-
>Q configuration.

SI replication is intended to be a general purpose mechanism whose utility includes applications such as real-time decision
support, warehousing, analytics, and auditing.

Note

In this book, instances {A, B, C...} denote system of records (BC replication) and instances {P, Q, R...} denote
instances that receive SI replication.

GT.M replication is asynchronous, which in turn means that the source and receiver ends of a replication connection are at an
identical state only when there is no activity underway. To maintain consistency, and to restore it when restarting a replication
connection, instances maintain a common, mutually coherent, instance-wide serial number called a journal sequence number.
Each journal sequence number is tagged with two fields that identify the source of the update- a stream # that can take on
values 0 through 15 and a stream sequence number (the journal sequence number of the update on the originating instance).
Because replication deals with an entire global variable namespace, regardless of the mapping of global variables to database
files, all updates participate in this numbering, even when modifying different database files.

On an originating primary instance that is not the recipient of an SI replication stream, the journal sequence number and the
stream sequence number are the same.

Suppose sequence numbers in P are 100, 101, and 102. If the first and third transactions are locally generated and the second is
replicated, the tagged journal sequence numbers might be something like {100,0,10}, {101,1,18}, {102,0,11}. The 0 stream # for 100
and 102 indicates those transactions are generated locally on P whereas stream # 1 indicates those transactions were generated

177

Database Replication

in A. It is important to note that if, as part of restarting replication with A, P needs to roll {101,1,18} off its database, database
update serialization also requires it to roll {102,0,11} off as well, and both will appear in the Unreplicated Transaction Log (also
known as Lost Transaction File).

The same transaction that has a P sequence number of 101 will have a different sequence number of 18 on A and B. That is,

the journal sequence number on A becomes the stream sequence number on P. The replication instance file in P contains
information that allows GT.M to determine this mapping, so that when P rolls {101,1,18} off its database, A knows that Malvern
has rolled off A.s transaction 18.

If P in turn implements BC replication to another instance Q, the tagging is propagated to Q, such that if A and P both go down
(e.g., if they are co-located in a data center that loses electricity), B and C can take over the functions of A and P respectively,
and Q can perform any synchronization needed in order to start accepting a replication stream from B as being a continuation
of the updates generated by A, and B in turn accepts Q as the successor to P.

An LMS Group is a set of one or more instances that receive updates from the same originating primary instance and represent
the same logical state. GT.M implicitly forms an LMS Group by storing the identification of the originating primary instance in
the replication instance file of each replicating instance. There are two types of LMS Groups:

1. BC Group: An LMS Group whose originating primary instance is a BC instance. A BC Group can have BC and SI instances
as members.

2. SI Group: An LMS Group whose originating primary instance is an SI instance. An SI Group can have only SI instances as
members and can receive replication only from a BC member of a BC Group.

BC members of a BC Group can replicate downstream to other BC and SI groups whereas an SI Group cannot replicate
downstream to other groups.

é Important

Instances can change their roles within an LMS group but they cannot move between groups.however data
from one instance / group can be loaded into another group.

The following example illustrates a replication configuration where instance A from A's BC Group replicates instance Q in Q's
SI Group.

b= — = ————————_—— 3
I + A+ I
I []| I
[B<====| | [-==—>P|
- | mmmmm=== +

I

I
h=——————— V=———————— 3
I +Q + I
I I I I
[R<-——-] [--==>S]
b= — = ————————_—— 3
Note

In this replication configuration, instance B can also replicate to instance Q. However, instance P cannot
replicate to an instance in Q's group because it is an SI member of A's BC group.

178

Database Replication

GT.M imposes no distance limits between instances. You can place instances 20,000 kilometers apart (the circumference of
Planet Earth is 40,000 kilometers) or locally within the same data center.

Using TCP connections, GT.M replicates between instances with heterogeneous stacks of hardware, operating system, endian
architecture! and even GT.M releases. A GT.M instance can source a BC replication stream to or receive a BC replication
stream from GT.M V5.1-000 or later. However, SI replication requires both source and receive side must be GT.M V5.5-000. SI
replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M on OpenVMS. GT.M
replication can even be used in configurations with different application software versions, including many cases where the
application software versions have different database schema. This also means that a number of inexpensive system - such as
GNU/Linux commodity servers - can be placed in locations throughout an organization. Replicating instances can be used for
decision support, reporting, and analytics. Because GT.M databases can be encrypted, these commodity servers are potentially
usable in environments outside secure data centers as long as their operating systems and software are secured.

GT.M replication requires journaling to be enabled and turned on for replicated regions. Unreplicated regions (for example
global variables contain information that is meaningful only on one instance and only as long as the instance is operating - such
as process ids, temporary working files, and so on) need not be replicated or journaled.

GT.M replication mechanism is designed in such a way that a network failure between instances will not stop an application
from being available-which is a limitation of techniques such as high availability clustering®. There are mechanisms in place
for edge cases like processing "in flight" transactions and common cases like handling backlog of updates after recovery

from a network failure. While it is not possible to provide absolute continuity of business in our imperfect universe, an LMS
configuration gives you the flexibility to choose application configurations that match your investment to a risk level that best
meets the business needs of your organization.

Database Transaction Number

Every transaction applied to a database file increments the database transaction number for that file. Each block records the
database transaction number at which it was updated, and the Current transaction field in the file header shows the value
for the next transaction or mini-transaction to use. The following database file header fields all show database transaction
numbers: Last Record Backup, Last Database Backup, Last Bytestream Backup, Maximum TN, and Maximum TN Warn.

Database transaction numbers are currently unsigned 64-bit integers.

While database activity uses database transaction numbers sequentially, not every transaction number can be found in a
database block. For a Kill increments the database transaction number, but can remove blocks with earlier database transaction
numbers from the database.

Note that database transaction numbers are updated in memory and only periodically flushed to secondary storage, so in cases
of abnormal shutdown, the on-disk copies in the file header might be somewhat out-of-date.

Journal Sequence Number

While the database transaction number is specific to a database file, replication imposes a serialization of transactions across all
replicated regions. As each transaction is placed in the Journal Pool it is assigned the next journal sequence number. When a
database file in a replicated instance is updated, the Region Seqno field in the file header records the journal sequence number
for that transaction. The journal sequence number for an instance is the maximum Region Seqno of any database file in that

'BC replication from/to GT.M on OpenVMS is supported only to/from instances on OpenVMS and little endian UNIX/Linux platforms.

2GT.M database replication is compatible with clustering - each instance can be a "hot-warm" cluster where if one node fails, another node can recover the
database and continue operation. Since GT.M LMS application configurations provides better business continuity in the face of a greater range of eventualities
than clusters, if you wish to use clusters, consider their use in conjunction with, rather than instead of, GT.M LMS configurations.

179

Database Replication

instance. While it uses them in processing, GT.M stores journal sequence numbers only in journal files. In database file headers,
Zqgblmod Seqno and Zqgblmod Trans are journal sequence numbers.

Except for transactions in Unreplicated Transaction Logs, the journal sequence number of a transaction uniquely identifies that
transaction on the originating primary instance and on all replicating secondary instances. When replicated via SI replication,
the journal sequence number becomes a stream sequence number (see below) and propagated downstream, thus maintaining
the unique identity of each transaction.

Journal sequence numbers cannot have holes - missing journal sequence numbers are evidence of abnormal database activity,
including possible manual manipulation of the transaction history or database state.

Journal sequence numbers are 60-bit unsigned integers.

Stream Sequence Number

The receiver of a SI replication stream has both transactions that it receives via replication as well as transactions that it
computes locally from business logic. As discussed earlier, while journal sequence numbers can uniquely identify a series
of database updates, they cannot identify the source of those updates. Therefore, we have the concept of a stream sequence
number.

On an originating primary instance that is not the recipient of an SI replication stream, the journal sequence number and the
stream sequence number are the same.

On a primary instance that is the recipient of an SI replication stream, the journal sequence number uniquely identify and
serialize all updates, whether received from replication or locally generated. However, there is also a stream sequence number,
which is the journal sequence number for locally generated transactions, and for replicated updates, the combination of a non-
zero 4 bit tag (that is, with values 1 through 15) and the journal sequence number for the transaction on the system from which
it was replicated. These stream sequence numbers are propagated to downstream replicating secondary instances.

Stream sequence numbers are 64-bit unsigned integers.

Examples

To make the following scenarios easier to understand, each update is prefixed with the system where it was originally
generated and the sequence number on that system and any BC replicating secondary instances.

Simple Example

The three systems initially operate in roles O (Originating primary instance), R (BC Replicating secondary instance) and S
(recipient of an SI replication stream).

Ardmore BrynMawr Malvern Comments

O: .. A95,A96, A97, | R:... A95, A96, A97, |S:.. M34, A95, M35, | Ardmore as an originating primary instance at transaction number
A98, A99 A98 M36, A96, A97, M37, | A99, replicates to BrynMawr as a BC replicating secondary instance
M38 at transaction number A98 and Malvern as a SI that includes
transaction number A97, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes O:...A95, A96, A97, | ... M34, A95, M35, When an event disables Ardmore, BrynMawr becomes the new
A98, B61 M36, A96, A97, M37, | originating primary, with A98 as the latest transaction in its
M38 database, and starts processing application logic to maintain

180

Database Replication

Ardmore

BrynMawr

Malvern

Comments

business continuity. In this case where Malvern is not ahead of
BrynMawr, the Receiver Server at Malvern can remain up after
Ardmore crashes. When BrynMawr connects, its Source Server
and Malvern’s Receiver Server confirms that BrynMawr is not
behind Malvern with respect to updates received from Ardmore,
and SI replication from BrynMawr picks up where replication from
Ardmore left off.

0O: ... A95, A96, A97,
A98, Bo1, B62

S:... M34, A95, M35,

Malvern operating as a supplementary instance to BrynMawr

M36, A96, A97, M37,
M38, A98, M39, Bé1,
M40

replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Although A98 was originally
generated on Ardmore, Malvern received it from BrynMawr
because A97 was the common point between BrynMawr and
Malvern.

... A95, A96, A97,
A98, A99

0O: ... A95, A96, A97,
A98, B61, B62, B63,
Be4

S:... M34, A95, M35,

Malvern, continuing as a supplementary instance to BrynMawr,

M36, A96, A97, M37,
M38, A98, M39, Bé1,
M40, Bé2, B63

replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Ardmore meanwhile has been
repaired and brought online. It has to roll transaction A99 off its
database into an Unreplicated Transaction Log before it can start
operating as a replicating secondary instance to BrynMawr.

R: ... A95, A96, A97,
A98, B61, B62, B63,
Be4

0O: ... A95, A96, A97,
A98, B61, B62, B63,
Be64, B65

S:... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, Bé1,
M40, B62, B63, M41,
Be4

Having rolled off transactions into an Unreplicated Transaction
Log, Ardmore can now operate as a replicating secondary instance
to BrynMawr. This is normal BC Logical Multi-Site operation.
BrynMawr and Malvern continue operating as originating primary
instance and supplementary instance.

Ensuring Consistency with Rollback

Whereas in the last example Malvern was not ahead when starting SI replication from BrynMawr, in this example,
asynchronous processing has left it ahead and must rollback its database state before it can receive the replication stream.

Ardmore

BrynMawr

Malvern

Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A%6, A97

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes

0O: ... A95, A96, A97

... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database.
Malvern cannot immediately start replicating from BrynMawr

because the database states would not be consistent - while
BrynMawr does not have A98 in its database and its next update
may implicitly or explicitly depend on that absence, Malvern does,
and may have relied on A98 to compute M39 and M40.

0O: ... A95, A96, A97,
Be1, B62

S:... M34, A95, M35,

M36, A96, A97, M37,
M38, B61

For Malvern to accept replication from BrynMawr, it must roll
off transactions generated by Ardmore, (in this case A98) that
BrynMawr does not have in its database, as well as any additional

181

Database Replication

Ardmore

BrynMawr

Malvern

Comments

transactions generated and applied locally since transaction
number A98 from Ardmore.? This rollback is accomplished with
a mupip journal -rollback -fetchresync operation on Malvern.”
These rolled off transactions (A98, M39, M40) go into the
Unreplicated Transaction Log and can be subsequently reprocessed
by application code.® Once the rollback is completed, Malvern

can start accepting replication from BrynMawr.Ol BrynMawr in

its Originating Primary role processes transactions and provides
business continuity, resulting in transactions B61 and B62.

0O: ... A95, A96, A97,
B61, B62, B63, B64

S:... M34, A95, M35,

Malvern operating as a supplementary instance to BrynMawr

M36, A96, A97, M37,
M38, B61, B62, M39a,
M40a, B63

replicates transactions processed on BrynMawr, and also applies its

own locally generated updates. Note that M39a & M40a may or may
not be the same updates as the M39 & M40 previously rolled off the
database.

#As this rollback is more complex, may involve more data than the regular LMS rollback, and may involve reading journal records sequentially; it may take

longer.

bIn scripting for automating operations, there is no need to explicitly test whether BrynMawr is behind Malvern - if it is behind, the Source Server will fail to
connect and report an error, which automated shell scripting can detect and effect a rollback on Malvern followed by a reconnection attempt by BrynMawr. On
the other hand, there is no harm in Malvern routinely performing a rollback before having BrynMawr connect - if it is not ahead, the rollback will be a no-op.
This characteristic of replication is unchanged from releases prior to V5.5-000.

°GT.M's responsibility for them ends once it places them in the Unreplicated Transaction Log.

dUltimater, business logic must determine whether the rolled off transactions can simply be reapplied or whether other reprocessing is required. GT.M's
$ZQGBLMOD() function can assist application code in determining whether conflicting updates may have occurred.

Rollback Not Desired or Required by Application Design

In the example above, for Malvern to start accepting SI replication from BrynMawr with consistency requires it to rollback
its database because it is ahead of BrynMawr. There may be applications where the design of the application is such that
this rollback neither required nor desired. GT.M provides a way for SI replication to start in this situation without rolling
transactions off into an Unreplicated Transaction File.

Ardmore

BrynMawr

Malvern

Comments

0O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97

S:... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes

0O: ... A95, A96, A97,
B61, B62

... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database
and starts processing application logic. Unlike the previous
example, in this case, application design permits (or requires)
Malvern to start replicating from BrynMawr even though BrynMawr
does not have A98 in its database and Malvern may have relied on
A98 to compute M39 and M40.

0O: ... A95, A96, A97,
Bé1, B62

S:... M34, A95, M35,

M36, A96, A97, M37,
M38, A98, M39, M40
Bé1, B62

With its Receiver Server started with the -noresync option, Malvern
can receive a SI replication stream from BrynMawr, and replication
starts from the last common transaction shared by BrynMawr and

182

Database Replication

Ardmore

BrynMawr

Malvern

Comments

Malvern. Notice that on BrynMawr no A98 precedes B61, whereas it
does on Malvern, i.e., Malvern was ahead of BrynMawr with respect

to the updates generated by Ardmore.

Two Originating Primary Failures

Now consider a situation where Ardmore and Malvern are located in one data center, with BC replication to BrynMawr and
Newtown respectively, located in another data center. When the first data center fails, the SI replication from Ardmore to
Malvern is replaced by SI replication from BrynMawr to Newtown.

Ardmore

BrynMawr

Malvern

Newtown

Comments

0O: ... A95, A96, A97,
A98, A99

R: ... A95, A9%6, A97,
A98

S:... M34, A95, M35,
M36, A96, M37, A97,

R: ... M34, A95, M35,
M36, A96, M37

M38

Ardmore as an originating primary
instance at transaction number A99,
replicates to BrynMawr as a BC replicating
secondary instance at transaction number
A98 and Malvern as a SI that includes
transaction number A97, interspersed with
locally generated updates. Malvern in turn
replicates to Newtown.

Goes down with the
data center

0O: ... A95, A96, A97,
A98, B61, B62

Goes down with the
data center

... M34, A95, M35,
M36, A96, M37

When a data center outage disables
Ardmore, and Malvern, BrynMawr becomes
the new originating primary, with A98

as the latest transaction in its database

and starts processing application logic to
maintain business continuity. Newtown

can receive the SI replication stream from
BrynMawr, without requiring a rollback
since the receiver is not ahead of the source.

0O: ... A95, A96, A97,
A98, B61, B62

S:... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
Beé2

Newtown receives SI replication from
BrynMawr and also applies its own locally
generated updates. Although A97 and A98
were originally generated on Ardmore,
Newtown receives them from BrynMawr.
Newtown also computes and applies locally
generated updates

.. A95, A96, A97,
A98, A99

0O: ... A95, A96, A97,
Bé1, B62, B63, B64

... M34, A95, M35,
M36, A96, M37, A97,

S:... M34, A95, M35,
M36, A96, M37, A97,

M38

A98, N73, B61, N74,
Be62, N75, B63, N76,
Be4

While BrynMawr and Newtown, keep

the enterprise in operation, the first data
center is recovered. Since Ardmore has
transactions in its database that were not
replicated to BrynMawr when the latter
started operating as the originating primary
instance, and since Malvern had transactions
that were not replicated to Newtown when
the latter took over, Ardmore and Malvern
must now rollback their databases and
create Unreplicated Transaction Files

before receiving BC replication streams
from BrynMawr and Newtown respectively.

183

Database Replication

Ardmore

BrynMawr

Malvern

Newtown Comments

Ardmore rolls off A98 and A99, Malvern
rolls off A97 and M38.

R: ... A95, A96, A97,
Bé1, B62, B63, B64

0O: ... A95, A96, A97,
Bé1, B62, B63, B64,
B65

R: ... M34, A95, M35,

S: ... M34, A95, M35, | Having rolled off transactions into an

M36, A96, M37, A97,

M36, A96, M37, A97, | Unreplicated Transaction Log, Ardmore

A98, N73, B61, N74,
B62, N75, B63, N76,
Be64

A98, N73, B61, N74,
B62, N75, B63, N76,
B64, N77

can now operate as a replicating secondary
instance to BrynMawr. This is normal BC
Logical Multi-Site operation. BrynMawr and
Malvern continue operating as originating
primary instance and supplementary
instance. Note that having rolled A97 off its
database, Malvern receives that transaction
from Newtown as it catches up.

Replication and Online Rollback

Consider the following example where Ardmore rolls back its database in state space while an application is in operation.
using the mupip journal -rollback -backward -online feature.

Ardmore

BrynMawr

Malvern

Comments

0O: ... A95, A96, A97,
A98, A99

R: ... A95, A%6, A97

S:... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Rolls back to
A96 with A97
through A99 in
the Unreplicated
Transaction Log

Rolls back
automatically to A96
(assume Receiver
Server started with -
autorollback - refer
to the V5.5-000
Release Notes for
details.

Instances receiving a replication stream from Ardmore can be
configured to rollback automatically when Ardmore performs an
online rollback by starting the Receiver Server with -autorollback.
If Malvern's Receiver Server is so configured, it will roll A97
through M40 into an Unreplicated Transaction Log. This scenario
is straightforward. But with the -noresync qualifier, the Receiver
Server can be started configured to simply resume replication
without rolling back, and that scenario is developed here.

O: ... A95, A96,
A97a, A98a, A99a

R: ... A95, A9e6,
A97a, A98a

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40,
A97a, M41, A98a,
M42

Transactions A97a through A99a are different transactions from
A97 through A99 (which are in an Unreplicated Transaction File
on Ardmore and must be reprocessed). Note that Malvern has
both the original A97 and A98 as well as A97a and A98a. A99 was
never replicated to Malvern - Ardmore rolled back before it was
replicated, and A99a has not yet made it to Malvern (it will soon,
unless Ardmore rolls back again).

Limitations - SI Replication

SI replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M on OpenVMS.
Furthermore, starting V5.5-000, GT.M does not support replication between OpenVMS and POSIX platforms, or on POSIX
platforms with GT.M releases prior to V5.1-000. To upgrade to GT.M V5.5-000, or to upgrade from GT.M on OpenVMS to GT.M
V5.5-000 on a POSIX platform, first upgrade to GT.M V5.1-000 or later on a POSIX platform as an intermediate step.

184

Database Replication

Although a receiver of SI replication can source a BC replication stream for downstream propagation, it cannot source an SI
replication stream. So, in the example above, while Malvern can receive SI replication from Ardmore or BrynMawr, and it can
source a BC replication stream to Newtown, which can in turn source a BC replication stream to Oxford. Thus, none of Malvern,
Newtown or Oxford can source an SI replication stream.

Also an instance can only receive a single SI replication stream. Malvern cannot receive SI replication from an instance other
than Ardmore (or an instance receiving BC replication from Ardmore, such as BrynMawr). Newtown or Oxford are replicating

secondary instances and can receive no updates other than from Malvern.

The total number of replication streams that an instance can source is sixteen, with any combination of BC and SI replication.

185

Database Replication

Replication Architecture

The following diagram illustrates a BC replication configuration deployed as B<-A->C. White (top) is the originating instance
processing business logic, while Rose (left) and Yellow (right) are replicating instances. The dotted line represents a TCP
connection and the red dots show the movement of transactions. If White goes down in an unplanned or planned event, either
Rose or Yellow can become the originating instance within seconds to tens of seconds, and the other instance can become

a replicating instance to the new originating instance. When White recovers, it rejoins as a replicating instance to the new
originating instance. At some suitable future time, when so desired, White can again be made the originating instance.

---- TCP Connection

Application > Journal
Logic Pool

. '

J (Source Source
ourna Server_{ Server
files .

Receiver Receive
——|
Server Pool

|

y

Update

Process JOPU rnlal
+ Helpers ©e

Source

Server

When a process commits a transaction on White, GT.M provides Durability by writing and "hardening" an update record to the
journal file and then the database file. The same process also writes the update records to an area of shared memory called a
Journal Pool as part of committing the transaction, but does not wait for Rose and Yellow to commit the transaction (this means

186

Database Replication

that a failure of the network between instances does not stop application operation on White). Two Source Server processes,
one for Rose and one for Yellow, read journal update records from the Journal Pool and stream updates over TCP connections
to Receiver Server processes on the replicating instances they serve.

Under normal conditions, White Source Servers stream update records from the Journal Pool to the Rose and Yellow Receiver
Servers. The Journal Pool is a shared memory segment that does not expand after its initial creation. If updates for the database
state to which the replicating instance needs to catch up are no longer in the Journal Pool, the Source Server finds the updates
in journal files, until the replicating instance catches up to the point where the remaining required updates can again come
from the Journal Pool. The diagram represents this with the curved lines from the journal file to the Source Server processes.

A Source Server® can be in either of two modes--active mode or passive mode.

In active mode, a Source Server connects to the Receiver Server on its replicating instance and transfers update records from
the Journal Pool via the communication channel. If an active Source Server is not connected to its Receiver Server, it makes
repeated attempts to connect until it succeeds. When an active Source Server connects with its Receiver Server, they ensure
their two instances are in sync before proceeding with replication. In the diagram, the White Source Servers are in active mode.
When an active Source Server receives a command to switch to passive mode, it closes the connection with its Receiver Server
and "goes to sleep” until it receives a command to become active.

In passive mode, a Source Server is in a stand-by state. In the diagram, the Rose and Yellow Source Servers are in passive mode.
When a passive Source Server receives a command to switch to active mode, it attempts to establish a connection with the
specified Receiver Server on its replicating instance.

Under typical operating conditions, with no system or network bottlenecks, GT.M moves a transaction off the originating
instance and into the care of the network moving towards its replicating instance in sub-millisecond time frames. Network
transit times then determine how long the transaction message takes to reach the replicating instance. Because it uses a change-
or delta-based protocol, GT.M Replication uses network bandwidth efficiently. Furthermore, the Source Server can compress
the byte stream which the Receiver Server then decompresses; alternatively network routers can perform the compression and
decompression. You can use standard techniques at the stack or router for encrypting TCP connections to secure replication.

On Rose and Yellow instances, a Receiver Server receives update records sent by the White Source Server and puts them in the
Receive Pool, which is in a shared memory segment. Source and Receiver Server processes implement flow control to ensure
that the Receive Pool does not overflow. The Update Process picks these update records and writes them to the journal file, the
database file, and the Journal Pool. The Update Process on a replicating instance performs operations analogous to "Application
Logic" on the originating instance.

Helper Processes

Helper processes accelerate the rate at which an Update Process can apply an incoming replication stream to the database on a
replicating instance.

The GT.M database engine performs best when multiple processes concurrently access the database, cooperating with one
another to manage it. Therefore, it is possible for the tens, hundreds or thousands of application processes executing on an
originating instance to outperform a replicating instance with only a single Update Process. Helper processes enable the update
process to apply database updates faster and thereby keep up.

There are two types of helper processes:

1. Reader: Reader processes read the update records in the Receive Pool and attempt to pre-fetch database blocks into the
global buffer pools, so they are more quickly available for the Update Process.

3The first Source Server process started on an instance creates the Journal Pool.

187

Database Replication

2. Writer: Writer processes help the Update Process by flushing database and journal records from shared memory (global and
journal buffers) to the file system.

A certain number of each type of helper process maximizes throughput. As a practical matter, as long as the file system
bandwidth on a replicating instance is equal to or greater than that of the originating instance providing its replication stream,
there need be little concern about having too many helper processes.

Note

There may be other reasons for a replicating instance to lag behind its originating instance during
replication. Helper processes cannot improve situations such as the following:

+ There is a bottleneck in the network between the originating and replicating instances--increase the
network bandwidth or use compression.

+ The hardware of the replicating instance is not as capable as that of the hardware on the originating
instance--upgrade the hardware of the replicating instance.

Filters

A Filter is a conversion program that transforms a replication stream to a desired schema. It operates as a traditional UNIX
filter, reading from STDIN and writing to STDOUT. Both input and output use the GT.M journal extract format. A filter can
operate on an originating instance or a replicating instance. When the originating instance is an older application version,

a filter can change the update records from the old schema to the new schema. When the originating instance is the newer
application version, a filter can change the update records from the new schema to the old schema. Once you have logic for
converting records in the old schema to the new schema, the per record code serves as the basis for the filter by replacing the
scanning logic with logic to read the extract format and extract the update and completing the filter by reassembling the revised
record(s) into the GT.M extract format.

For complete redundancy during rolling upgrades, you must also have a filter that changes transactions from the new schema
to the old schema. The principal restriction in creating schema change filters is that the filter must not change the number of
transactions in the replication stream, since GT.M uses the journal sequence numbers for checking and restoring the logical
equivalence of instances.

This means:

« Ifareplication stream contains transactions, for each input transaction, the filter must produce one and exactly one output
transaction. It's acceptable for a transaction to be empty, that is, to make no database updates.

« If an update in a replication stream is outside a transaction, it is considered a transaction in that the journal sequence number
is to be incremented by one.

o If the schema change requires a single database update, simply emit the new update in the output stream.
o If the schema change requires no database updates in the new schema, emit a single empty transaction.

o If the schema change requires multiple database updates in the new schema, create a transaction, and package all the updates
inside that transaction.

188

Database Replication

Replication Instance File

A Replication Instance file maintains the current state of an instance. It also serves as a repository of the history of the journal
sequence numbers that are generated locally or received from other instances.

It includes 3 sections -- File Header, Source Server slots, and History Records.

The File Header section records information about the current instance, such as semaphore and shared memory ids of the
Journal and Receive Pool, journal sequence number of the current instance.

The Source Server slots store information for each replicating instance for which a Source Server is started. A slot stores the
name of the replicating instance, the last transmitted sequence number, and the sequence number when the Source Server was
last connected to the originating instance (Connect Sequence Number).

A Replication Instance file has 16 slots. Initially, all are unused. A Source Server replicating to a replicating instance for the first
time utilizes an unused slot to store the information and any future Source Server process replicating to the same replicating
instance updates this information.

If an unused slot is not available, the first time a Source Server is started to replicate to an instance, the slot for the least
recently started replicating instance is reused, and the information that is previously stored in that slot is overwritten. Any
subsequent mupip replic -source on the preempted replicating instance generates a REPLINSTSECNONE message.

Preemption of slots does not occur if an instance connects to no more than 16 different replicating instances throughout its
lifetime.

In the History Records section, the history of on instance is maintained as a set of records. A new history records is added to
the tail of the instance file whenever an instance changes from being an originating instance to replicating instance or vice
versa --the only exception being when a history record is removed from the tail of the instance file when updates are rolled
back from the database as part of a mupip journal -rollback. Every record identifies a range of journal sequence numbers and
the name of the originating instance that generated those journal records. The first history record starts with the current
journal sequence number of the instance.

When an originating instance transmits a sequence number to a replicating instance, the originating instance name is recorded
as "Root Primary Instance Name" in the replication instance file history of both the instances. The same rule applies when a
replicating instance is acting as an originating instance for another replicating instance downstream.

This history is crucial for determining the journal sequence numbers through which both instances are synchronized when two
instances attempt to connect. This journal sequence number is determined by going back in the history of both the instance
files and finding the earliest shared journal sequence number that was generated by the same originating instance. If the shared
journal sequence number matches the current journal sequence number of the replicating instance, the Receiver Server on the
replicating instance continues with normal replication. Otherwise, a mupip journal -rollback -fetchresync must be performed
on the replicating instance to rollback to a common synchronization point from which the originating instance can transmit
updates to allow it to catch up.

Note

It is necessary to take a backup of the Replication Instance file that is consistent with the snapshot of the
database files in the backup. mupip backup -replinstance creates a backup of the Replication Instance file.
If the replication instance file is damaged or deleted, a new instance file must be created, and all replicating
instance downstream must be recreated from backups.

189

Database Replication

Implementing Replication and Recovery

A transaction processing application makes a series of database updates. GT.M executes these updates online or from data-
driven logic, commonly called "batch."

1. Online Update: An online update arrives at GT.M as a message from a client.

2. Driven by internal information, such as balances in end-of-day, or external information, such as a list of checks from a
clearinghouse.

The processing model in each case is a transaction or a unit of work initiated by client input such as a request to transfer funds
from one account to another, or as the next logical unit of work such as posting interest on the next account. This general
model holds both for applications where users login directly to a host (perhaps using terminal emulation from a workstation)
and those where a client communicates with a host server process. This section lists key considerations for a transaction
processing application to:

« reliably perform online and batch updates on GT.M
« implement an LMS configuration in a tiered environment, and

« facilitate recovery in a cutover event.

Application Architecture

FIS recommends you to plan upfront for database consistency while designing the architecture of an LMS application. Some of
the planning parameters for application's architecture may include:

« Always package all database updates into transactions that are consistent at the level of the application logic using
the TSTART and TCOMMIT commands. For information on commands, refer to the "Commands" chapter in the GT.M
Programmer's Guide. For any updates not so packaged, ensure that the database is logically consistent at the end of every
M statement that updates the database; or that there is application logic to check, and restore application-level consistency
when the database recovers after a crash.

+ Ensure that internally driven batch operations store enough information in the database to enable an interrupted batch
operation to resume from the last committed transaction. In case an originating instance fails in the middle of a batch
process, a new originating instance (previously a replicating instance) typically must resume and complete the batch process.

« If the application cannot or does not have the ability to restart batch processes from information in the database, copy a
snapshot of the database to a replicating instance just before the batch starts. In case an originating instance fails, restore the
new originating instance to the beginning of the batch operations, and restart the batch operation from the beginning on the
new originating instance.

+ Ensure that externally driven batch processing also has the ability to resume. The external file driving the batch operation
must be available on the replicating instance before starting the batch operation on the originating instance. This is required
to handle originating instance failure during the batch process.

« GT.M produces an error for updates outside the set of database files defined by the instance file. External references are not
prohibited as such. In other words, there can be global directory and instance configurations where an external reference
update falls within the instance and works correctly. Read references outside an instance are permitted because they
currently do not engage replication.

190

Database Replication

Meszzage
Tranzport
File |

FrimaryFouting

—|
|7

'

I pplication Servers; fkiveally Generated | External

Batch

| |
| |
: :
o [——
: :
| |
| |
| |

——
m Process

—_—= Transzaction Start |

Update Databaze
== Transaction Commit

Journal 4—' Freply

Feplication Source Server

Filker [old ko new) | Frimarny Systemn
I

|_ F ailoverRouting ! ;;:w: + _I
_ Si

L for Pestar S

Inpplication Servers-
_—— nactivelistening for Falower |
“*ﬂ ¥

Feplication Feceiver Server

I_ T = 7 7 7 [Filter[ald to new)
Joumal |4

Secondary System

Site 2

This diagram illustrates an application architecture that can reliably perform batch and online updates in a tiered environment.
It addresses the online updates via the Message Transport (which has to be able to reroute communications to the current
originating instance after a cutover) and batch updates via an external file (which has to be made available to the current
originating instance after a cutover).

An application server is a GT.M process that accepts, processes, and responds to messages provided through the Message
Transport. They may exist as a bunch of application servers in a “cloud” of size determined by the size of the node and the
needs of the application. On the originating instance, an application server process receives messages and processes application
transactions. The application logic issues the TSTART command and a series of SET (also KILL and MERGE) commands that
[potentially/provisionally] update the database, then a TCOMMIT command to finalize the transaction. The process may
directly WRITE a reply, but another process may act as an agent that takes that reply from a database record and sends it to the
originator.

Implement a Message Delivery System

This section describes how a well-designed messaging system makes an application's architecture more cutover-ready by using
an example in which the originating instance fails after the TCOMMIT, but before the system generates a reply and transmits it
to the client.

As noted in the previous section, application servers on the originating instance respond to messages from clients delivered
over a network for online operations in a tiered environment. Each client message results in zero (inquiry) or one update
transaction on the server. The network delivering messages must be robust. This means each message must either be delivered

191

Database Replication

exactly once to an application server on the originating instance, or result in client notification of the delivery failure. The
messaging system must handle situations such as failure on the originating instance after the client transmits the message but
before the originating instance receives it. Integration of the message delivery system with the logic determining whether an
instance is an originating instance or replicating instance at any time reduces risk and switch over time.

Application logic typically responds to client messages with a reply generated immediately after the TCOMMIT for a
transaction. The application and the message architecture must handle the scenario in which the originating system fails after
the TCOMMIT, but before the system generates a reply and transmits it to the client. In such a scenario, the client waits for a
response and eventually timesout and retries the message.

An LMS application can handle this situation by designing the message structure to have a unique message identifier (MSGID),
and the application to include the MSGID in the database as part of the TCOMMIT.

If the originating instance crashes after committing the transaction and the cutover logic makes the former replicating instance
the new originating instance--This new originating instance, then, receives the retried message that has the same MSGID from
the client. In this case, one of the following can occur:

+ The database shows that the transaction corresponding to the MSGID in the message was processed. The server could then
reply that this transaction was processed. A more sophisticated approach computes the response to the client within the
transaction, and to stores it in the database as part of the transaction commit. Upon receipt of a message identified as a retry
of a previously processed message, the server returns the stored response from the database to the client.

+ The database shows the transaction as unprocessed. In this case, the new originating instance processes the transaction.
At this time, it is unknown whether the former originating instance processed the transaction before going down. If it was
not processed, there is no issue. If it was processed but not replicated, GT.M rollback logic rolls it back when the former
originating instance comes up as a replicating instance, and it must be reconciled either manually or automatically, from the
rollback report (since the result of processing the first time may be different from the result of processing the second time).

System Requirements

This section describes the system requirements that are necessary to implement an application with an LMS configuration.

Root Primary Status Identification

GT.M does not make any decisions regarding originating or replicating operations of an instance. You must explicitly specify —
ROOTPRIMARY to identify an instance as current originating instance during application startup.

To implement a robust, continuously available application, each application instance must come up in the correct state. In
particular, there must be exactly one originating instance ((ROOTPRIMARY) at any given time. All database update operations
on replicated databases must take place on the originating instance. LMS prohibits independent logical database updates on
instances other than the originating instance.

Note

MUPIP BACKUP -ONLINE and MUPIP REORG -ONLINE update control information or physical
representations, not the logical database contents, and can operate freely on a replicating instance.

Cutover

Cutover is the process of reconfiguring an LMS application so that a replicating instance takes over as the current originating
instance. This might be a planned activity, such as bringing down the originating instance for hardware maintenance, or it

192

Database Replication

may be unplanned such as maintaining application availability when the originating instance or the network to the originating
instance goes down.

Implementing and managing cutover is outside the scope of GT.M. FIS recommends you to adhere to the following rules while
designing cutover:

1. Always ensure that there is only one originating instance at any given time where all database updates occur. If there is no
originating instance, the LMS application is also not available.

2. Ensure that messages received from clients during a cutover are either rejected, so the clients timeout and retry, or are
buffered and sent to the new originating instance.

3. Always configure a former originating instance to operate as a replicating instance whenever it resumes operations or
comes back online after a crash.

4. Failing to follow these rules may result in the loss of database consistency between an originating instance and its
replicating instances.

ﬁ Important

A cutover is a wholesome practice for maximizing business continuity. FIS strongly recommends setting
up a cutover mechanism to keep a GT.M application up in the face of disruptions that arise due to errors in
the underlying platform. In environments where a cutover is not a feasible due to operational constraints,
consider setting up an Instance Freeze mechanism for your application. For more information, refer to
“Instance Freeze” (page 193).

Instance Freeze

In the event of run-time conditions such as no disk space, I/O problems, or disk structure damage, some operational policies
favor deferring maintenance to a convenient time as long as it does not jeopardize the functioning of the GT.M application. For
example, if the journal file system runs out of disk space, GT.M continues operations with journaling turned off and moves to
the replication WAS_ON state until journaling is restored. If there is a problem with one database file or journal file, processes
that update other database regions continue normal operation.

Some operational policies prefer stopping the GT.M application in such events to promptly perform maintenance. For such
environments, GT.M has a mechanism called "Instance Freeze".

The Instance Freeze mechanism provides an option to stop all updates on the region(s) of an instance as soon as a process
encounters an error while writing to a journal or database file. This mechanism safeguards application data from a possible
system crash after such an error.

The environment variable gtm_custom_errors specifies the complete path to the file that contains a list of errors that should
automatically stop all updates on the region(s) of an instance. The error list comprises of error mnemonics (one per line and in
capital letters) from the GT.M Message and Recovery Guide. The GT.M distribution kits include a custom_errors_sample.txt file
which can be used as a target for the gtm_ custom_errors environment variable.

Note

When a processes that is part of an instance configured for instance freeze behavior encounters an
error with journaling, it freezes the instance and invokes its own error trap even if it does not have the
gtm_custom_errors environment variable set.

193

Database Replication

You can enable the Instance Freeze mechanism selectively on any region(s) of an instance. For example, a region that represents
a patient or financial record may qualify for an Instance Freeze whereas a region with an easily rebuilt cross reference index
may not. You can also promptly freeze an instance irrespective of whether any region is enabled for Instance Freeze.

MUPIP SET -[NO]JINST[_FREEZE_ON_ERROR] [-REGION]J-FILE] enables custom errors in region to automatically cause
an Instance Freeze. MUPIP REPLICATE -SOURCE -FREEZE={ON|OFF} -[NO]COMMENT([="string"'] promptly sets or clears
an Instance Freeze on an instance irrespective of whether any region is enabled for Instance Freeze (with MUPIP SET -
INST_FREEZE_ON_ERROR).

A process that is not in a replicated environment ignores $gtm_custom_errors. The errors in the custom errors file must have a
context in one of the replicated regions and the process recognizing the error must have the replication Journal Pool open. For
example, an error like UNDEF cannot cause an Instance Freeze because it is not related to the instance. It also means that, for
example, standalone MUPIP operations can neither cause nor honor an Instance Freeze because they do not have access to the
replication Journal Pool. A process with access to the replication Journal Pool must honor an Instance Freeze even if does not
have a custom error file and therefore cannot initiate an Instance Freeze.

Depending on the error, removing an Instance Freeze is operator driven or automatic. GT.M automatically removes Instance
Freezes that are placed because of no disk space; for all other errors, Instance Freeze must be cleared manually by operator
intervention. For example, GT.M automatically places an Instance Freeze when it detects a DSKNOSPCAVAIL message in the
operator log. It automatically clears the Instance Freeze when an operator intervention clears the no disk space condition.
During an Instance Freeze, GT.M modifies the NOSPACEEXT message from error (-E-) to warning (-W-) to indicate it is
performing the extension even though the available space is less than the specified extension amount. The following errors are
listed in the custom_errors_sample.txt file. Note that GT.M automatically clears the Instance Freeze set with DSKNOSPCAVAIL
when disk space becomes available. All other errors require operator intervention.

« Errors associated with database files caused by either I/O problems or suspected structural damage: DBBMLCORRUPT,
DBDANGER, DBFSYNCERR, DSKNOSPCAVAIL, GBLOFLOW, GVDATAFAIL, GVDATAGETFAIL, GVGETFAIL,
GVINCRFAIL, GVKILLFAIL, GVORDERFAIL, GVPUTFAIL, GVQUERYFAIL, GVQUERYGETFAIL, GVZTRIGFAIL,
OUTOFSPACE, TRIGDEFBAD.

+ Errors associated with journal files caused by either I/O problems or suspected structural damage: JNLACCESS, JNLCLOSE,
JNLCLOSED, JNLEXTEND, JNLFILECLOSERR, JNLFILEXTERR, JNLFILOPN, JNLFLUSH, JNLFSYNCERR, JRTNULLFAIL,
JNLRDERR, JNLREAD, JNLVSIZE, JNLWRERR.

During an Instance Freeze, attempts to update the database and journal files hang but operations like journal file extract which
do not require updating the database file(s) continue normally. When an Instance Freeze is cleared, processes automatically
continue with no auxiliary operational or programmatic intervention. The Instance Freeze mechanism records both the freeze
and the unfreeze in the operator log.

Note

As of V6.0-000, the Instance Freeze facility is a field test grade implementation. Because there are a large
number of errors that GT.M can recognize and because GT.M has several operational states, the GT.M
team has tested the errors in the custom_errors_sample.txt which are consistent with what we expect to be
common usage. If you experience problems trying to add other errors or have concerns about plans to add
other errors, please consult your GT.M support channel.

TLS/SSL Replication

GT.M includes a plugin reference implementation that provides the functionality to secure the replication connection between
instances using Transport Layer Security (TLS; previously known as SSL). Just as database encryption helps protect against
unauthorized access to a database by an unauthorized process that is able to access disk files (data at rest), the plugin reference

194

Database Replication

implementation secures the replication connection between instances and helps prevent unauthorized access to data in
transit. FIS has tested GT.M's replication operations of the TLS plugin reference implementation using OpenSSL (http://
www.openssl.org). A future GT.M release may include support for popular and widely available TLS implementations /
cryptography packages other than OpenSSL. Note that a plug-in architecture allows you to choose a TLS implementation and
a cryptography package. FIS neither recommends nor supports any specific TLS implementation or cryptography package and
you should ensure that you have confidence in and support for whichever package that you intend to use in production.

Note

Database encryption and TLS/SSL replication are just two of many components of a comprehensive security
plan. The use of database encryption and TLS replication should follow from a good security plan. This
section discusses encrypted GT.M replicating instances and securing the replication connection between
them using TLS/SSL; it does not discuss security plans.

é Important

You can setup TLS replication between instances without using GT.M Database Encryption. GT.M Database
Encryption is not a prerequisite to using TLS replication.

The general procedure of creating a TLS replication setup includes the following tasks:

1. Create a new database or use an existing one.

2. “Creating a root-level certification authority” (page 195)

3. “Creating leaf-level certificates” (page 196)

4. “Creating a configuration file” (page 198)

5. Enabling replication and starting the Source and Receiver Servers with the TLSID qualifier.

Creating a root-level certification authority

To use TLS, the communicating parties need to authenticate each other. If the authentication succeeds, the parties encrypt

the subsequent communication. TLS authentication uses certificates signed by Certificate Authorities (CAs). Certificate
Authorities' certificates themselves are signed (and trusted) by other CAs eventually leading to a Root CA, which self-signs. its
own certificate Although the topic of certificates, and the use of software such as OpenSSL is well beyond the scope of GT.M
documentation, the steps below illustrate the quick-start creation of a test environment using Source and Receiver certifications
with a self-signed Root CA certificate.

Creating a root certificate authority involves three steps.

1. Generate a private key with the OpenSSL command: openssl genrsa -des3 -out ca.key 4096. The command prompts for a
password with which to protect the private key.

2. Generate a self-signed certificate with the OpenSSL command: openssl req -new -x509 -days 365 -key ca.key -out
ca.crt. The command first prompts for the password of the private key followed by a series of interactive queries regarding
the attributes of the certificate. Below is sample output:

Enter pass phrase for ca.key:
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

195

http://www.openssl.org
http://www.openssl.org

Database Replication

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:PA

Locality Name (eg, city) [1:Malvern

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Pvt. Ltd
Organizational Unit Name (eg, section) []:Certificate Authority

Common Name (e.g. server FQDN or YOUR name) []:www.example.com

Email Address []:example@example.com

At this point, ca.crt is a root certificate that can be used to sign other certificates (including intermediate certificate authorities).
The private key of the root certificate must be protected from unauthorized access.

Creating leaf-level certificates

The root certificate is used to sign regular, leaf-level certificates. Below are steps showing the creation of a certificate to be used
to authenticate a GT.M Source Server with a GT.M Receiver Server (and vice-versa).

1. Generate a private key. This is identical to step (a) of root certificate generation.

2. Generate a certificate sign request with the OpenSSL command openssl req -new -key client.key -out client.csr.
The command first prompts for the password of the private key followed by a series of interactive queries regarding the
attributes of the certificate. Below is sample output:

Enter pass phrase for client.key:

You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:PA

Locality Name (eg, city) [1:Malvern

Organization Name (eg, company) [Internet Widgits Pty Ltd]:XYZQ International
Organizational Unit Name (eg, section) []: OurSourceServer

Common Name (e.g. server FQDN or YOUR name) []:www.Xxyzg.com

Email Address []:xyzq@xyzg.com

Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:challenge

An optional company name []:XYZQ Pvt. Ltd

Typically, organization that generates the certificate sign then sends it to a certificate authority (or a root certificate
authority), which audits the request and signs the certificate with its private key, thereby establishing that the certificate
authority trusts the company/organization that generated the certificate and requested its signing. In this example, we sign
the certificate sign request with the root certificate generated above.

3. Sign the certificate sign request with an OpenSSL command like:

196

Database Replication

openssl ca -config $PWD/openssl.cnf -in client.ccr -out client.crt

The output of this command looks like the following:

>You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]: US

State or Province Name (full name) [Philadelphial:Illinois

City (e.g., Malvern) [Malvern]:Chicago”

Organization Name (eg, company) [FIS]:FIS

Organizational Unit Name (eg, section) [GT.M]:GT.M

Common Name (e.g. server FQDN or YOUR name) [localhost]:fisglobal.com
Ename Address (e.g. helen@gt.m) []:root@gt.m

Please enter the following 'extra' attributes

to be sent with your certificate request
A challenge password []:
An optional company name []:

Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./certs/ca.key:

Check that the request matches the signature
Signature ok

Certificate Details:

Serial Number: 14 (0xe)

Validity

Not Before: Jun 11 14:06:53 2014 GMT

Not After : Jun 12 14:06:53 2014 GMT

Subject:

countryName = US

stateOrProvinceName = Illinois

organizationName = FIS

organizationalUnitName = GT.M

commonName = fisglobal.com

emailAddress = helen@gt.m

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
96:FD:43:0D:0A:C1:AA:6A:BB:F3:F4:02:D6:1F:0A:49:48:F4:68:52
X509v3 Authority Key Identifier:
keyid:DA:78:3F:28:8F:BC:51:78:0C:5F:27:30:6C:C5:FE:B3:65:65:85:C9

Certificate is to be certified until Jun 12 14:06:53 2014 GMT (1 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/nly
Write out database with 1 new entries
Data Base Updated

197

Database Replication

C Important

Keep the self-signed root certificate authority and leaf-level certificates in a secure location. Protect their
directories with 0500 permissions and the individual files with 0400 permissions so that unauthorized users
cannot access them.

Please refer to OpenSSL documentation http://www.openssl.org/docs/ for information on how to create intermediate CAs,
Diffie-Hellman parameters, Certificate Revocation Lists, and so on.

Creating a configuration file

The configuration file is divided into two sections-Database encryption section and the TLS section. The database encryption
section contains the list of database files and their corresponding key files and the TLS section contains a TLSID label that
identifies the location of root certification authority certificate in PEM format and leaf-level certificate with their corresponding
private key files. Note that the use of the gtmcrypt_config environment variable require the libconfig library to be installed.

After creating a leaf-level certificate that is signed by a self-signed root certificate, create a configuration file (one for Source
and the other for Receiver Server) with the following format:

tls: {
verify-depth: 7;
CAfile: "/path/to/ca.crt”;
tls : {
format: "PEM";
cert: "/path/to/client.crt”;
key: "/path/to/client.key”;
35
5

where tls specifies the TLSID that is used to start the Source/Receiver Server, CAfile specifies the path to the root certification
authority, cert specifies the the path to leaf-level certificate and key specifies the path to the private key file.

Set the gtmcrypt_config environment variable to point to the path to the configuration file. The environment variable
gtmtls_passwd_<tlsid> must specify an obfuscated version of the password for the client's private key. Use the maskpass utility
provided with your GT.M distribution to create an obfuscated password.

Here is a sample configuration file:

/* Database encryption section */

database: {
keys: (
{
dat: "/tmp/mumps.dat”; /* Encrypted database file. */
key: "/tmp/mumps.key"”; /* Encrypted symmetric key. */
o
{
dat: "/tmp/a.dat”;
key: "/tmp/a.key";
o
E
3

198

http://www.openssl.org/docs/

Database Replication

/* TLS section */

tls: {
/* Certificate Authority (CA) verify depth provides an upper limit on the number of CAs to look up for
verifying
a given
* certificate. The depth count is described as '’'level 0:peer certificate’’, '’'level 1: CA certificate’’,
* ''level 2: higher level CA certificate’'’, and so on. The default verification depth is 9.
*/

verify-depth: 7;

/* CAfile: points to a file, in PEM format, describing the trusted CAs. The file can contain several CA
certificates identified by:

* —---- BEGIN CERTIFICATE-----

* (CA certificate in base64 encoding) ...
* —---- END CERTIFICATE-----

* sequences.

*/

CAfile: "/home/jdoe/current/tls/certs/CA/gtmCA.crt”;

/* CApath: points to a directory containing CA certificates in PEM format. The files each contain one CA
certificate. The files are
* looked up by the CA subject name hash value, which must hence be available. If more than once certificate

with
the same
* name hash value exists, the extension must be different (e.g. 9d66eef@.0, 9d66eef@.1 etc). The directory
is
typically
* created by the OpenSSL tool 'c_rehash’.
*/

CApath: "/home/jdoe/current/tls/certs/CA/";

/* Diffie-Hellman parameters used for key-exchange. Either none or both have to be specified. If neither is
specified, then

* then the data is encrypted with the same keys that are used for authentication.

*/

dh512: "/home/jdoe/current/tls/dh512.pem";

dh1024: "/home/jdoe/current/tls/dh1024.pem";

/* crl: points to a file containing list of revoked certificates. This file is created by the openssl
utility. */
crl: "/home/jdoe/current/tls/revocation.crl”;

/* Timeout (in seconds) for a given session. If a connection disconnects and resumes within this time
interval,
the session

* is reused to speed up the TLS handshake. A value of @ forces sessions to not be reused. The default value
is 1
hour.

*/

session-timeout: 600;

/* List of certificate/key pairs specified by identifiers. */
PRODUCTION: {
/* Format of the certificate and private key pair. Currently, the GT.M TLS plug-in only supports PEM

199

Database Replication

format. */
format: "PEM”;
/* Path to the certificate. */
cert: "/home/jdoe/current/tls/certs/Malvern.crt”;
/* Path to the private key. If the private key is protected by a passphrase, an obfuscated version of
the
password
* should be specified in the environment variable which takes the form gtmtls_passwd_<identifier>.
For instance,
* for the below key, the environment variable should be 'gtmtls_passwd_PRODUCTION'.
* Currently, the GT.M TLS plug-in only supports RSA private keys.
*/
key: "/home/jdoe/current/tls/certs/Malvern.key”;
I

DEVELOPMENT: {
format: "PEM”;
cert: "/home/jdoe/current/tls/certs/BrynMawr.crt”;
key: "/home/jdoe/current/tls/certs/BrynMawr.key";
I
Ji5

If you are using the environment variable gtm_dbkeys to point to the master key file for database encryption, please convert
that file to the libconfig configuration file format as pointed to by the $gtmcrypt_config environment variable at your earliest
convenience. Effective V6.1-000, the gtm_dbkeys environment variable and the master key file it points to are deprecated

in favor of the gtmencrypt_config environment variable. Although V6.1-000 supports the use of $gtm_dbkeys for database
encryption, FIS plans to discontinue support for it in the very near future. To convert master key files to libconfig format

configuration files, please click on u to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/bhaskar/gtm/doc/articles/
downloadables/CONVDBKEYS.m.

Network Link between Systems

GT.M replication requires a durable network link between all instances. The database replication servers must be able to use the
network link via simple TCP/IP connections. The underlying transport may enhance message delivery, (for example, provide
guaranteed delivery, automatic cutover and recovery, and message splitting and re-assembly capabilities); however, these
features are transparent to the replication servers, which simply depend on message delivery and message receipt.

Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE journaling

Between BEFORE_IMAGE journaling and NOBEFORE_IMAGE journaling, there is no difference in the final state of a database /
instance recovered after a crash. The difference between before image and nobefore journaling is in:

« the sequence of steps to recover an instance and the time required to perform them.

« the associated storage costs and IO bandwidth requirements.

200

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX415.txt
downloadables/CONVDBKEYS.m

Database Replication

Recovery

When an instance goes down, its recovery consists of (at least) two steps: recovery of the instance itself: hardware, OS, file
systems, and so on - say tgys; tsys is almost completely® independent of the type of GT.M journaling.

For database recovery:

« With BEFORE_IMAGE journaling, the time is simply that is needed to execute a mupip journal recover backward "*"
command or, when using replication, mupip journal recover -rollback. This uses before image records in the journal files
to roll the database files back to their last epochs, and then forward to the most current updates. If this takes tyy, the total
recovery time is tgys+thck-

« With NOBEFORE_IMAGE journaling, the time is that required to restore the last backup, say, tyes plus the time to perform
a mupip journal -recover -forward "*" command, say tgyq, for a total recovery time of teys+tresi+tewa. If the last backup is
available online, so that "restoring the backup" is nothing more than setting the value of an environment variable, t..s;=0 and
the recovery time is tsys+tgyd.

Because tyy is less than teyg, teys+thek is less than tgy+teyg. In very round numbers, tgys may be minutes to tens of minutes, teyq
may be tens of minutes and tbck may be in tens of seconds to minutes. So, recovering the instance A might (to a crude first
approximation) be a half order of magnitude faster with BEFORE_IMAGE journaling than with NOBEFORE_IMAGE journaling.
Consider two deployment configurations.

1. Where A is the sole production instance of an application, halving or quartering the recovery time of the instance is
significant, because when the instance is down, the enterprise is not in business. The difference between a ten minute
recovery time and a thirty minute recovery time is important. Thus, when running a sole production instance or a
sole production instance backed up by an underpowered or not easily accessed, "disaster recovery site," before image
journaling with backward recovery is the preferred configuration ofis the preferred configuration ofbetter suits a production
deployment. Furthermore, in this situation, there is pressure to bring A back up soon, because the enterprise is not in
business - pressure that increases the probability of human error.

2. With two equally functional and accessible instances, A and B, deployed in an LMS configuration at a point in time when A,
running as the originating instance replicating to B, crashes, B can be switched from a replicating instance to an originating
instance within seconds. An appropriately configured network can change the routing of incoming accesses from one
instance to the other in seconds to tens of seconds. The enterprise is down only for the time required to ascertain that A is
in fact down, and to make the decision to switch to B— perhaps a minute or two. Furthermore, B is in a "known good" state,
therefore, a strategy of "if in doubt, switchover" is entirely appropriate. This time, tswch, is independent of whether A and
B are running BEFORE_IMAGE journaling or NOBEFORE_IMAGE journaling. The difference between BEFORE IMAGE
journaling and NOBEFORE_IMAGE journaling is the difference in time taken subsequently to recover A, so that it can be
brought up as a replicating instance to B. If NOBEFORE_IMAGE journaling is used and the last backup is online, there is no
need to first perform a forward recovery on A using its journal files. Once A has rebooted:

« Extract the unreplicated transactions from the crashed environment

« Connect the backup as a replicating instance to B and allow it to catch up.
Note

Applications that can take advantage the forthcoming LMX capability will essentially make tgyc zero when
used with a suitable front-end network.

“The reason for the "almost completely” qualification is that the time to recover some older file systems can depend on the amount of space used.

201

Database Replication

Comparison other than Recovery

Cost The cost of using an LMS configuration is at least one extra instance plus network bandwidth for
replication. There are trade-offs: with two instances, it may be appropriate to use less expensive
servers and storage without materially compromising enterprise application availability. In fact, since
GT.M allows replication to as many as sixteen instances, it is not unreasonable to use commodity
hardware® and still save total cost.

Storage Each extra instance of course requires its own storage for databases and journal files. Nobefore

journal files are smaller than the journal files produced by before image journaling, with the savings
potentially offset if a decision is made to retain an online copy of the last backup (whether this nets out
to a saving or a cost depends on the behavior of the application and on operational requirements for
journal file retention).

Performance I0 bandwidth requirements of nobefore journaling are less than those of before image journaling,
because GT.M does not write before image journal records or flush the database.

« With before image journaling, the first time a database block is updated after an epoch, GT.M writes
a before image journal record. This means that immediately after an epoch, given a steady rate of
updates, there is an increase in before image records (because every update changes at least one
database block and generates at least one before image journal record). As the epoch proceeds, the
frequency of writing before image records falls back to the steady level” - until the next epoch.
Before image journal records are larger than journal records that describe updates.

« At epochs, both before image journaling and nobefore journaling flush journal blocks and perform
an fsync() on journal files®. When using before image journaling, GT.M ensures all dirty database
blocks have been written and does an fsync()d, but does not take these steps.

Because IO subsystems are often sized to accommodate peak IO rates, choosing NOBEFORE_IMAGE
journaling may allow more economical hardware without compromising application throughput or
responsiveness.

4GT.M absolutely requires the underlying computer system to perform correctly at all times. So, the use of error correcting RAM, and mirrored disks is advised
for production instances. But, it may well be cost effective to use servers without redundant power supplies or hot-swappable components, to use RAID rather
than SAN for storage, and so on.

"How much the steady level is lower depends on the application and workload.

°Even flushing as many as 20,000 journal buffers, which is more than most applications use, is only 10MB of data. Furthermore, when GT.M's SYNC_IO journal
flag is specified, the fsync() operation requires no physical IO.

The volume of dirty database blocks to be flushed can be large. For example, 80% of 40,000 4KB database blocks being dirty would require 128MB of data to be
written and flushed.

Database Repair

A system crash can, and often will, damage a database file, leaving it structurally inconsistent. With before image journaling,
normal MUPIP recovery/rollback repairs such damage automatically and restores the database to the logically consistent state
as of the end of the last transaction committed to the database by the application. Certain benign errors may also occur (refer
to the "Maintaining Database Integrity" chapter). These must be repaired on the (now) replicating instance at an appropriate
time, and are not considered "damage" for the purpose of this discussion. Even without before image journaling, a replicating
instance (particularly one that is multi-site) may have sufficient durability in the aggregate of its instances so that backups (or
copies) from an undamaged instance can always repair a damaged instance.

202

Database Replication

Note

If the magnetic media of the database and/or the journal file is damaged (e.g., a head crash on a disk that is
not mirrored), automatic repair is problematic. For this reason, it is strongly recommended that organizations
use hardware mirroring for magnetic media.

n Caution

Misuse of UNIX commands, such as kill-9 and ipcrm, by processes running as root can cause database
damage.

Considering the high level at which replication operates, the logical dual-site nature of GT.M database replication makes it
virtually impossible for related database damage to occur on both originating and replicating instances.

To maintain application consistency, do not use DSE to repair or change the logical content of a replicated region on an
originating instance.

Note

Before attempting manual database repair, FIS strongly recommends backing up the entire database (all
regions).

After repairing the database, bring up the replicating instance and backup the database with new journal files. MUPIP backup
online allows replicating to continue during the backup. As stated in the Journaling chapter, the journal files prior to the
backup are not useful for normal recovery.

Procedures

GT.M database replication ensures that the originating instance and its replicating instances are logically identical, excluding

latency in replication. During rolling upgrades, the originating instance and its replicating instances are logically equivalent but
the exact storage of M global variables may differ. FIS recommends you to ensure that all database updates to replicated regions
must occur only on the originating instance. GT.M replicates all changes on the originating instance to its replicating instances.

Normal Operation

LMS applications require procedures for a number of situations, including both normal operation and failure scenarios.
Although LMS applications can operate manually, the requirements are complex enough to warrant automation via scripting.
It is essential to carefully design, implement, and test the procedures to provide an automatic cutover to a replicating instance
within seconds. GT.M provides the required functionality to implement continuous availability via LMS; however, smooth
operation requires significant system engineering to implement.

« Determine current and prior instance status (originating/replicating).
+ Perform necessary database recovery/rollback. Different failure modes have different recovery scenarios, which may include
rollback of previously committed transactions for subsequent processing. Reconcile rolled back transactions automatically or

manually.

+ Create new journal files. Although not required, this simplifies system administration.

203

Database Replication

+ Bring up the Source Server on each replicating instance to establish the Journal Pool. In case of a cutover, the new
originating instance needs the Journal Pool established to replicate data. On the originating instance, bring up the Source
Server in active mode.

+ On a replicating instance, bring up the Source Server in passive mode. Start the GT.M Receiver Server on the replicating
instance.

« When you start an originating instance, start any application servers. Optionally start application servers on a replicating
instance to facilitate a faster cutover; however, they must not perform updates to any replicating instance (Always remember
the golden rule: all database updates should be performed only on the originating instance).

« If you are starting a new originating instance and batch operations were in process when the former originating instance
went down, restart those batch operations on the new originating instance.

Startup

An initial startup of an application instance has no prior status. There are two ways to bring up an LMS application: bring up
the originating instance followed by the replicating instance, or bring both up at the same time.

Single-Site

« When launching a multi-site application as a conventional single-site, versus launching it as a single-site for which a
replicating instance will be launched later, always establish the Journal Pool before any M processes access the database.
Bring up the Source Server in passive mode to create the Journal Pool. Then bring up the application. Later, switch the
Source Server to active mode when the replicating instance comes up.

 Perform database recovery/rollback to the last consistent state, since the system may previously have crashed. If the database
was shut down cleanly, the recovery/rollback to the last consistent state is essentially a "no-op." This operation restores the
database to the last committed transaction. (This assumes there is no media damage.)

+ Create new journal files.

« Start the Source Server in passive mode.

o Start the application servers.

« If the state of the database indicates that batch operations were in process, restart batch operations.
Dual-site - Concurrent Startup

FIS does not recommend concurrent startup of instances in an LMS configuration because of the possibility of a network or
timing problem resulting in multiple originating or replicating instances. However, in a dual-site configuration it is possible to
concurrently startup the originating and replicating instance. The steps are as follows:

« Use an external agent to identify the originating and replicating instances and then bring up both sites simultaneously.

+ Ensure that both databases are logically identical and have the same journal sequence number. (When starting up, an
instance considers its journal sequence number to be the maximum reg_seqno of any replicated region. Thus, if the
originating instance and its replicating instance do not have identical files, that is if they are logically identical but configured
differently, ensure that at least one region on the replicating instance has reg_seqno and resync_seqno the same as the
largest reg_seqno on the originating instance.) No rollback/recovery should be required on either site.

« If there is any possibility that the two are not identical, do not bring both up concurrently.

204

Database Replication

Single-Site to Multi-Site
FIS recommends you to bring up the application as a single-site first and then bring up any replicating instances.
Setting up an A->B replication configuration for the first time
Perform the following steps to setup an originating instance Philadelphia and its replicating instance Shanghai.
+ On Philadelphia:

« Turn on replication.

« Create the replication instance file.

« Start the Source Server.
+ On Shanghai:

« Turn on replication.

+ Create the replication instance file.

o Start the passive Source Server.

« Start the Receiver Server.
Download Example

msr_procl.tar.gz contains a ready-to-run example of setting up an A->B replication configuration. Click

u to download msr_proc1.tar.gz or open directly from http://tinco.pair.com/bhaskar/gtm/doc/books/ao/
UNIX_manual/msr_procl.tar.gz. Use the following command sequence to run this example:

Philadelphia - originating instance Shanghai - replicating instance

1 $ source ./env Philadelphia $ source ./env Shanghai

2 $./repl_setup $./repl_setup

3 $./originating_start Philadelphia $./replicating_start Shanghai
Shanghai

4 $ mumps -r 2XCMD 'set $ mumps -r 2XCMD 'write "A'
"A="Philadelphia™

Philadelphia
5 $./originating_stop $./replicating_stop

This example demonstrates a command sequence that can be used to set up an A->B replication
configuration on a local test system. No claim of copyright is made with respect to the scripts used in this
example. YOU MUST UNDERSTAND, AND APPROPRIATELY ADJUST, THIS MODULE BEFORE USING IN
A PRODUCTION ENVIRONMENT.

Setting up an A->P replication configuration for the first time

205

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/downloadables/msr_proc1.tar.gz

Database Replication

Perform the following steps to setup an originating instance Philadelphia and its supplementary instance Perth.

« On Philadelphia:
« Turn on replication.
+ Create the replication instance file.
« Start the Source Server.

+ On Perth:

« Turn on replication.

+ Create the replication instance file with the -supplementary qualifier.

o Start the passive Source Server.

« Start the Receiver Server and the Update Process with -updateresync="/path/to/bkup_orig_repl_inst_file" -initialize. Use
the -updateresync -initialize qualifiers only once.

« For subsequent Receiver Server and Update Process startups, perform -rollback -fetchresync start the Recevier Server and

Update Process without the -updateresync -initialize qualifiers.

Download Example

msr_proc2.tar.gz contains a ready-to-run example of setting up an A->P replication configuration. Click

u to download msr_proc2.tar.gz or open directly from http://tinco.pair.com/bhaskar/gtm/doc/books/ao/
UNIX_manual/msr_proc2.tar.gz. Use the following command sequence to run this example:

Philadelphia - originating Perth - supplementary
instance instance
1 $ source ./env Philadelphia $ source ./env Perth
2 $./db_create -
$./repl_setup
3 $./originating_start_suppl -
Philadelphia Perth
4 $./backup_repl #Note down the $./db_create
target location of orig_ri_backup
$./suppl_setup /path/to/
orig_ri_backup
5 $ mumps -r 2XCMD 'set "A=1' $ mumps -r 2XCMD 'write "A set
"B=2 write "B'
6 - $./replicating_stop
7 = $./replicating_start_suppl n
Perth #all subsequent startups of the
Receiver Server.

206

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/downloadables/msr_proc2.tar.gz

Database Replication

Philadelphia - originating Perth - supplementary
instance instance
8 $./originating_stop $./replicating_stop

This example demonstrates a command sequence that can be used to set up an A->P replication
configuration on a local test system. No claim of copyright is made with respect to the scripts used in this
example. YOU MUST UNDERSTAND, AND APPROPRIATELY ADJUST, THIS MODULE BEFORE USING IN
A PRODUCTION ENVIRONMENT.

Replicating Instance Starts after a Shut Down or Crash

If the replicated regions are untouched after a shutdown or crash, simply restart the replicating instance. It automatically
catches up with the originating instance. Perform the following steps to start a replicating instance after a shutdown operation
or a crash:

« Recover/rollback database to last consistent state.

+ Create new journal files.

o First start the passive Source Server and then the Receiver Server.
« Start the passive application servers, if appropriate.

Replicating Instance Starts from a copy of Originating Instance

In this scenario, the database used to start up a replicating instance is logically identical to the database with which the
originating instance started up, and has the same journal sequence number. When the replicating instance starts, all
transactions applied to the originating instance replicate to the replicating instance as it catches up with the originating
instance.

Perform the following steps to start a replicating instance from a copy of the originating instance:
+ Load/restore the database files.

» Recreate the replication instance file.

o Turn replication on.

« Start passive Source Server, and then the Receiver Server.

« Start the passive application servers, if appropriate.

« Preserve all journal files on the originating instance along with back pointers. This is because the Source Server goes to the
journal file to read transactions that are no longer in the journal pool.

Note

Cease all GT.M activity in the replicating instance and RUNDOWN any open database files before copying
database files onto a replicating instance, or creating new database files and loading them with extracts from
the originating instance.

207

Database Replication

Replicating Instance Starts from Backup of Originating Instance

The more common scenario for bringing up a replicating instance is to take a backup of the originating instance and bring it up
as a replicating instance. If the backup is a comprehensive backup, the file headers store the journal sequence numbers.

The backup should use the -newjnlfiles switch of MUPIP backup to create new journal files. Once the replicating instance
becomes operational, the Source Server does not need to go back prior to the backup to find transactions to send to the
replicating instance.

Perform the following steps to start a replicating instance from the backup of an originating instance:

+ Load/restore the database. If the replicating database is not from a comprehensive or database backup from the originating
instance, set the journal sequence number from the originating at the instant of the backup for at least one replicated region
on the replicating instance.

+ Create new journal files without back pointers to previous generations of journal files with the -noprevjnlfile flag. Since this
database represents the beginning of this instance, it is not meaningful to have a previous generation journal file.

« Start the passive Source Server and then the Receiver Server with the -updateresync qualifier, along with the other startup
qualifiers for the Receiver Server. As the originating instance stores the last journal sequence number transmitted to a
replicating instance, this qualifier is required to force replication to start from the actual journal sequence number in the
replicating instance. Without -updateresync, the Receiver Server may refuse to start replication because the journal sequence
number in the replicating instance may be higher than what the originating instance expects.

« Start the passive application servers, if appropriate.

« Since the originating instance should not need to be rolled back to a state prior to the start of the backup, the generation
link on the originating instance can be cut in the journal files created by the online backup command on the originating
instance. Use MUPIP SET -jnlfile <jnl_file> -noprevijnlfile to cut the previous generation link for the journal file. Use the -
bypass qualifier to override the standalone requirements of the SET command.

Multi-Site to Single-Site

Under normal operation, when going from multi-site to single-site, shut down the Receiver Servers and Update Process as well
as any passive Source Servers and any inactive application servers. Then perform the MUPIP RUNDOWN operation of the
database.

For an extended shut down, switch the active Source Server on the originating instance to passive to prevent it from trying to
connect with a replicating instance. Under normal scenarios, the originating instance operates alone, so that when a replicating
instance comes back, replication resumes where it left off.

Normal Cutover

Follow these steps to perform a controlled cutover in which the originating instance and a replicating instance switch roles.
Such a step is necessary to test cutover or to bring the originating instance down for maintenance. In the following steps, A is
the former originating instance and new replicating instance, while B is the former replicating instance and new originating
instance.

1. Choose a time when database update rates are low to minimize the chances clients may time out and retry their messages,
and when no batch processes are running.

2. The external system responsible for originating/replicating status identification should be made aware that Site B should
now be the originating instance and Site A should now be the replicating instance. If the messaging layer between clients

208

Database Replication

and servers differs from the external control mechanism, command it to route messages to the replicating instance. There
may be a need to hold messages briefly during the cutover.

On A:
« Stop the application servers.

+ Shut down the Source Server with an appropriate timeout. The timeout should be long enough to replicate pending
transactions to the replicating instance, but not too long to cause clients to conclude that the application is not available. The
GT.M default Source Server wait period is up to 120 seconds.

+ Wait for B to become functional as the originating instance, and then query B (using -EDITINSTANCE -SHOW) for the
journal sequence number when it became the originating instance, and roll back to this number. Transactions that are
rolled off the originating instance become "non-replicated transactions" that must subsequently be reconciled on B, either
automatically or manually.

+ Create new journal files.

« Start the passive Source Server, and then the Receiver Server.

« Start the passive application servers, if appropriate.

On B:

« Shut down the Receiver Server with an appropriate timeout.

+ Create new journal files.

+ Make the passive Source Server active.

« Start the application servers (if they were previously passive, make them active).

« If the state of the database indicates that batch operations were in process, restart batch operations.

+ Begin accepting online transactions.

Shutting Down an instance
To shutdown an originating instance:
+ Shut down all GT.M and mupip processes that might be attached to the Journal Pool.

« In case the originating instance is also a supplementary instance, shutdown the Receiver Server(s) (there might be more than
one Receiver Server in future GT.M versions).

+ Shut down all active and/or passive Source Servers.

+ Execute mupip rundown -region to ensure that the database, Journal Pool, and Receiver Pool shared memory is rundown
properly.

To shutdown a propagating instance:

+ Shut down all replicating instance servers (Receiver Server, Update Process and its Helper processes).

209

Database Replication

+ Shutdown the originating instance servers (all active and/or passive Source Servers).

+ On its replicating instances, ensure that there are no GT.M or MUPIP processes attached to the Journal Pool as updates are
disabled (they are enabled only on the originating instance).

+ Execute mupip rundown -region to ensure that the database, Journal Pool, and Receiver Pool shared memory is rundown
properly.

Failures

Network Failures

Perform a cutover from the originating instance to a replicating instance if the network from clients to the originating instance
fails, and the network from the clients to the replicating instance is still functioning.

If the network from clients to both the originating and all available replicating instances fails, the application is no longer
available.

If the network between the originating instance and replicating instance fails, no action is required to manage GT.M
replication. The originating instance continues to make the application available. Replicating instances will catch up with the
originating instance when the network is restored.

If the network from the clients to the replicating instance fails, no action is required to manage GT.M replication, although it
would be prudent to make the network operational as soon as possible.

Single-Site Failure
Replicating Instance Fails

When the replicating instance comes back up after failure, it will still be the replicating instance. Refer to the preceding
"Secondary Starts After a Shut Down or Crash" description for further details.

Originating instance Fails

If the originating instance fails, the replicating instance should take over; when the originating instance comes back up, it
should come up as the new replicating instance.

+ The external control mechanism should detect that the originating instance has failed, and take action to switch the
replicating instance to originating mode, and either route transactions to the new originating instance (former replicating
instance) or notify clients to route transactions to the new originating instance.

« If the former originating instance did not respond to certain transactions, one cannot be certain whether they were processed
and whether or not the database updates were committed to the former replicating instance. These transactions must now be
processed on the new replicating instance. When the former originating instance comes up as the new replicating instance,
GT.M rolls off the processed transactions and database updates for reconciliation on the new originating instance.

On new originating instance (former replicating instance)
« Stop the Replication Server.
+ Create new journal files.

+ Switch the Source Server from passive to active mode to start replicating to the new replicating instance (former originating
instance) when it comes back up.

210

Database Replication

« Start the application servers, or if they were passive, they should be activated. The new originating instance is now ready to
receive transactions from clients.

« If the state of the database indicates that batch operations were in process, restart batch operations.

When the new replicating instance (the former originating instance) comes back up, query the originating instance for
the journal sequence number at which it became the originating instance (refer to “Displaying/Changing the attributes of
Replication Instance File and Journal Pool” (page 228) for more information), and roll back the replicating instance to this
point (refer to Section : “Rolling Back the Database After System Failures” (page 249) for more information). Reconcile the
transaction from the lost transaction file or possibly the broken transaction file resulting from the rollback operation.

+ Create new journal files.

« Start the Source Server in passive mode.

« Start the Receiver Server to resume replication as the new replicating instance. Dual-site operation is now restored.

« As appropriate, start the passive application servers.

Dual-Site Failures

Various dual-site failure scenarios are possible. Each case is a full system outage - that is, the application is no longer available
(which is why multi-site may be attractive). This section identifies the recovery mechanism for each scenario. In each scenario,
Site A is initially the originating instance and Site B is initially the replicating instance, before any failure.

Replicating Instance (Site B) Fails First

In the following scenarios, the replicating instance fails first. Once the replicating instance fails, the originating instance
continues to operate. The originating instance’s replication Source Server is unable to send updates to the replicating instance.
Thus, there is a queue of non-replicated transactions at the failure point on the originating instance. Then, the originating
instance fails before the replicating instance recovers, which leads to a dual-site outage. Operating procedures differ according
to which site recovers first.

Site A recovers first

On Site A:

« Rollback the database to the last committed transaction (last application-consistent state).

+ Create new journal files.

« Start the Source Server.

o Start the application servers. Application availability is now restored.

- If the state of the instance indicates that batch operations were in process, restart batch operations.

On Site B, when it recovers:

« Rollback the database to the last committed transaction.

+ Create new journal files.

211

Database Replication

« Start the Source Server in passive mode.

« Start the Receiver Server. Dual-site operation is now restored.

« Start the passive application servers, as appropriate.

Site B recovers first

On Site B:

« Rollback the database to the last committed transaction (last application-consistent state).

+ Create new journal files.

« Start the Source Server.

« Start the application servers. Application availability is now restored.

« If the state of the database indicates that batch operations were in process, restart batch operations.

On Site A, when it recovers:

+ Query the originating instance (refer to “Displaying/Changing the attributes of Replication Instance File and Journal
Pool” (page 228)) for the journal sequence number at which it became the originating instance, and roll back the
replicating instance to this point. Then apply the lost transaction files to the originating instance for reconciliation/
reapplication.

+ Create new journal files.

« Start the Source Server in passive mode.

o Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

« Start the passive application servers, as appropriate.

Originating Instance (Site A) Fails First

In the following scenarios, the originating instance fails first, causing a cutover to Site B. Site B operates as the originating
instance and then fails.

Site B Recovers First

On Site B:

« Roll back the database to the last committed transaction (last application-consistent state).
« Create new journal files.

« Start the Source Server.

« Start the application servers. Application availability is now restored. If the state of the database indicates that batch
operations were in process, restart batch operations.

212

Database Replication

On Site A, when it recovers:

Query the originating instance (refer to Section : “Displaying/Changing the attributes of Replication Instance File and Journal
Pool” (page 228) for more information) for the journal sequence number at which it became primary, and the rollback

the replicating instance to this point. Then apply the lost transaction files to the originating instance for reconciliation/
reapplication. The broken transaction file contains information about transactions that never completed and may be useful
in researching where work should be restarted. However, broken transactions, unlike the lost transactions, are inherently
incomplete.

Create new journal files.
Start the Source Server in passive mode.
Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

Start the passive application servers, as appropriate.

Site A Recovers First

On Site A:

Roll back the database to the last committed transaction (last application-consistent state).
Create new journal files.

Start the Source Server.

Start the application servers. Application availability is now restored.

If the state of the database indicates that batch operations were in process, restart batch operations.

On Site B, when it recovers:

Roll back all transactions that were processed when it was the primary. Transmit the transactions backed out of the database
by the rollback to the originating instance for reconciliation/reapplication.

Create new journal files.
Start the Source Server in passive mode.
Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

Start the passive application servers, as appropriate.

Complex Dual-Site Failure

A complex dual-site failure may result in a large number of non-replicated transactions, depending on how the instances
restart. This situation occurs if both instances are down, the replicating instance comes up for a period, assumes originating
instance status, and then fails again while the first originating instance remains down.

If the first originating instance comes up first after the second failure, represented as Site A in the following figure, it will be the

originating instance. When Site B comes up, it will act as the replicating instance and rollback all transactions performed while

213

Database Replication

it was the originating instance and Site A was down. These transactions become non-replicated transactions. If Site B came up
first, then the non-replicated transactions would occur when Site A restarted. These would be the transactions while A was the
originating instance after B failed.

Initializg Inithe
w
Primary Secandary
lFailure
h 4
Primary Do
lFaiIure i
Diown Down Cial-Site failure
i iﬁeﬂart
e Dlown Primany Secqndarg restarting
as primary
l iFailure
Down Down Site B
Fails while Site &
skill down
Festart
Primary Do Site A will restart
. as primary
Site B iz still down
Festart
Primary Secandary Site B must restart
as secondary

When recovering from these situations, the originating instance is always the current system of record when the replicating
instance comes up. The replicating instance must roll back to the transaction with the highest journal sequence number
common in both the instance and "catch up" from there. On the originating instance, reconcile all the lost and possibly broken
transactions files that resulted from the rollback operation.

Rolling Software Upgrades

A rolling software upgrade provides continuous service while applying a new software release to the system. In other words,
a rolling software upgrade removes the need for application downtime as while each system is updated with the new software
release independently, the other system acts as the originating instance during that period.

214

Database Replication

Dual-Site Rolling Upgrade

This rolling upgrade sequence assumes that there is only one replicating instance, which is down during the upgrade. Thus, if
the originating instance goes down during the upgrade, the application becomes unavailable.

Note

A properly set LMS configuration avoids this exposure.

Assuming that Site A is the originating instance before the upgrade, here are the steps to perform a rolling upgrade:

« Site A continues to operate normally, (that is, to the originating instance, a replicating instance upgrade looks like a
replicating instance failure).

On Site B:

+ Shut down the Source and Receiver Servers and the application. Perform a MUPIP RUNDOWN operation and make a backup
copy.

« Upgrade the software.

« If there is no change to the database layout or schema, bring the replicating instance up and proceed with the planned
cutover (as follows).

+ Note the largest journal sequence number in any replicated database region.
« Upgrade the database.
+ Set the journal sequence number of any replicated region to the largest journal sequence number noted above.

« If there was no change to the database schema, bring the replicating instance back up and proceed with the planned cutover
(as follows).

« If there was a change to the database schema, bring up the replicating instance with the new-to-old filter on the Source
Server, and the old-to-new filter on the Receiver Server.

« At this point, dual-site operation is restored with Site B running the new software and Site A running the old software. It
may be appropriate to operate in this mode for some time to verify correct operation.

+ After which you can execute the following to complete the upgrade:

« Perform a controlled cutover between systems.

» Make Site A the replicating instance and Site B the originating instance for the remainder of the upgrade.
On Site A:

« Once you are satisfied with the operation of the new software on Site B, shut down the Source and Receiver Servers and the
application. Run down the database and take a backup copy.

« Upgrade the software.

215

Database Replication

+ Note the largest journal sequence number in any replicated database region.
« Upgrade the database.
« Set the journal sequence number of any replicated region to the largest journal sequence number noted above.

« If there was no change to the database schema, bring the replicating instance back up. Normal operation is now restored, and
the upgrade is complete.

« If there are filters, Bring up Site A as the secondary. Use the -stopsourcefilter qualifier on the Receiver Server on Site A to
turn off the filter on Site B. This restores normal operation.

Rolling SI Replication Upgrade

Although V5.5-000 supports only one source stream for SI replication, the architecture allows for fifteen externally sourced
streams (numbers 1 through 15), with stream 0 being locally generated updates. Under normal conditions, on a supplementary
instance, one will see updates from streams 0 and 1. If the recipient of an SI stream has been moved from receiving replication
from one source to another, you may see other stream numbers (corresponding to updates from other streams) as well.

When adding SI replication, the rules to remember are that (a) both source and receiver sides of SI replication must be V5.5-000,
(b) upgrading an instance to V5.5-000 requires a new replication instance file because the replication instance file format for

SI is not compatible with those of prior releases and (c) the -updateresync qualifier requires the name of a prior replication
instance file when both source and receiver are V5.5-000.

Remember that except where an instance is an unreplicated sole instance, you should upgrade replicating secondary instances
rather than originating primary instances. Starting with BC replication (e.g., Ardmore as originating primary and BrynMawr as
replicating secondary), the simplest steps to start SI replication to Malvern are:

 Bring BrynMawr down and upgrade it to V5.5-000. BrynMawr requires a new replication instance file. Please refer to the
relevant release notes for details of upgrading database files and global directories; unless otherwise instructed by FIS, always
assume that object and journal files are specific to each GT.M release.

« Resume BC replication from Ardmore to BrynMawr. Since Ardmore is at an older GT.M release than V5.5-000, when
starting the Receiver Server for the first time at BrynMawr, the -updateresync qualifier does not require the name of a prior
replication instance file.

+ Create supplementary instance Malvern from a backup of BrynMawr or Ardmore, if that is more convenient. Malvern will
require a new replication instance file, created with the -supplementary qualifier.

o Start SI replication from BrynMawr to Malvern. Since Malvern and BrynMawr are both V5.5-000, the -updateresync qualifier
used when the Malvern Receiver Server starts for the first time requires the old replication instance file copied, perhaps as
part of a BACKUP, up from BrynMawr as its value.

At your convenience, once BrynMawr is upgraded you can:

« Switchover so that BrynMawr is the originating primary instance with BC replication to Ardmore and SI replication to
Malvern. This is unchanged from current LMS procedures. SI replication from BrynMawr to Malvern can operate through the
switchover.

+ Bring Ardmore down and upgrade it to V5.5-000. It requires a new replication instance file.

« Start BC replication from BrynMawr to Ardmore. Since Ardmore and BrynMawr are both V5.5-000, the -updateresync
qualifier for Ardmore's first Receiver Server start requires the name of a prior replication instance file. As it cannot use

216

Database Replication

Ardmore's pre-V5.5-000 format replication instance file, in this special case, use a backup copy from BrynMawr as that prior
file.

Creating a new instance file without an -updateresync qualifier

On the source side:

+ Use the MUPIP BACKUP command with the -REPLINSTANCE qualifier to backup the instance to be copied.
« Ship the backed up databases and instance file to the receiving side.
On the receiving side:

Run the MUPIP REPLIC -EDITINST command on the backed up instance file to change the instance name to reflect the target
instance. This makes the source replication instance file usable on the target instance while preserving the history records in
the instance file.

Create new journal files, start a passive Source Server and a Receiver Server (without an -updateresync qualifier).

Allow a Source Server to connect.

Upgrade Replication Instance File
To upgrade the replication instance file, perform the following steps:

Shut down all mumps, MUPIP and DSE processes except Source and Receiver Server processes; then shut down the Receiver
Server (and with it, the Update Process) and all Source Server processes. Use MUPIP RUNDOWN to confirm that all database
files of the instance are closed and there are no processes accessing them.

Rename the existing replication instance file after making a backup copy.

Create a new replication instance file (you need to provide the instance name and instance file name, either with command
line options or in environment variables, as documented in the Administration and Operations Guide):

- If this is instance is to receive SI replication (Malvern in the examples above) or to receive BC replication from an instance
that receives SI replication (Newtown in the examples above), use the command:

mupip replicate -instance_create -supplementary
+ Otherwise use the command:
mupip replicate -instance_create
Prepare it to accept a replication stream:
» Start a passive Source Server using the -updok flag.

« Start the Receiver Server using the updateresync flag, e.g.: mupip replicate -receiver -start -updateresync=filename flag
where filename is the prior replication file if the source is V5.5-000 and no filename if it is an older GT.M release (with
other required command line flags, as documented in the Administration and Operations Guide).

Start a Source Server on a root or propagating primary instance to replicate to this instance. Verify that updates on the
source instance are successfully replicated to the receiver instance.

217

Database Replication

The -updateresync qualifier indicates that instead of negotiating a mutually agreed common starting point for synchronization
the operator is guaranteeing the receiving instance has a valid state that matches the source instance currently or as some point
in the past. Generally this means the receiving instance has just been updated with a backup copy from the source instance.

Note

A GT.M V5.5-000 instance can source a BC replication stream to or receive a BC replication stream from
older GT.M releases, subject to limitations as discussed in the Limitations section of this document. It is only
for SI replication that both source and recipient must both be V5.5-000.

Creating a Supplementary Instance

A supplementary instance cannot be the first or sole instance that you upgrade to V5.5-000 - you must already have created an
instance running V5.5-000 to provide a replication stream to the supplementary instance.

You can create a supplementary instance from (a) a backup copy of another instance, a supplementary instance, an originating
primary or replicating secondary by giving it a new identity, or (b) a freshly created, new instance. An instance used to create a
supplementary instance must already be upgraded to V5.5-000.

Starting with a backup of another instance, follow the procedures above under Upgrade Replication Instance File using the -
supplementary flag to the mupip replicate -instance_create command.

Creating a supplementary instance from a backup of an existing instance creates an SI replication instance with all the
database state in the existing instance and is perhaps the most common application need. But there may be situations when a
supplementary instance only needs new data, for example if it is to provide a reporting service only for new customers, and
historical data for old customers is just excess baggage. In this case, you can also create a supplementary instance by creating
a new instance, pre-loading it with any data required, enabling replication for the database files (since an Update Process will
only apply updates to a replicated - and journaled - database region), and following the procedures above under above under
Upgrade Replication Instance File using the -supplementary=on flag to the mupip replicate -instance_create command. Ship a
replication instance file from the source to provide the -updateresync=filename qualifier required when starting the Receiver
Server for the first time.

Starting / Resuming SI Replication

For starting SI replication on an originating primary supplementary instance P in a B<-A->P-<Q configuration, the procedure
is similar to a non-supplementary instance except that one also needs to start a receiver server (after having started a source
server to set up the journal pool) to receive updates from the corresponding non-supplementary instance (A or B in this case).
Similarly, as part of shutting down the originating primary supplementary instance, an added step is to shut down the Receiver
Server (if it is up and running) before shutting down the Source Server.

Remember that for GT.M replication, the Receiver Server listens at a TCP port and the Source Server connects to it. If the
Receiver Server is not ahead of the Source Server, replication simply starts and streams updates from the source to the receiver.
When the Receiver Server is ahead of the Source Server, the cases are different for BC and SI replication.

For either BC or SI replication, if the Receiver Server is started with the -autorollback qualifier, it performs an online rollback
of the receiving instance, so that it is not ahead of the originating instance, creating an Unreplicated Transaction Log of any
transactions that are rolled off the database. When started without the -autorollback qualifier, a Receiver Server notified by its
Source Server of a rollback, logs the condition and exits so an operator can initiate appropriate steps.

For SI replication the -noresync qualifier tells the Receiver Server not to rollback the database even if the receiver is ahead
of the source. In this case, the Source Server starts replication from the last journal sequence number common to the two
instances.

218

Database Replication

Changing the Replication Source

When changing the source of a supplementary replication stream to another in the same family of instances (for example in the
example where Ardmore and Malvern crash and Newtown is to receive a replication stream from BrynMawr, start the Receiver
Server normally (with either -autorollback or -noresync, as appropriate) and allow BrynMawr to connect to it. Instead of using -
autorollback, you can also perform a mupip journal -rollback -backward -fetchresync before starting the Receiver Server.

To migrate a supplementary instance from receiving SI replication from one set of BC instances to a completely different set
- for example, if Malvern is to switch from receiving SI replication from the set of {Ardmore, BrynMawr} to a completely
unrelated set of instances {Pottstown, Sanatoga}

Switchover between instances having triggers

GT.M stores trigger definitions in the regions to which they map and the maintenance-related information in the default region.
To invoke a trigger on a global variable, GT.M uses the in-region information but for $ZTRIGGER() and MUPIP TRIGGER it
searches the lookup information in the default region to find the region that holds its trigger definition.

Take this aspect into account while designing trigger maintenance actions and switchover processes for an LMS configuration
having a mix of replicated and unreplicated regions.

You should exercise caution when you set up an LMS configuration where the default region is replicated but some regions
that store trigger definitions are unreplicated. If the triggers in the unreplicated regions are needed for proper operation in the
event of a switchover, you must define and maintain them seperately on the originating instance as well as on each replicating
instance that may become an originating instance. To define or maintain triggers on a replicating instance, follow these steps:

1. Shutdown the Receiver Server of the replicating instance.
2. Apply the trigger definitions using MUPIP TRIGGER or $ZTRIGGER().

3. Set the sequence number of the default region to match the sequence number of the default region on the originating
instance.

4. Restart the Receiver Server of the replicating instance.

Schema Change Filters

Filters between the originating and replicating systems perform rolling upgrades that involve database schema changes. The
filters manipulate the data under the different schemas when the software revision levels on the systems differ.

GT.M provides the ability to invoke a filter; however, an application developer must write the filters specifically as part of each
application release upgrade when schema changes are involved.

Filters should reside on the upgraded system and use logical database updates to update the schema before applying those
updates to the database. The filters must invoke the replication Source Server (new schema to old) or the database replication
Receiver Server (old schema to new), depending on the system's status as either originatig or replicating. For more information
on Filters, refer to “Filters” (page 188).

Recovering from the replication WAS_ON state

If you notice the replication WAS_ON state, correct the cause that made GT.M turn journaling off and then execute MUPIP SET
-REPLICATION=ON.

219

Database Replication

To make storage space available, first consider moving unwanted non-journaled and temporary data. Then consider moving
the journal files that predate the last backup. Moving the currently linked journal files is a very last resort because it disrupts
the back links and a rollback or recover will not be able to get back past this discontinuity unless you are able to return them to
their original location.

If the replication WAS_ON state occurs on the originating side:
If the Source Server does not reference any missing journal files, -REPLICATION=ON resumes replication with no downtime.

If the Source Server requires any missing journal file, it produces a REPLBRKNTRANS or NOPREVLINK error and shuts down.
Note that you cannot rollback after journaling turned off because there is insufficient information to do such a rollback.

In this case, proceed as follows:
1. Take a backup (with MUPIP BACKUP -BKUPDBJNL=OFF -REPLINST=<bckup_inst>) of the originating instance.

2. Because journaling was turned off in the replication WAS_ON state, the originating instance cannot be rolled back to a state
prior to the start of the backup. Therefore, cut the previous generation link of the journal files on the originating instance
and turn replication back on. Both these operations can be accomplished with MUPIP SET -REPLICATION="ON".

3. Restore the replicating instance from the backup of the originating instance. Change the instance name of <bckup_inst> to
the name of the replicating instance (with MUPIP REPLIC -EDITINST -NAME).

4. Turn on replication and journaling in the restored replicating instance. Specify the journal file pathname explicitly with
MUPIP SET -JOURNAL-=filename=<repinst_jnl_location> (as the backup database has the originating instance's journal file
pathname).

5. Restart the Source Server process on the originating instance.

6. Start the Receiver Server (with no -UPDATERESYNC) the replicating instance.

If the replication WAS_ON state occurs on the receiving side:

Execute MUPIP SET -REPLICATION=ON to return to the replication ON state. This resumes normal replication on the receiver
side. As an additional safety check, extract the journal records of updates that occurred during the replication WAS_ON state
on the originating instance and randomly check whether those updates are present in the receiving instance.

If replication does not resume properly (due to errors in the Receiver Server or Update Process), proceed as follows:
1. Take a backup (with MUPIP BACKUP -BKUPDBJNL=OFF -REPLINST=<bckup_inst>) of the originating instance.

2. Restore the replicating instance from the backup of the originating instance. Change the instance name of <bckup_inst> to
the name of the replicating instance (with MUPIP REPLIC -EDITINST -NAME).

3. Turn on replication and journaling in the restored replicating instance. Specify the journal file pathname explicitly with
MUPIP SET -JOURNAL=filename=<repinst_jnl_location> (as the backup database has the originating instance's journal file

pathname).

4. Restart the Source Server process on the originating instance. Normally, the Source Server might still be running on the
originating side.

5. Start the Receiver Server (with no -UPDATERESYNC) the replicating instance.

220

Database Replication

Setting up a new replicating instance of an originating instance (A->B, P->Q, or A->P)

To set up a new replicating instance of an originating instance for the first time or to replace a replicating instance if database
and instance file get deleted, you need to create the replicating instance from a backup of the originating instance, or one of its
replicating instances.

If you are running GT.M V5.5-000 or higher:

« Take a backup of the database and the replication instance file of the originating instance together at the same time with
BACKUP -REPLINSTANCE and transfer them to the location of the replicating instance. If the originator's replicating
instance file was newly created, take its backup while the Source Server is running to ensure that the backup contains at least
on history record.

« Use MUPIP REPLICATE -EDITINST -NAME=<secondary-instname> to change the replicating instance's name.
« Start the replicating instance without -udpateresync.

If you are running GT.M pre-V5.5-000:

+ Create a new replication instance file on the replicating instance.

o Start the replicating instance with this new replication instance file with the -updateresync qualifier (no value specified).

Replacing the replication instance file of a replicating instance (A->B and P->Q)

In this case, it is possible that the replicating instance's database files are older than the originating instance. Note that to
resume replication there is no need to transfer the backup of the originating instance's database and replication instance files.

To replace the existing replicating instance file with a new replication instance file, follow these steps:
If you are running GT.M V5.5-000 or higher:

« Take a backup of just the replication instance file (no database files with BACKUP -REPLINST=</path/to/bkup-orig-repl-inst-
file>) and transfer it to the site of the replicating instance.

« Start the replicating instance with -updateresync=</path/to/bkup-orig-repl-inst-file>.

In this case, the Receiver Server determines the current instance's journal sequence number by taking a maximum of the Region
Sequence Numbers in the database file headers on the replicating instance and uses use the input instance file to locate the
history record corresponding to this journal sequence number, and exchanges this history information with the Source Server.

If you are running GT.M pre-V5.5-000:
« Create a new replication instance file on the replicating instance.

« Start the replicating instance with this new instance file with the -updateresync qualifier (no value specified).

Replacing the replication instance file of a replicating instance (A->P)
On P:

+ Use the -SUPPLEMENTARY qualifier with the MUPIP REPLICATE -INSTANCE_CREATE command to indicate this is a
supplementary instance file.

221

Database Replication

« Start a Source Server on P with -UPDOK to indicate local updates are enabled on P.

« Start the Receiver Server on P with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -RESUME. -
RESUME indicates that A and P had been replicating before. The Receiver Server looks at the local (stream #0) sequence
numbers in the database file headers on P and takes the maximum value to determine the journal sequence number of the
new stream on P. It then uses this as the instance journal sequence number on A to resume replication.

Setting up a new replicating instance from a backup of the originating instance (A->P)

On A:

+ Take a backup of the replication instance file and the database together at the same time with BACKUP -REPLINSTANCE
and transfer it to P. If the A's replication instance file was also freshly created, then take the backup while the Source Server
is running on the originating instance. This ensures that the backed up replication instance file contains at least one history
record.

On P:

+ Create a new replication instance file. Use the -SUPPLEMENTARY qualifier with the MUPIP REPLICATE -
INSTANCE_CREATE command to indicate this is a supplementary instance file.

+ Restore the database backups from A to P or use MUPIP LOAD to load the data.
« Start a Source Server on P with -UPDOK to indicate local updates are enabled on P.

« Start the Receiver Server on P with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -INITIALIZE.
The -INITIALIZE indicates this is the first time A and P are replicating.

In this case, the Receiver Server uses the current journal sequence number in the </path/to/bkup-orig-repl-inst-file> as the
point where A starts sending journal records. GT.M updates the stream sequence number of Stream # 1 in the instance file on P
to reflect this value. From this point, GT.M maps the journal sequence number on A to a stream journal sequence number (for
example, stream # 1) on P.

Setting up an A->P configuration for the first time if P is an existing instance (having its own set of
updates)

On P:

« Turn off passive Source Server and Receiver Server (if they are active).

« Turn off replication and run down the database.

On A:

+ Take a backup of the replication instance file and the database together with BACKUP -REPLINSTANCE and transfer it to P.
If A's instance file was also freshly created, take the backup while the Source Server is running on the originating instance.
This ensures that the backed up replication instance file contains at least one history record.

On P:

« Do not create a new instance file. Continue using the existing instance file to preserve updates that have already occurred on
p.

» Start the Source Server with -UPDOK to indicate that local updates are enabled on P.

222

Database Replication

« Start the Receiver Server with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -INITIALIZE. The -
INITIALIZE indicates this is the first time A and P are replicating.

The Receiver Server uses the current journal sequence number in the </path/to/bkup-orig-repl-inst-file> as the point where A
starts sending journal records. GT.M updates the stream sequence number (for example, of Stream # 1) in the instance file on P
to reflect this value. Going forward, the journal sequence number on A will always map to a stream journal sequence number
(for example, of stream # 1) on P.

Changing the database schema of a replicating instance (A->B and A->P)

1. Shut down the Receiver Server, passive Source Server, turn off replication, and rundown the database.

2. Open DSE and execute DUMP -FILEHEADER -ALL and note down the Region Seqno field of each replicated region(s). FIND
-REGION=""" displays all regions and FIND -REGION=<region-name> switches between regions. Identify the highest Region
Segno of all the Region Seqnos. If you are running an A->P configuration, note down the Stream and Reg Seqno of all the
streams.

3. Change the schema by modifying the global directory and relocating any data that needs to be moved.

4. Open DSE and run CHANGE -FILEHEADER -REG_SEQNO=<the-highest-region-seqno> to set the Region Seqno field in
the database file header to the highest Region Seqno identified in step 2. If you are running an A->P configuration, run the
CHANGE -FILEHEADER -STRM_NUM-=1 -STRM_REG_SEQNO=<hexa> command to set the Stream and Reg Seqno of the
streams noted in step 2.

5. Turn replication ON, start the passive Source Server, and start the Receiver Server without -UPDATERESYNC.
6. GT.M resumes receiving replication from the point of interruption.

When replication is ON, GT.M increments the Region Seqno field in the database file header for every update that occurs on a
region. When replication is OFF, database updates do not affect the Region Seqno field. Except step 4, no other step affects the
Region Seqno field. When you set the Region Seqno in step 4, you instruct GT.M to resume receiving replication from point
replication turned off in step 1.

Setting up a secured TLS replication connection

tlsrepl.tar.gz contains scripts that create two databases and sets up a secure (TLS/SSL) replication connection between them.

Please click u to download tlsrepl.tar.gz and follow the below instructions. You can also download tlsrepl.tar.gz from http://
tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/tlsrepl.tar.gz. The scripts in tlsrepl.tar.gz are solely for the purpose

of explaining the general steps required to encrypt replication data in motion. You must understand, and appropriately adjust,
the scripts before using them in a production environment. The following steps create two instances and a basic framework
required for setting up a TLS replication connection between them. Note that all certificates created in this example are for the
sake of explaining their roles in a TLS replication environment. For practical applications, use certificates signed by a CA whose
authority matches your use of TLS.

On instance Helen:
1. Specify the value of $gtm_dist and $gtmroutines in the env script and execute the following command:
$ source ./env Helen

This creates a GT.M environment for replication instance name Helen. When prompted, enter a password for
gtmtls_passwd_Helen.

223

tlsrepl.tar.gz

Database Replication

2. Create a certificate directory setup in the current directory and a self-signed root certification authority.
$./cert_setup

This creates a self-signed root certification authority (ca.crt) in $PWD/certs/. ca.crt needs to be available on both Source
and Receiver Servers. In a production environment, ensure that you keep root-level certificates in directories with 0500
permissions and the individual files with 0400 permissions so that unauthorized users cannot access them.

The output of this script is like the following"

Generating RSA private key, 512 bit long modulus
++++++HH

............... bttt

e is 65537 (0x10001)

Enter pass phrase for /home/jdoe/certs/ca.key:

Verifying - Enter pass phrase for /home/jdoe/certs/ca.key:

Enter pass phrase for /home/jdoe/certs/ca.key:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:US

State or Province Name (full name) [Philadelphial:Philadelphia

City (e.g., Malvern) [Malvern]:Malvern

Organization Name (eg, company) [FIS]:FIS

Organizational Unit Name (eg, section) [GT.M]:GT.M

Common Name (e.g. server FQDN or YOUR name) [localhost]:fis-gtm.com
Email Address (e.g. helen@gt.m) []:root@gt.m

3. Create the global directory and the database for instance Phil.
$./db_setup

This also creates a leaf-level certificate for Helen. The openssl.conf used to create this example in available in the download
for your reference. Ensure that your openssl.cnf file is configured according to your environment and security requirements.

The output of this script is like the following:

Generating RSA private key, 512 bit long modulus

o AP P AP AR

,,,,,,, PP PP P P A

e is 65537 (0x10001)

Enter pass phrase for /home/jdoe/certs/Helen.key: [Specify the password that you entered for gtmtls_passwd_Helen]
Verifying - Enter pass phrase for /home/jdoe/certs/Helen.key:

Enter pass phrase for /home/jdoe/certs/helen.key:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Philadelphia]:Illinois

City (e.g., Malvern) [Malvern]:Chicago

Organization Name (eg, company) [FIS]:FIS

Organizational Unit Name (eg, section) [GT.M]:GT.M

Common Name (e.g. server FQDN or YOUR name) [localhost]:fisglobal.com
Ename Address (e.g. helen@gt.m) []:helen@gt.m

224

Database Replication

Please enter the following 'extra' attributes

to be sent with your certificate request
A challenge password []:
An optional company name []:

Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./certs/ca.key:

Check that the request matches the signature
Signature ok

Certificate Details:

Serial Number: 14 (0xe)

Validity

Not Before: Jun 11 14:06:53 2014 GMT

Not After : Jun 12 14:06:53 2014 GMT

Subject:

countryName = US

stateOrProvinceName = Illinois

organizationName = FIS

organizationalUnitName = GT.M

commonName = fisglobal.com

emailAddress = helen@gt.m

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Comment:

OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
96:FD:43:0D:0A:C1:AA:6A:BB:F3:F4:02:D6:1F:0A:49:48:F4:68:52
X509v3 Authority Key Identifier:
keyid:DA:78:3F:28:8F:BC:51:78:0C:5F:27:30:6C:C5:FE:B3:65:65:85:C9

Certificate is to be certified until Jun 12 14:06:53 2014 GMT (1 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/nly
Write out database with 1 new entries
Data Base Updated
4. Create the $gtmcrypt_config file. Specify the names of all participating instances.
./gen_gc Helen Phil
5. Turn replication on and create the replication instance file:
$./repl_setup
6. Start the originating instance Helen:
$./originating_start Helen Phil
On instance Phil:
1. Specify the value of $gtm_dist and $gtmroutines in the env script and execute the following command:

$ source ./env Phil

This creates a GT.M environment for replication instance name Phil. When prompted, enter a password for
gtmtls_passwd_Phil.

2. Create the global directory and the database for instance Phil.

225

Database Replication

$./db_setup

This also creates a leaf-level certificate for Phil. The openssl.conf used to create this example in available in the download
for your reference. Ensure that your openssl.cnf file is configured according to your environment and security requirements.

3. Create the $gtmcrypt_config file. Specify the names of all participating instances.
./gen_gc Helen Phil
Ensure that ca.key generated on Instance Helen is available on instance Phil.

4. Create the $gtmcrypt_config file. Specify the names of all participating instances.
$./gen_gc Helen Phil

5. Turn replication on and create the replication instance file:
$./repl_setup

6. Start the replicating instance Phil.
$./replicating_start

For subsequent environment setup, use the following commands:

source ./env Phil or source ./env Helen
./replicating_start or ./originating_start Helen Phil

Commands and Qualifiers

The following MUPIP commands and qualifiers control database replication in a GT.M environment.

Turning Replication On/Off

Command Syntax:

mupip set {-file db-file|-region reg-list} -replication={ON|OFF}
Qualifiers:

-file and -region

Use these qualifiers in the same manner that you would use them for a MUPIP SET. For more information refer to Chapter 5:
“General Database Management” [67].

-replication=replication-state

Switches the GT.M replication subsystem ON/OFF and possibly modify the current journaling [no-]before image field (which is
stored in the database file header).

replication-state is either of the following keywords:
OFF

Disable replication of the database file(s) or region(s). Even if you turn off replication, journaling continues to operate as before.

226

Database Replication

ﬁ Important

GT.M creates a new set of journal files and cuts the back link to the previous journal files if the replication-
state is OFF and then turned ON again. The database cannot rollback to a state prior to ON. Therefore, ensure
that replication-state remains ON throughout the span of database replication. Turn replication-state OFF
only if database replication is no longer needed or the instance is about to be refreshed from the backup of
the originating instance.

ON

Enables replication for the selected database file(s) or region(s). When the JOURNAL qualifier is not specified, this action

turns BEFORE_IMAGE journaling on. Specify -JOURNAL=NOBEFORE_IMAGE to enable replication with no-before-image
journaling. In both cases, GT.M creates a new journal file for each database file or region, and switches the current journal file.
FIS recommends you to specify the desired journaling characteristics (MUPIP SET -JOURNAL=BEFORE_IMAGE or MUPIP SET
-JOURNAL=NOBEFORE_IMAGE).

When replication is ON, a MUPIP SET REPLICATION=ON command with no JOURNAL qualifier assumes the current
journaling characteristics (which are stored in the database file header). By default GT.M sets journal operation to
BEFORE_IMAGE if this command changes the replication state from OFF to ON and JOURNAL=NOBEFORE_IMAGE is not
specified. Therefore, conservative scripting should always specify the desired journaling characteristics using the JOURNAL
qualifier of the MUPIP SET command.

The replication state ON in the file header denotes normal replication operation.
[WAS_ON] OFF

Denotes an implicit replication state when GT.M attempts to keep replication working even if run-time conditions such as no
available disk space or no authorization for a process attempting to auto-switch a journal file cause GT.M to turn journaling
off. Even with journaling turned off, the Source Server attempts to continue replication using the records available in the
replication journal pool. In this state, replication can only continue as long as all the information it needs is in the replication
journal pool. Events such as an operationally significant change on the replicating instance(s) or communication problems are
likely to cause the Source Server to need information older than that in the replication journal pool and because it cannot look
for that information in journal files, at that point the Source Server shuts down.

Note

If the replication ON state is like a bicycle running smoothly on the road, replication WAS_ON is like a
bicycle with a flat front tire being ridden like a unicycle - the system is operating outside its intended mode
of use and is more subject to misfortune.

WAS_ON is an implicit replication state. At all times during the WAS_ON state, you can see the current backlog of transactions
and the content of the Journal Pool (MUPIP REPLICATE -SOURCE -SHOWBACKLOG and MUPIP REPLICATE -SOURCE -
JNLPOOL -SHOW). This information is not available in the replication OFF state.

For more information on recovering originating and replicating instances from WAS_ON, refer to Recovering from the
replication WAS_ON state (page 219).

Example:
$ mupip set -replication=on -file mumps.dat

This example enables database replication and turns before-image journaling on for mumps.dat.

227

Database Replication

$ mupip set -replication=on -journal=nobefore_image -file mumps.dat
This example enables database replication and turns no-before-image journaling on for mumps.dat.
$ mupip set -replication=off -file mumps.dat

This example turns off database replication for mumps.dat.

Creating the Replication Instance File

Command Syntax:

mupip replicate -instance_create -name=<instance name> [-noreplace] [-supplementary]
Qualifiers:

-instance_create

Creates a replication instance file. mupip replicate -instance_create takes the file name of the replication instance file from the
environment variable gtm_repl_instance.

If an instance file already exists, GT.M renames it with a timestamp suffix, and creates a new replication instance file. This
behavior is similar to the manner in which GT.M renames existing journal files while creating new journal files. Creating an
instance file requires standalone access.

-name

Specifies the instance name that uniquely identifies the instance and is immutable. The instance name can be from 1
to 16 characters. GT.M takes the instance name (not the same as instance file name) from the environment variable
gtm_repl_instname. If gtm_repl_instname is not set and -name is not specified, GT.M produces an error.

-noreplace
Prevents the renaming of an existing replication instance file.
-supplementary
Specifies that the replication instance file is suitable for use in a supplementary instance.
Example:
$ export gtm_repl_instance=mutisite.repl
$ export gtm_repl_instname=America

$ mupip replicate -instance_create

This example creates a replication instance file called multisite.repl specified by gtm_repl_instance with an instance name
America specified by environment variable gtm_repl_instname.

Displaying/Changing the attributes of Replication Instance File and Journal Pool

Command Syntax:

mupip replicate

228

Database Replication

-edit[instance] {<instance-file>|-source -jnlpool}
{-show [-detail]|-change [-offset=] [-size=] [-value=]}
[-name=<new-name>]

-editinstance

Displays or changes the attributes of the specified instance-file. Use -editinstance in combination with SHOW or CHANGE
qualifiers.

-jnlpool

Displays or changes the attributes of Journal Pool. Always specify -source with -jnlpool. Use -jnlpool in combination with
SHOW or CHANGE qualifiers.
-change

The CHANGE qualifier is intended only for use under the guidance of FIS and serves two purposes. When used with -
editinstance -offset -size, it changes the contents of the replication instance file. When used with -jnlpool, it changes the
contents of journal pool header. Although MUPIP does not enforce standalone access when using this feature on the instance
file or the journal pool, doing so when replication is actively occurring can lead to catastrophic failures.

-name=<new-name>

Changes the instance name in the replication instance file header to the new-name. Note that changing an instance name
preserves the instance history.

-show
Displays File Header, Source Server slots, and History Records from the Replication Instance file.
-detail

When specified, all fields within each section are displayed along with their offset from the beginning of the file and the size
of each field. Use this qualifier to find the -offset and -size of the displayed field. To edit any displayed field, use the -change
qualifier.

-size
Indicates the new size of the new value in bytes. The value of size can be either 1, 2, 4, or 8.

-offset

Takes a hexadecimal value that is a multiple of -size. With no -offset specified, GT.M produces an error. GT.M also produces an
error if the offset is greater than the size of the instance file or the journal pool header.

-value
Specifies the new hexadecimal value of the field having the specified -offset and -size. With no value specified, GT.M displays
the current value at the specified offset and does not perform any change. Specifying -value=<new_value> makes the change

and displays both the old and new values.

Caution

Change the instance file or the journal pool only on explicit instructions from FIS.

229

Database Replication

-show

The SHOW qualifier serves two purposes. When used with -editinstance, it displays the content of the replication instance file.
When used with -jnlpool, it displays the content of the journal pool.

Example:
$ mupip replicate -editinstance -show -detail multisite.repl

This example displays the content of the replication instance file multisite.repl. The optional detail qualifier displays each
section along with its offset from the beginning of the file and the size of each field. Use this information when there is a need
to edit the instance file.

Example:
$ mupip replicate -editinstance -change -offset=0x00000410 -size=0x0008 -value=0x010 multisite.repl

This command sets the value of the field having the specified offset and size to 16. Note that mupip replicate -editinstance -
show -detail command displays the offset and size of all fields in an instance file.

Starting the Source Server
Command syntax:

mupip replicate -source -start
{-secondary=<hostname:port>|-passive}
[-buffsize=<Journal Pool size in bytes>]
[-filter=<filter command>]
[-freeze[=on|off] -[noJcomment[='"<string>""]
[-connectparams=<hard tries>,<hard tries period>,
<soft tries period>, <alert time>, <heartbeat period>,
<max heartbeat wait>]
-instsecondary=<replicating instance name>
-log=<log file name> [-log_interval=<integer>]
{-rootprimary|-propagateprimary} [{-updok|-updnotok}]
[-cmplvl=<compression level>]
[-tlsid=<label>]
[-[nolplaintextfallback]
[-renegotiate_interval=<minutes>]

Qualifiers:

-replicate

Use this qualifier to access the replication subsystem.
-source

Identifies the Source Server.
-start

Starts the Source Server.

-secondary=<hostname:port>

230

Database Replication

Identifies the replicating instance. <hostname:port> specifies an IPv4 or IPv6 address optionally encapsulated by square-
brackets ([]) like "127.0.0.1", "::1", "[127.0.0.1]", or "[::1]" or a hostname that resolves to an IPv4 or IPv6 address and the port at
which the Receiver Server is waiting for a connection.

If, in your environment, the same hostname is used for both IPv4 and IPv6, GT.M defaults to IPv6. If you wish to use IPv4,
perhaps because you have a Receiver Server running a pre-V6.0-003 version of GT.M that does not support IPv6, set the
environment variable gtm_ipv4_only to "TRUE", "YES", or a non-zero integer in order to force GT.M to use IPv4.

-passive
Starts the Source Server in passive mode.
-log=<log file name>

Specifies the location of the log file. The Source Server logs its unsuccessful connection attempts starting frequently and
slowing to approximately once every five minutes. This interval does not affect the rate of connection attempts.

-log_interval=<integer>

Specifies the number of transactions for which the Source Server should wait before writing to the log file. The default logging
interval is 1000 transactions.

-log_interval=0 sets the logging interval to the default value.
-buffsize=<Journal Pool size in bytes>

Specifies the size of the Journal Pool. The server rounds the size up or down to suit its needs. Any size less than 1 MB is
rounded up to 1 MB. If you do not specify a qualifier, the size defaults to the GT.M default value of 64 MB. Remember that you
cannot exceed the system-provided maximum shared memory. For systems with high update rates, specify a larger buffer size
to avoid the overflows and file I/O that occur when the Source Server reads journal records from journal files.

-filter=<filter command>

Specifies the complete path of the filter program and any associated arguments. If you specify arguments, then enclose the
command string in quotation marks. If a filter is active, the Source Server passes the entire output stream to the filter as input.
Then, the output from the filter stream passes to the replicating instance. If the filter program is an M program with entry-ref
OLD2NEW"FILTER, specify the following path:

filter=""$gtm_dist/mumps -run OLD2NEWAFILTER"'

Write the filter as a UNIX process that takes its input from STDIN and writes its output to STDOUT.

The format of the input and output data is the MUPIP journal file extract format. The filter must maintain a strict 1:1
relationship between transactions on the input stream and transactions on the output stream. If a transaction on the input
results in no sets and kills in the output, the filter must still write an empty transaction to the output stream.

Example:

extfilter
; A command like mupip replic -source -start -buffsize=$gtm_buffsize
;—instsecondary=$secondary_instance -secondary=$IP_Address:$portno
;—filter='"$gtm_exe/mumps -run “*extfilter”’ -log=$SRC_LOG_FILE
;deploys this filter on the Source Server.
set $ztrap="goto err”

231

Database Replication

set TSTART="08"
set TCOMMIT="09"
set EQT="99"
set log=$ztrnlnm("filterlog”) ; use the environment variable filterlog” (if defined)
;to specify which logfile to use
if logersion="" set log="logcharout” char
if $zv["VMS" sechar EOL=$C(13)_$C(10)
else set EOL=$C(10)
open log:newve:sion
use $principal:nowrap
for do
. use $principal
. read extrRec
. if $zeof halt
. set rectype=$%$piece(extrRec,"”\", 1)
. if rectype'=EQOT do
. if rectype'=TSTART set filtrOut=extrRec_EOL
. else do
. set filtrOut=extrRec_EOL
. for read extrRec set filtrOut=filtrOut_extrRec_EOL quit:$zextract(extrRec,1,2)=TCOMMIT
. if $zeof halt
; set $x=0 is needed so every write starts at beginning of record position
; do not write more than width characters in one output operation to avoid "chopping”.
; and/or eol in the middle of output stream
; default width=32K-1
.. ; use $zsubstr to chop at valid character boundary (single or multi byte character)
. set cntr=0,tmp=filtrOut
. for quit:tmp="" do
. set cntr=cntr+1,$x=0,record(cntr)=%zsubstr(tmp,1,32767), tmp=%$zextract(tmp, $zlength(record(cntr))+1,
$zlength(tmp))
. write record(cntr)
. use log
. write "Received: ",EOL,$s(rectype’=TSTART:extrRec_EOL,1:filtrOut)
. if rectype'=EOT write "Sent: ",EOL,filtrOut
. else write "EOT received, halting..."” halt
quit
err
set $ztrap=
use log
write !!! "%xx* ERROR ENCOUNTERED ***x" 11!
zshow "x"
halt

nn

This example reads logical database updates associated with a transaction from STDIN and writes them to log.out and STDOUT
just like the UNIX tee command. It runs on GT.M V5.5-000 where it is no longer required to treat filter output as a transaction.
To run this example on a pre-GT.M V5.5-000 version, replace the line:

if rectype’'=TSTART set filtrOut=extrRec_EOL
with

if rectype’'=TSTART set filtrOut=TSTART_EOL_extrRec_EOL_TCOMMIT_EOL
to wrap mini-transactions in 08 09.

-freeze[=on|off] -[noJcomment[=""<string>""]

232

Database Replication

Promptly sets or clears an Instance Freeze on an instance irrespective of whether a region is enabled for an Instance Freeze. -
freeze with no arguments displays the current state of the Instance Freeze on the instance.

-[no]comment[=""<string>""] allows specifying a comment/reason associated with an Instance Freeze. Specify -nocomment if
you do not wish to specify a comment/reason.

For more information on enabling a region to invoke an Instance Freeze on custom errors, refer to the -
INST_FREEZE_ON_ERROR section of “SET ” (page 109).

For more information on Instance Freeze, refer to “Instance Freeze” (page 193).
-connectparams=<hard tries>,<hard tries period>, <soft tries period>,<alert time>,<heartbeat period><max heartbeat wait>

Specifies the connection retry parameters. If the connection between the Source and Receiver Servers is broken or the Source
Server fails to connect to the Receiver Server at startup, the Source Server applies these parameters to the reconnection
attempts.

First, the Source Server makes the number of reconnection attempts specified by the <hard tries> value every <hard tries
period> milliseconds. Then, the Source Server attempts reconnection every <soft tries period> seconds and logs an alert
message every <alert time> seconds. If the specified <alert time> value is less than <hard tries>*<hard tries period>/1000 +
It;soft tries period>, it is set to the larger value. The Source Server sends a heartbeat message to the Receiver Server every
<heartbeat period> seconds and expects a response back from the Receiver Server within <max heartbeat wait> seconds.

-instsecondary
Identifies the replicating instance to which the Source Server replicates data.

With no -instsecondary specified, the Source Server uses the environment variable gtm_repl_instsecondary for the name of the
replicating instance.

With no -instsecondary specified and environment variable gtm_repl_instsecondary not set, mupip replicate -source -
checkhealth looks at all the Source Servers (Active or Passive) that are alive and running and those that were abnormally
shutdown (kill -9ed). Any Source Server that was kill -15ed or MUPIP STOPped is ignored because GT.M considers those Source
Server shut down in the normal way. This command reports something only if it finds at least one Source Server that is alive
and running or was abnormally shutdown (kill -9ed). Otherwise it returns a zero (0) status without anything to report even
when the Journal Pool exists and GT.M processes (Update Process or Receiver Server on the replicating instance) are up and
running.

You can start multiple Source Servers from the same originating instance as long as each of them specifies a different name for -
instsecondary.

Specify -instsecondary explicitly (by providing a value) or implicitly (through the environment variable
gtm_repl_instsecondary) even for starting a Passive Source Server. Whenever it activates, a Passive Source Server connects to
this replicating instance.

Example:

$ mupip replicate -source -start -buffsize=$gtm_buffsize -secondary=localhost:1234 -log=A2B.log -instsecondary=B

This command starts the Source Server for the originating instance with instance B as its replicating instance.
-rootprimary

Assign the current instance as the originating instance. You can specify -rootprimary either explicitly or implicitly to start an
instance as an originating instance.

233

Database Replication

-updok

Instructs the Source Server to allow local updates on this instance. This is a synonym for -rootprimary but is named so it better
conveys its purpose.

-propagate[primary]

Use this optional qualifier to assign the current instance as a propagating instance. Specifying -propagateprimary disables
updates on the current instance.

Note that it is not possible to transition an originating instance to a propagating instance without bringing down the Journal
Pool. However, it is possible to transition a propagating instance to an originating instance without bringing down the Journal
Pool for an already running passive Source Server (start one with -propagateprimary if none is running).

Both -rootprimary and -propagateprimary are optional and mutually exclusive. However, FIS recommends you to specify both -
rootprimary and -propagateprimary explicitly in the script for clarity.

Example:
$ mupip replicate -source -activate -rootprimary

This command transitions a propagating originating instance to an originating instance without bringing down the Journal
Pool.

With neither -rootprimary nor -propagateprimary specified, GT.M uses a default value of -propagateprimary for the passive
Source Server startup command (mupip replic -source -start -passive) and the deactivate qualifier (mupip replicate -source
-deactivate). GT.M uses a default value of -rootprimary for the mupip replicate -source -start -secondary=... and the mupip
replic -source -activate commands. These default values make the replication script simpler for users who are planning to
limit themselves to one originating instance and multiple replicating instance (without any further replicating instances
downstream).

$ export gtm_repl_instance=multisite.repl

$ mupip set -journal="enable,before,on” -replication=on -region "x"

$ mupip replicate -instance_create -name=America

$ mupip replicate -source -start -buffsize=$jnlpool_size -secondary=localhost:1234 -log=A2B.log -instsecondary=Brazil

This example starts the Source Server at port 1234 for the replicating instance Brazil. The Source Server creates a Journal Pool.
A GT.M Process writes the updated journal records to the Journal Pool. Then, the Source Server process transports each record
from the Journal Pool to Brazil via a TCP/IP connection.

Note

Before starting replication, always remember to rundown every replicated database region then start the
Source Server.

Important

>

GT.M updates to replicated regions are permitted only on the originating instance and disabled on ALL other
replicating instances.

The Source Server records actions and errors in A2B.log. It also periodically record statistics such as the current backlog, the
number of journal records sent since the last log, the rate of transmission, the starting and current JNL_SEQNO, and the path of
the filter program, if any.

234

Database Replication

-updnotok

Instructs the Source Server to not allow local updates on this instance. This is a synonym for -propagateprimary but is named
so it better conveys its purpose.

-cmplvl=n

Specifies the desired compression level for the replication stream. n is a positive integer value indicating the level of
compression desired. Level 0 offers no compression. Level 1 offers the least compression while Level 9 (as of version 1.2.3.3 of
the zlib library) offers the most compression (at the cost of the most CPU usage). Specifying -cmplvl without an accompanying -
start produces an error. In the case of the source server, if N specifies any value outside of the range accepted by the zlib library
or if -cmplvl is not specified, the compression level defaults to zero (0). In the case of the receiver server, as long as N is non-
zero the decompression feature is enabled; since the source server setting determines the actual level, any legal non-zero value
enables compressed operation at the receiver.

Alternatively, the environment variable gtm_zlib_cmp_level can specify the desired compression level (in the same value range
as N above) and the source server can then be started without -cmplvl. This has the same effect as starting it with -cmplvl
specified. An explicitly specified value on the command line overrides any value specified by the environment variable.

Whenever the source and receiver server connect with each other, if the source server was started with a valid non-zero
compression level, they first determine whether the receiver server is running a version of GT.M which handles compressed
records and has been started with a non-zero compression level. Only if this is true, do they agree to use compressed journal
records. They also verify with a test message that compression/decompression works correctly before sending any compressed
journal data across. They automatically fall back to uncompressed mode of transmission if this test fails or if, at any point,
either side detects that compression or decompression has failed. That is, any runtime error in the compression/decompression
logic results in uncompressed replication (thereby reducing replication throughput) but never jeopardizes the functional health
of replication.

The Source and Receiver Servers log all compression related events and/or messages in their respective logs. The source server
also logs the length of the compressed data (in addition to the uncompressed data length) in its logfile.

Note

If you plan to use the optional compression facility for replication, you must provide the compression library.
The GT.M interface for compression libraries accepts the zlib compression libraries without any need for
adaptation. These libraries are included in many UNIX distributions and are downloadable from the zlib
home page. If you prefer to use other compression libraries, you need to configure or adapt them to provide
the same API provided by zlib. Simple instructions for compiling zlib on a number of platforms follow.
Although GT.M uses zlib, zlib is not FIS software and FIS does not support zlib. These instructions are merely
provided as a convenience to you.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than building your own.

Solaris/cc compiler from Sun Studio:

./configure --shared
make CFLAGS="-KPIC -m64"

HP-UX(IA64)/HP C compiler:

./configure --shared
make CFLAGS="+DD64"

AIX/XL compiler:

235

Database Replication

./configure --shared
Add -q64 to the LDFLAGS line of the Makefile
make CFLAGS="-q64"

Linux/gcc:

./configure --shared
make CFLAGS="-m64"

z/OS:

Download the zlib 1.1.4 from the libpng project's download page on SourceForge.com. Use a transfer mechanism that does
not perform automatic conversion to download a source tarball. If pax cannot read the archive, it is a sign that the download
mangled the archive. Use pax to unpack the tarball, converting files from ASCII to EBCDIC.

pax -r -o setfiletag -ofrom=I1S08859-1,to=IBM-1047 -f zlib-1.1.4.tar.gz

Apply the following patch to the zlib 1.1.4 sources:

zlib_1.1.4_zos.patch diff -purN downloads/
zlib/src.orig/configure downloads/zlib/src/configure--- downloads/zlib/src.orig/configure Tue Dec 16 14:09:57
2008+++ downloads/zlib/src/configure Mon Feb 9 14:30:49 2009@ @ -116,6 +116,11 @ @ else SFLAGS=${CFLAGS-"-
Kconform_pic -O"} CFLAGS=${CFLAGS-"-0"} LDSHARED=${LDSHARED-"cc -G"};;+ 0S/390*)+ CC=xlc+
SFLAGS=${CFLAGS-"-qascii -q64 -W¢,DLL,LP64,XPLINK,EXPORTALL -D_ALL_SOURCE_NOTHREADS"}+
CFLAGS=${CFLAGS-"-qascii -q64 -W¢,DLL,LP64,XPLINK,EXPORTALL -D_ALL_SOURCE_NOTHREADS"}+
LDSHARED=${LDSHARED-"xlc -qascii -q64 -WL,dll,LP64,XPLINK "};; # send working options for other systems to
support@gzip.org *) SFLAGS=${CFLAGS-"-0"} CFLAGS=${CFLAGS-"-0"}

Build and install the zlib DLL, placing the xlc compilers in compatibility to mode by setting the environment variable
C89_CCMODE to 1. When not in compatibility mode, xlc follows strict placement of command line options. Configure and
build the zlib software with ./configure --shared && make. By default, the configure script places zlib in /usr/local/lib. Install
the software with make install. To ensure that GT.M finds zlib, include /usr/local/lib in LIBPATH, the environment variable that
provides a search path for processes to use when they link DLLs.

By default, GT.M searches for the libz.so shared library (libz.s] on HPUX PA-RISC) in the standard system library directories
(for example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard location, before starting
replication, you must ensure that the environment variable $LIBPATH (AIX and z/OS) or $LD_LIBRARY_PATH (other UNIX
platforms) includes the directory containung the library. The Source and Receiver Server link the shared library at runtime. If
this fails for any reason (such as file not found, or insufficient authorization), the replication logic logs a DLLNOOPEN error
and continues with no compression.

-tlsid=<label>

Instructs the Source or Receiver Server to use the TLS certificate and private key pairs having <label> as the TLSID in the
configuration file pointed to by the gtmcrypt_config environment variable. TLSID is a required parameter if TLS/SSL is to be
used to secure replication connection between instances. If private keys are encrypted, an environment variable of the form
gtmtls_passwd_<label> specifies their obfuscated password. You can obfuscate passwords using the 'maskpass' utility provided
along with the encryption plugin. If you use unencrypted private keys, set the gtmtls_passwd_<label> environment variable to
a non-null dummy value; this prevents inappropriate prompting for a password.

-[NO]PLAINtextfallback

Specifies whether the replication server is permitted to fallback to plaintext communication. The default is -
NOPLAINtextfallback. If NOPLAINTEXTFALLBACK is in effect, GT.M issues a REPLNOTLS error in the event it is unable to

236

sourceforge.com

Database Replication

establish a TLS connection. [Note: GT.M versions prior to V6.1-000 did not support TLS for replication - if needed it could be
implemented with an external application such as stunnel (http://stunnel.org).] If PLAINTEXTFALLBACK is in effect, in the
event of a failure to establish a TLS connection, GT.M issues REPLNOTLS as a warning. Once a permitted plaintext replication
connection is established for a connection session, GT.M never attempts to switch that connection session to TLS connection.

-RENEGotiate_interval=<minutes >

Specifies the time in mintues to wait before attempting to perform a TLS renegotiation. The default -
RENEGOTIATE_INTERVAL is a little over 120 minutes. A value of zero causes GT.M never to attempt a renegotiation. The
MUPIP REPLIC -SOURCE -JNLPOOL -SHOW [-DETAIL] command shows the time at which the next TLS renegotiation

is scheduled, and how many such renegotiations have occurred thus far for a given secondary instance connection.

As renegotiation requires the replication pipeline to be temporarily flushed, followed by the actual renegotiation, TLS
renegotiation can cause momentary spikes in replication backlog.

Shutting down the Source Server

Command syntax:

mupip replicate -source -shutdown [-timeout=<timeout in seconds>]
Qualifiers:

-shutdown
Shuts down the Source Server.

-timeout=<timeout in seconds>

Specifies the time (in seconds) the Source Server should wait before shutting down. If you do not specify -timeout, the default
timeout period is 120 seconds. If you specify -timeout=0, shutdown occurs immediately.

Activating a Passive Source Server

Command syntax:

mupip replicate -source -activate
-secondary=<hostname:port>
-log=<log file name>
-connectparams=<hard tries>,<hard tries period>,
<soft tries period>,<alert time>,<heartbeat period>,
<max heartbeat wait>]
-instsecondary=<instance_name>
{-rootprimary|-propagateprimary}

Qualifiers:
-activate

Activates a passive Source Server. Once activated, the Source Server reads journal records from the Journal Pool and transports
them to the system specified by -secondary.

Before activation, -activate sets the Source Server to ACTIVE_REQUESTED mode. On successful activation, GT.M sets
the Source Server mode to ACTIVE. GT.M produces an error when there is an attempt to activate a Source Server in
ACTIVE_REQUESTED mode.

237

http://stunnel.org

Database Replication

-instsecondary=<instance_name>
Identifies the replicating instance to which the passive Source Server connects after activation.

With no -instsecondary specified, the passive Source Server uses the environment variable gtm_repl_instsecondary as the value
of -instsecondary.

-rootprimary
Specifies that the passive Source Server activation occurs on an originating instance.
-propagateprimary
Specifies that the passive Source Server activation occurs on a propagating instance.
If neither -rootprimary nor -propagateprimary are specified, this command assumes -propagateprimary.

Example:
$ mupip replicate -source -activate -secondary=localhost:8998 -log=A2B.log -instsecondary=America

This example activates a Source Server from passive mode.

Deactivating an Active Source Server

Command syntax:

mupip replicate -source -deactivate -instsecondary=<instan