

GT.M Administration and Operations Guide

Publication date September 04, 2014
Copyright © 2011-2014 Fidelity Information Services, Inc. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts.

GT.M™ is a trademark of Fidelity Information Services, Inc. Other trademarks are the property of their respective owners.

This document contains a description of GT.M and the operating instructions pertaining to the various functions that comprise the system. This document
does not contain any commitment of FIS. FIS believes the information in this publication is accurate as of its publication date; such information is subject
to change without notice. FIS is not responsible for any errors or defects.

Revision History

Revision V6.1-000/1 04 September 2014 • In Chapter 2: “Installing GT.M” (page
4), added a new section called “Reference
Implementation Plugin - Shared Library
Dependencies” (page 8).

• In Chapter 7: “Database Replication” (page
173) and under the “Procedures ” (page
203) section, corrected the downloadable
scripts example (msr_proc2.tar.gz) for setting
up an A->P replication configuration.

Revision V6.1-000 01 August 2014 • Updated Chapter 3: “Basic
Operations” (page 12), Chapter 4:
“Global Directory Editor” (page
32), Chapter 5: “General Database
Management” (page 67), and Chapter 7:
“Database Replication” (page 173) for
V6.1-000. For chapter specific changes, refer to
the chapter-level revision history.

Revision V6.0-003/1 19 February 2014 • Added a new appendix called Appendix G:
“Packaging GT.M Applications” (page
441).

• In “REORG ” (page 102), added a caution
note on running successive REORGs.

• In “Environment Variables” (page
17), improved the description of the
gtm_nocenable environment variable.

• In “File Header Data Elements ” [266],
updated the descriptions for V6.0-003.

Revision V6.0-003 27 January 2014 • In Chapter 3: “Basic Operations” (page
12), added the -help and -? command line
options for the gtm script and the descriptions
of gtm_ipv4_only and gtm_etrap environment
variables.

• In Chapter 4: “Global Directory
Editor” (page 32), corrected the
syntax of [NO]STDNULLCOLL and -
COLLATION_DEFAULT and added a

http://www.gnu.org/licenses/fdl.txt

paragraph about what happens when
database file with automatic extension
disabled (EXTENSION_COUNT=0) starts to
get full.

• In Chapter 5: “General Database
Management” (page 67), added the -
MUTEX_SLOTs qualifier for MUPIP SET and -
OVERRIDE qualifier for MUPIP RUNDOWN.

• In Chapter 7: “Database Replication” (page
173), added downloadable script examples
for A->B and A->P replication scenarios,
information about the ACTIVE_REQUESTED
mode, PASSIVE_REQUESTED mode, and IPv6
support.

• In Chapter 9: “GT.M Database
Structure(GDS)” (page 265),corrected the
description of block header fields.

Revision V6.0-001/2 10 April 2013 • In Chapter 5: “General Database
Management” (page 67), added a planning/
preparation checklist that can be used before
starting a MUPIP BACKUP.

• In Appendix F: “GTMPCAT - GT.M Process/
Core Analysis Tool ” (page 437), added
information about the --cmdfile option.

Revision V6.0-001/1 22 March 2013 • In Chapter 5: “General Database
Management” (page 67), Chapter 6: “GT.M
Journaling” (page 130), and Chapter 7:
“Database Replication” (page 173),
improved the formatting all command
syntaxes.

• In “SET Object Identifying Qualifiers
” (page 141), added the descriptions of -
repl_state={on|off} and -dbfilename=filename
qualifiers of -jnlfile.

Revision V6.0-001 27 February 2013 • Added Appendix F: “GTMPCAT - GT.M
Process/Core Analysis Tool ” (page
437). gtmpcat is a diagnostic tool for FIS to
provide GT.M support.

• Updated for V6.0-001. For chapter-
specific revisions, refer to Chapter 3:
“Basic Operations” [12], Chapter 4:
“Global Directory Editor” (page
32), Chapter 5: “General Database
Management” (page 67), Chapter 6:
“GT.M Journaling” (page 130), Chapter 7:
“Database Replication” (page 173),
and Chapter 10: “Database Structure
Editor” (page 279).

Revision V6.0-000/1 21 November 2012 • Updated for V6.0-000. For chapter-specific
revisions, refer to Chapter 3: “Basic
Operations” [12], Chapter 4: “Global

Directory Editor” (page 32), Chapter 6:
“GT.M Journaling” (page 130), Chapter 10:
“Database Structure Editor” (page
279), and Appendix B: “Monitoring GT.M
Messages” (page 411).

Revision V6.0-000 19 October 2012 • In Chapter 4: “Global Directory
Editor” (page 32), added the description
of the -INST_FREE_ON_ERROR region
qualifier.

• In Chapter 5: “General Database
Management” (page 67), added the
description of the -INST_FREE_ON_ERROR
qualifier of MUPIP SET.

• In Chapter 7: “Database Replication” (page
173), added the description of the -FREEZE
qualifier of MUPIP REPLICATE -SOURCE.

• In Chapter 3: “Basic Operations” (page
12) added gtm_custom_errors to the list of
“Environment Variables” [17].

Revision 11 05 October 2012 • In Chapter 12: “Database Encryption” (page
363), added information about setting the
environment variable GTMXC_gpgagent in
“Special note - Gnu Privacy Guard version
2” [389].

• In Chapter 5: “General Database
Management” (page 67), improved the
description of MUPIP INTEG and the -
ADJACENCY qualifier.

• In Chapter 3: “Basic Operations” (page
12) added GTMXC_gpgagent to the list of
“Environment Variables” [17].

Revision 10 28 September 2012 • In Chapter 11: “Maintaining Database
Integrity” [324], added the “O5–Salvage
of a damaged spanning node” (page 354)
and “Recovering data from damaged binary
extracts” (page 331) sections.

• In Chapter 9: “GT.M Database
Structure(GDS)” [265], added a new
section called “Using GDS records to hold
spanning nodes ” [274] and corrected the
first sentence of the "Use of Keys" section as
follows:

GT.M locates records by finding the first key
in a block lexically greater than, or equal to,
the current key.

• In “Database Structure Editor” (page
279), improved the description of -DATA.

• In “Starting the Receiver Server ” (page
243), improved the description of -
UPDATERESYNC.

• In Appendix D: “Building Encryption
Libraries” (page 425), removed a
redundant step in the “Solaris 9 and 10
(SPARC) ” (page 428) section.

• In Chapter 4: “Global Directory
Editor” (page 32), added the description
of the STDNULLCOLL qualifier and corrected
the description of the NULL_SUBSCRIPTS
qualifier.

• In Chapter 4: “Global Directory
Editor” (page 32) and Chapter 5:
“General Database Management” (page
67), corrected the maximum value for -
LOCK_SPACE and improved the description
of -FLUSH_TIME.

Revision 9 14 August 2012 • In Chapter 7: “Database Replication” (page
173), improved the description of the
replication WAS_ON state and added the
“Recovering from the replication WAS_ON
state ” (page 219) section.

Revision 8 03 August 2012 • In Chapter 4: “Global Directory
Editor” (page 32) and Chapter 5:
“General Database Management” (page
67), improved the description of -
LOCK_SPACE.

• In Chapter 4: “Global Directory
Editor” (page 32), improved the overview
description of GDE.

• In Chapter 5: “General Database
Management” (page 67), added a note
on MUPIP BACKUP supporting only one
concurrent -online backup.

• In Chapter 10: “Database Structure
Editor” (page 279) added the description
of the GVSTATS qualifier.

Revision 7 26 July 2012 • In Chapter 1: “About GT.M” (page 1),
added a new section called "Command
Qualifiers".

Revision 6 19 July 2012 • In Chapter 13: “GT.CM Client/Server” (page
400), corrected the example of starting a
GT.CM server.

• In screen and print pdfs, removed excessive
spacing around SVG diagrams in Chapter 7:
Database Replication (page 173).

Revision 5 17 July 2012 • Updated Chapter 7: “Database
Replication” (page 173) for V5.5-000.

• In Chapter 3: Basic Operations (page
12), corrected the description
of the environment variable
gtm_non_blocked_write_retries.

• Fixed a typo (stand-along -> stand-alone) in
“Recommendations” (page 432).

Revision 4 6 June 2012 • Added Chapter 13: “GT.CM Client/
Server” (page 400).

• In Chapter 5: “General Database
Management” (page 67), added the
description of MUPIP REORG -TRUNCATE
and MUPIP LOAD -STDIN.

• In Chapter 6: “GT.M Journaling” (page
130), added the description of -ROLLBACK
-ONLINE, updated the description of -
EXTRACT to include the -stdout value, and
added the definitions of unam, clntunam, and
ALIGN records.

• In Chapter 8: “M Lock Utility (LKE)” (page
252), added the description of the
LOCKSPACEUSE message.

• In Chapter 10: “Database Structure
Editor” (page 279), updated the
description of -SIBLING.

• In Chapter 4: “Global Directory
Editor” (page 32), added
AUTOSWITCHLIMIT as an option for the -
JOURNAL region qualifier.

• In Chapter 7: “Database Replication” (page
173), removed -LOG as an option for -
STATSLOG.

Revision 3 02 May 2012 • Added Appendix E: “GT.M Security
Philosophy” (page 430).

• In “Rolling Back the Database After System
Failures” (page 249), corrected the
command syntax and the example.

• In “Starting the Source Server” (page 230),
corrected the quoting of -filter examples.

• In “Journal Extract Formats” (page 168),
added the definition of tid.

Revision 2 19 March 2012 • In “O4–Salvage of Data Blocks with Lost
Indices” (page 352), fixed syntax errors in
the example.

• Updated the section called “Journal Extract
Formats” [168] for V5.5-000.

• In “Installation Procedure” (page 5),
removed an incorrect reference to
libgtmshr.so.

Revision 1 5 March 2012 • Updated “Basic Operations” (page 12)
for V5.5-000.

• In “Database Replication” [173],
improved the description of the -instsecondary
qualifier and added the “Stopping a Source
Server” [241] section and the “Shutting
Down an instance” [209] procedure.

Revision V5.5-000 27 February 2012 • Updated “Installing GT.M” (page 4) for
V5.5-000.

• Updated “REORG ” [102] for V5.5-000. Also,
improved the description of -EXCLUDE and -
SELECT qualifiers.

• In “CHANGE -FIleheader Qualifiers” [290],
added a caution note about changing the
value of the -CORRUPT_FILE fileheader
element.

• In “Starting the Source Server” [230], added
information about using external filters for
pre-V5.5-000 versions.

Revision 4 13 January 2012 • In “Starting the Source Server” [230], added
an example of a replication filter.

• In “Before you begin” [4], added a note
to caution users about installing and operating
GT.M from an NFS mounted directory.

• In “Operating in DSE” [279], improved the
description of the Change command.

Revision 3 26 December 2011 In “GT.M Journaling” [130], added the
Journal Extract format for the ZTRIG record.

Revision 2 2 December 2011 • In “GT.M Journaling” [130], improved the
description of -EXTRACT and corrected the
heading levels of some sections under MUPIP
JOURNAL.

• In “Database Replication” [173],
corrected the usage of the term
propagating instance, improved the
description of -stopsourcefilter, and
changed -nopropagatingprimary to -
propagatingprimary.

• Added Index entries for gtmsecshr.

• In “Compiling ICU” [414], changed the
instructions for Compiling ICU 4.4 on AIX 6.1.

Revision 1 10 November 2011 • In the “Conventions Used in This
Manual” [xi] section, added a brief
description about wrapping long-line examples
in Print and Screen PDFs.

• In the “SET ” [109] section, changed
"MUPIP SEt" to "MUPIP SET".

• In the “Startup” [204] section, changed
"Restore the replication instance file" to
"Recreate the replication instance file".

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

ix

Table of Contents
About This Manual .. x
1. About GT.M .. 1
2. Installing GT.M ... 4
3. Basic Operations .. 12
4. Global Directory Editor .. 32
5. General Database Management .. 67
6. GT.M Journaling .. 130
7. Database Replication .. 173
8. M Lock Utility (LKE) .. 252
9. GT.M Database Structure(GDS) .. 265
10. Database Structure Editor ... 279
11. Maintaining Database Integrity ... 324
12. Database Encryption ... 363
13. GT.CM Client/Server .. 400
A. GT.M's IPC Resource Usage ... 405
B. Monitoring GT.M Messages ... 411
C. Compiling ICU on GT.M supported platforms .. 414
D. Building Encryption Libraries .. 425
E. GT.M Security Philosophy .. 430
F. GTMPCAT - GT.M Process/Core Analysis Tool ... 437
G. Packaging GT.M Applications .. 441
Glossary ... 446
Index ... 447

x

About This Manual

GT.M is a high-end database application development platform offered by Fidelity National Information Services (FIS). GT.M
provides an M (also known as MUMPS) language environment that largely complies with ISO/IEC 11756:1999. GT.M's compiler
for the standard M scripting language implements full support for ACID (Atomic, Consistent, Isolated, Durable) transactions,
using optimistic concurrency control and software transactional memory (STM) that resolves the common mismatch between
databases and programming languages. The GT.M data model is a hierarchical associative memory (that is, multi-dimensional
array) that imposes no restrictions on the data types of the indexes and the content - the application logic can impose any
schema, dictionary or data organization suited to its problem domain.

GT.M's unique ability to create and deploy logical multi-site configurations of applications provides unrivaled continuity of
business in the face of not just unplanned events, but also planned events, including planned events that include changes to
application logic and schema.

You can install and manage GT.M using the utilities described in this manual and standard operating system tools. The first
three chapters provide an overview of GT.M, installation procedures, and GT.M system environment. The remaining chapters
describe GT.M operational management.

Intended Audience

This manual is intended for users who install GT.M and manage the GT.M user environment. The presentation of information
assumes a working knowledge of UNIX, but no prior knowledge of GT.M.

Purpose of the Manual

This GT.M Administration and Operations Guide explains how to install and manage GT.M.

How to Use This Manual

First, read Chapter 1: “About GT.M” (page 1) for an overview of GT.M system management. Then, proceed to the chapter
that discusses the area of interest.

The presentation of information in each chapter is designed to be useful for even a first-time user. Each chapter starts
with an overview of the topic at hand and then moves on to related GT.M utility program commands and qualifiers. This
list is organized alphabetically by command and then by the qualifiers for each command. Then, the chapter provides
recommendations from FIS to implement and operate important aspects of the topic. It ends with an exercise that reinforces the
concepts introduced in the chapter.

FIS recommends users read the chapters in a top-down manner. After becoming familiar with GT.M, use the "Commands and
Qualifiers" section of each chapter as a reference manual.

Overview

This manual contains twelve chapters and an Appendix. Here is a brief overview of each chapter:

Chapter 1: “About GT.M” (page 1) introduces GT.M administration and operations.

About This Manual

xi

Chapter 2: “Installing GT.M” (page 4) provides procedures for installing GT.M.

Chapter 3: “Basic Operations” (page 12) describes operations required to start GT.M and keep it running.

Chapter 4: “Global Directory Editor” (page 32) describes global directories, which control placement and access of global
variables, and explains how to use the Global Directory Editor (GDE) to create and maintain global directories.

Chapter 5: “General Database Management” (page 67) describes how to use a GT.M utility called MUPIP to perform database
and non-database operations.

Chapter 6: “GT.M Journaling” (page 130) describes the journaling capabilities of GT.M.

Chapter 7: “Database Replication” (page 173) describes how to implement continuous application availability using multiple
systems.

Chapter 8: “M Lock Utility (LKE)” (page 252) describes how to use a GT.M utility called M Lock Utility (LKE) to examine and
adjust M locks.

Chapter 9: “GT.M Database Structure(GDS)” (page 265) provides an overview of GT.M Database Structure (GDS).

Chapter 10: “Database Structure Editor” (page 279) describes how to use the Database Structure Editor (DSE) to examine and
modify sections of the database, should that ever be necessary.

Chapter 11: “Maintaining Database Integrity” (page 324) describes procedures for verifying and maintaining the integrity of
GDS databases.

Chapter 12: “Database Encryption” (page 363) describes procedures for encrypting data in the database and journal files.

Appendix A: “GT.M's IPC Resource Usage” (page 405) describes how GT.M processes use UNIX Interprocess Communication
(IPC).

Appendix C: “Compiling ICU on GT.M supported platforms” (page 414) contains sample ICU installation instructions.
Although GT.M uses ICU to enable the support for Unicode™, ICU is not FIS software and FIS does not support ICU. The
sample instructions for installing and configuring ICU are merely provided as a convenience to you.

"Appendix C" describes security considerations for deploying applications on GT.M.

Conventions Used in This Manual

References to other GT.M documents are implemented as absolute hypertext links.

Use GT.M with any UNIX shell as long as environment variables and scripts are consistently created for that shell. In this
manual, UNIX examples are validated on Ubuntu Linux (Ubuntu Linux uses dash for /bin/sh). Examples in later chapters
assume that an environment has been set up as described in the chapters Chapter 2: “Installing GT.M” (page 4) and
Chapter 3: “Basic Operations” (page 12).

FIS made a conscientious effort to present intuitive examples and related error messages that appear if a user tries those
examples. However, due to environment and shell differences, you may occasionally obtain different results (although the
differences should be relatively minor). Therefore, FIS suggests that you try the examples in a database environment that does
not contain any valued information.

Examples follow the descriptions of commands. For readability purposes, long shell command lines are wrapped into multiple
lines. The icon denotes the starting point of wrap. Users must always assume a single line is correct and that the icon means

About This Manual

xii

continuation. To facilitate copy/paste of examples from Screen PDF, clicking on icon below a wrapped example opens a
window or tab where that example is available with unwrapped command lines. For Print PDF, an unwrapped command lines
example can be downloaded from the URL below the example.

In M examples, an effort was made to construct examples where command lines did not wrap, in many cases using the
argumentless DO.

The examples make frequent use of literals in an attempt to focus attention on particular points. In normal usage arguments are
far more frequently variables.

1

Chapter 1. About GT.M

Revision History

Revision V5.5-000/7 26 July 2012 Added a new section called “Command
Qualifiers” (page 3).

Revision V5.5-000/4 10 May 2012 Updated for V5.5-000.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

GT.M is a high-end performance database application development and deployment platform from Fidelity National
Information Services (FIS). GT.M provides an M language subsystem, a database engine, and a complete set of utilities for
administration and operation. One can install and manage GT.M using the utilities described in this manual and standard
operating system tools. This chapter provides an overview of the GT.M system environment and utilities.

Hardware/Operating System Environment

GT.M runs on a wide variety of UNIX/Linux implementations as well as OpenVMS. Consult FIS for currently supported
versions. Each GT.M release is extensively tested by FIS on a set of specific versions of operating systems on specific hardware
architectures (the combination of operating system and hardware architecture is referred to as a platform). This set of specific
versions is considered Supported. There will be other versions of the same operating systems on which a GT.M release may
not have been tested, but on which the FIS GT.M support team knows of no reason why GT.M would not work. This larger set
of versions is considered Supportable. There is an even larger set of platforms on which GT.M may well run satisfactorily, but
where the FIS GT.M team lacks the knowledge to determine whether GT.M is Supportable. These are considered Unsupported.
Contact FIS GT.M Support with inquiries about your preferred platform.

System requirements vary widely depending on application needs, and should be empirically determined for each situation.

Installation

GT.M installation is semi-automatic, using the system administration scripts provided with GT.M. The installation procedure is
described in Chapter 2: “Installing GT.M” (page 4).

Security

Users require no special privileges to run GT.M beyond standard system access and suitable access to relevant application and
database files. All the standard UNIX/OpenVMS security features are available to protect GT.M resources.

FIS strongly recommends a security design where each user has no more authorizations than they require to do their assigned
roles and each user's actions are distinguishable in an audit.

About GT.M

2

Note

Root or superuser access is required to install GT.M, but not to use it. FIS recommends against routine use of
the root userid to run GT.M.

Program Development Environment

GT.M provides a compiler and run-time environment for the M language. Program development uses standard editors and
utility programs.

GT.M requires minimal administrative effort.

M routines are stored as text files and object files in the native file system. Compilation of source text into object code is
typically automatic, but may be invoked explicitly. A user may store routines in multiple libraries and/or directories organized
into search hierarchies, and change the search paths as needed.

For more information on the GT.M language and programming environment, see GT.M Programmer's Guide.

Database Subsystem

The GT.M database subsystem consists of a run-time library and a set of utilities which operate on one or more user-specified
Global Directories (GD) and database files. GT.M stores M global variables in database files, which are ordinary UNIX files.
Internally, the UNIX files are organized as balanced trees (B-trees) in GT.M Data Structures (GDS). See "GT.M Database
Structure" chapter for more information on B-trees and the GDS file structure.

A directory maps global names to a database file. GT.M processes use this mapping when storing and retrieving globals from
the database. Multiple global directories can reference a single database file, and a database file can be referenced in multiple
global directories, with some exceptions, as discussed in Chapter 4: “Global Directory Editor” (page 32). Use the Global
Directory Editor (GDE) to create and maintain global directories.

In addition to mapping global variables to database files, global directories also store initial parameters used by the MUPIP
CREATE command when creating new database files. GT.M uses environment variables to locate the global directory or,
optionally database files.

GT.M Utility Programs

GT.M provides utility programs to administer the system. Each utility is summarized below, and described later in this manual.

GDE

The Global Directory Editor (GDE) is a GT.M utility program that creates and maintains global directories. GDE provides
commands for operating on the global directory.

MUPIP

MUPIP (M Peripheral Interchange Program) is the GT.M utility program for general database operations, GT.M Journaling,
Multi-site Database Replication, and some non-database operations.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

About GT.M

3

LKE

The M Lock Utility (LKE) is the GT.M utility program that examines and modifies the lock space where GT.M maintains the
current M LOCK state. LKE can monitor the locking mechanism and remove locks. See Chapter 8: “M Lock Utility (LKE)” (page
252) for more information.

DSE

The Database Structure Editor (DSE) is the GT.M utility program to examine and alter the internal database structures. DSE
edits GT.M Database Structure (GDS) files. It provides an extensive database "patch" facility (including block integrity checks),
searches for block numbers and nodes, and provides symbolic examination and manipulation facilities. See Chapter 10:
“Database Structure Editor” (page 279) for more information.

Command Qualifiers

Each utility program has its own set of commands. Qualifiers are used as arguments for a command. A qualifier is always
prefixed with a hypen (-). Some qualifier allow assigning values with an equal (=) sign where as some allow the use of sub-
qualifiers as their arguments. If you specify the same qualifier more than once, MUPIP, DSE, and LKE acts upon the qualifier
that appears latest. However, you cannot specify qualifiers that have sub-qualifiers more than once. With GDE, specifying the
same qualifier more than once produces an error.

Database Integrity

GT.M tools verify and maintain database integrity. As described in Chapter 11: “Maintaining Database Integrity” (page 324),
database integrity refers to a state of logical and physical consistency in the database when all of the globals and pointers are
correct, thereby making all data accessible. Chapter 11 [324] describes how to use the MUPIP INTEG command and the DSE
utility to detect and repair integrity problems, and supplies procedures for avoiding such problems.

Interprocess Communication

GT.M uses UNIX Interprocess Communication (IPC) resources to coordinate access to the database. Additionally, GT.M
includes a daemon process gtmsecshr that implements process wake-up for M locks and clean-up of IPC resources after certain
types of abnormal process termination. See Appendix A: “GT.M's IPC Resource Usage” (page 405) for more information.

4

Chapter 2. Installing GT.M

Revision History

Revision V6.1-000/1 04 September 2014 Added a new section called “Reference
Implementation Plugin - Shared Library
Dependencies” (page 8).

Revision V5.5-000/2 19 March 2012 Removed an incorrect reference to libgtmshr.so.

Revision V5.5-000 27 February 2012 Updated for V5.5-000.

Revision 4 13 January 2012 In “Before you begin” [4], added a note
to caution users about installing and operating
GT.M from an NFS mounted directory.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

This chapter describes the installation procedure for GT.M. Always see the release notes for special instructions before
installing GT.M.

Obtaining GT.M Distribution Media

FIS prefers to distribute GT.M online via the Internet. GT.M for selected platforms, including GNU/Linux on the popular x86
architecture, can be downloaded under the terms of the Affero GNU General Public License (AGPL) version 3, from Source
Forge (http://sourceforge.net/projects/fis-gtm). Contact GT.M Support (gtmsupport@fisglobal.com) to obtain a copy of a GT.M
distribution for other platforms or on physical media.

Before you begin

Before you begin installing GT.M, perform the following tasks:

• Read the GT.M Release Notes documentation. The release documents contain the latest information that may be critical for
installing and configuring GT.M. They are located at the User Documentation tab on the GT.M website (www.fis-gtm.com).

• Determine whether or not, GT.M access is restricted to a group. Keep the group name handy as you will have to enter it
during the installation process.

• Set the environment variable gtm_log to a directory where GT.M should create log files. In conformance with the Filesystem
Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for $gtm_log unless you are installing the same
version of GT.M in multiple directories. Note that $gtmver can be in the form of V6.1-000_x86 which represents the current
GT.M release and platform information.

If you do not set gtm_log, GT.M creates log files in a directory in /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-
UX, Solaris). However, this is not recommended because it makes GT.M log files vulnerable to the retention policy of a
temporary directory.

http://sourceforge.net/projects/fis-gtm
http://fis-gtm.com

Installing GT.M

5

Important

Starting with V6.0-000, gtmsecshr logs its messages in the system log and the environment variable gtm_log
is ignored.

• If you need to perform Unicode™-related operations in GT.M, you must have at least ICU version 3.6 installed. GT.M uses
ICU 3.6 (or above) to provide the support for Unicode. GT.M generates the distribution for Unicode only if ICU 3.6 (or
above) is installed on your system. By default, GT.M uses the most current version of ICU. GT.M expects ICU to have been
built with symbol renaming disabled and issues an error at startup if the currently installed version of ICU has been built
with symbol renaming enabled. If you intend to use a version of ICU built with symbol renaming enabled or any version
other than the default, keep the MAJOR VERSION and MINOR VERSION numbers ready as you will have to enter it as
MajorVersion.MinorVersion (for example "3.6" to denote ICU-3.6) during the installation process.

Caution

Installing GT.M on an NFS mounted directory is not recommended. Several NFS characteristics violate GT.M
database design assumptions which may manifest themselves as hard to diagnose problems. If you still
choose to install and operate GT.M from an NFS mounted directory, there are chances that at some point you
will face significant problems with performance and response time.

While you should never operate GT.M database and journal files from an NFS mounted directory you
can safely, except on Linux, use an NFS mounted directory for keeping source and object code modules
and performing sequential file IO. While NFS mounted files may work for you, historically they have
not provided sufficient support for file locking over NFS to prevent intermittent errors when you have a
significant concurrent file activity.

Installation Procedure

Create a backup copy of any existing version of GT.M before running the installation procedure. The installation procedure
overwrites any existing version of GT.M in the installation target directory.

Important

Never install a GT.M release into an existing directory overwriting another release that might be needed for
research or recovery and never on the one currently in use. FIS recommends installing each version of GT.M
in a separate directory using the naming convention /usr/lib/fis-gtm/version_platform , where version is
the GT.M version being installed and platform is the hardware architecture. For example, /usr/lib/fis-gtm/
V6.1-000_x86_64.

Run the installation procedure as root for everything to install correctly.

Find or create a temporary directory to hold your GT.M distribution files and change to that directory.

Example:

$ cd /tmp

or

$ cd /usr/tmp

Installing GT.M

6

Note

When choosing a temporary directory, keep in mind the following points:

• Whether it is safe to use a directory (like /tmp) subject to concurrent use by the operating system,
applications, and so on.

• Whether you can protect any sensitive information in temporary files with appropriate access permissions.

Unpack the distribution to the current directory with a command such as the following (your UNIX version may require you to
first use gzip to decompress the archive and then tar to unpack it; the tar options may also vary):

$ tar zxvf /Distrib/GT.M/gtm_V55000_linux_x8664_pro.tar.gz

Note

The name of the device and the tar options may vary from system to system.

The GT.M distribution contains various GT.M system administration scripts. These include:

configure to install GT.M
gtm sets a default user environment and starts GT.M.
gtmbase An example to set up a default user environment.

Note that gtmbase is simply an example of the type of script you can develop. Do not use it as is.

For more information on using gtmbase and other scripts, refer to Chapter 3: “Basic Operations” (page 12).

To start the GT.M installation procedure, execute the following script:

#./configure

The configure script displays a message like the following:

 GT.M Configuration Script
GT.M Configuration Script Copyright 2009, 2012 Fidelity Information Services, Inc. Use of this
software is restricted by the provisions of your license agreement.

What user account should own the files? (bin)

Enter the name of the user who should own GT.M distribution files. The default is bin. If there is no user with the name bin,
the configure script asks for an alternate user who should own GT.M distribution files.

What group should own the files? (bin)

Enter the name of the group who should own GT.M distribution files. The default is bin. If there is no group with the name bin,
the configure script asks for an alternate group who should own GT.M distribution files.

Should execution of GT.M be restricted to this group? (y or n)

Choose y to restrict the ownership of your GT.M distribution to the specified group. This is a security-related option. By
default, GT.M does not restrict the ownership to a group.

In what directory should GT.M be installed?

Installing GT.M

7

Enter a directory name, such as /usr/lib/fis-gtm/V6.1-000_x86_64. If the directory does not exist, the configure script displays
a message like the following:

Directory /usr/lib/fis-gtm/V6.1-000_x86_64 does not exist.
Do you wish to create it as part of this installation? (y or n)

Choose y to create the directory or n to cancel the installation.

Installing GT.M...

This is followed by a confirmation message for installing UTF-8 support.

Should UTF-8 support be installed? (y or n)

Choose y to confirm. If you choose n, Unicode functionality is not installed.

Note

GT.M requires at least ICU Version 3.6 to install the functionality related to Unicode.

If you choose y, the configure script displays a message like the following:

Should an ICU version other than the default be used?

If you choose n, the configure script looks for the symbolic link of libicuuc.so to determine the default ICU version.

If you choose y, the configure script displays a message like the following:

Enter ICU version (at least ICU version 3.6 is required.
Enter as <major-ver>.<minor-ver>):

Enter the ICU version number in the major-ver.minor-ver format. The configure script displays the following message:

All of the GT.M MUMPS routines are distributed with uppercase
names. You can create lowercase copies of these routines
if you wish, but to avoid problems with compatibility in
the future, consider keeping only the uppercase versions
of the files.

Do you want uppercase and lowercase versions of the MUMPS routines? (y or n).

Choose y to confirm. The configure script then displays the list of MUMPS routines while creating their lowercase versions.
Then the script compiles those MUMPS routines. On platforms where GT.M supports placing object code in shared library, it
creates a library libgtmutil.so with the object files of the utility programs and GDE distributed with GT.M. On these platforms,
it asks the question:

Object files of M routines placed in shared library /usr/lib/fis-gtm/V6.1-000_x86_64/libgtmutil.so.
Keep original .o object files (y or n)?

Unless your scripts require separate object files for these routines, you can safely delete the .o object files, and place $gtm_dist/
libgtmutil.so as the last element of gtmroutines in lieu of $gtm_dist.

The configure script then asks you:

Installation completed. Would you like all the temporary files removed from this directory? (y or n)

Choose y to confirm. FIS recommends deleting all temporary files.

Installing GT.M

8

Congratulations! GT.M is now installed on the system. Proceed to “Reference Implementation Plugin - Shared Library
Dependencies” (page 8) section to identify and resolve shared library dependencies on your system and then Chapter 3:
“Basic Operations” (page 12) to set up a default user environment.

Reference Implementation Plugin - Shared Library Dependencies

The database encryption and TLS reference implementation plugin requires libgcrypt11, libgpgme11, libconfig 1.4.x, and
libssl1.0.0 runtime libraries. Immediately after installing GT.M, install these libraries using the package manager of your
operating system. If these runtime libraries are not available, the plugin may produce errors like the following (for example on
Ubuntu x86_64):

%GTM-I-TEXT, libxxxxxx.so.<ver>: cannot open shared object file: No such file or directory

..where libxxxxxx is either libgcrypt, liggpgme, libconfig, libgcrypt, or libssl and <ver> is the version number of the libxxxxxx
shared library. To locate missing share library dependencies in your reference implementation plugin, execute the following
command:

$ ldd $gtm_dist/plugin/libgtm* | awk '/^.usr/{libname=$0}/not found/{print libname;print}'

This command produces an output like:

/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmcrypt_openssl_AES256CFB.so:
 libcrypto.so.10 => not found
/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmcrypt_openssl_BLOWFISHCFB.so:
 libcrypto.so.10 => not found
/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/libgtmtls.so:
 libssl.so.10 => not found

...which means that libcrypto.so.10 and libssl.so.10 shared libraries are missing from the system and the reference
implementation plugin will produce a libxxxxxx.so.<ver>: cannot open shared object file: No such file or directory error during
runtime. Note down the missing shared libraries and proceed as follows for each missing library:

• If libxxxxxx.so.<ver> is already installed: Set the environment variable LD_LIBRARY_PATH to include its location.

• If libxxxxxx is not installed: Install the runtime libxxxxxx library using the package manager; check for pre-packaged
distributions for your operating system and ensure that it contains the library having version specified with <ver>.

• If libxxxxxx is installed but its version number is different from what GT.M expects (<ver>): You can either symlink
the unversioned libxxxxxx.so library to libxxxxxx.so.<ver> (recommended) or recompile the reference implementation
plugin. The instructions are as follows:

Creating a symbolic link from the unversioned .so (libxxxxxx.so) to libxxxxx.so.<ver>

1. Install the development libraries for libgcrypt11, libgpgme11, libconfig 1.4.x, libssl1.0.0. The package name of development
libraries usually have the -dev suffix and are available through the package manager. For example, on Ubuntu_x86_64 a
command like the following installs the required development libraries:

sudo apt-get install libgcrypt11-dev libgpgme11-dev libconfig-dev libssl-dev

These packages contain the unversioned .so library (libxxxxxx.so).

2. Find the directory where the unversioned .so library is installed on your system. Note down the name of the directory.

Installing GT.M

9

3. Login as root and change to the $gtm_dist/plugin directory.

4. Create the symlink from libxxxxxx.so to libxxxxxx.so.<ver>. For example, if libcrypto.so.10 and libssl.so.10 shared libraries
are missing, create their symbolic links in $gtm_dist/plugin from the unversioned .so library location that you noted in step
2:

ln -s /usr/lib/x86_64-linux-gnu/libcrypto.so libcrypto.so.10
ln -s /usr/lib/x86_64-linux-gnu/libssl.so libssl.so.10

Note

The reference implementation plugin libraries are linked using the RPATH directive $ORIGIN which means
that these libraries always start looking for library dependencies from the current directory. Therefore, it
is safe to create symlinks for the missing libraries in $gtm_dist/plugin directory. Do not create symlinks
to shared libraries in directories managed by package managers and never symlink incompatible library
versions as it may not always lead to predictable results.

Recompiling the Reference Implementation Plugin

1. Install the development libraries for libgcrypt11, libgpgme11, libconfig 1.4.x, libssl1.0.0. The package name of development
libraries usually have the -dev suffix and are available through the package manager. For example, on Ubuntu_x86_64 a
command like the following installs the required development libraries:

2. Login as root and set the gtm_dist environment variable to point to the location of the GT.M distribution.

3. Note down the file permissions of the *.so files in $gtm_dist/plugin directory.

4. Unpack $gtm_dist/plugin/gtmcrypt/source.tar to a temporary directory.

mkdir /tmp/plugin-build
cd /tmp/plugin-build
cp $gtm_dist/plugin/gtmcrypt/source.tar .
tar -xvf source.tar

5. Recompile the reference implementation plugin and install it in the $gtm_dist/plugin directory.

make uninstall
make
make install
make clean

6. Assign permissions noted in step 3 to the newly installed .so files in $gtm_dist/plugin.

Important

If you are running the V6.1-000 reference implementation plugin (database encryption and TLS replication)
on a UNIX platform other than RedHat, please follow instructions from “Creating a symbolic link from
the unversioned .so (libxxxxxx.so) to libxxxxx.so.<ver>” (page 8) to create symlinks for the missing
libcrypto.so.10 and libssl.so.10 shared libraries. GT.M UNIX distributions are compiled and linked on a
RedHat platform where libcrypto.so.10 and libssl.so.10 version libraries are available from package managers.
On UNIX platforms other than RedHat, these library versions may not be available from package managers
and need to be linked to their unversioned .so libraries.

Installing GT.M

10

gtminstall script

gtminstall is an experimental GT.M installation facility that when used stand-alone attempts to download the latest / current
production GT.M distribution from sourceforge.net and installs GT.M using reasonable defaults. It is included with the GT.M
binary distribution and you can also use it to install GT.M from the temporary directory in which you unpack the GT.M
distribution. It allows considerable customization using the following command line switches:

Command line switches * Description

--build-type buildtype * Type of GT.M build, default is pro

--copyenv dirname Copy gtmprofile and gtmcshrc files to dirname; incompatible with linkenv

--copyexec dirname Copy gtm script to dirname; incompatible with linkexec

--debug - * Turn on debugging with set -x

--distrib dirname or URL Source directory for GT.M distribution tarball, local or remote

--dry-run Do everything short of installing GT.M, including downloading the distribution

--group group Group that should own the GT.M installation

--group-restriction Limit execution to a group; defaults to unlimited if not specified

--help Print this usage information

--installdir dirname Directory where GT.M is to be installed; defaults to /usr/lib/fis-gtm/version_platform

--keep-obj Keep .o files of M routines (normally deleted on platforms with GT.M support for routines in
shared libraries). By default, this option is disabled.

--linkenv dirname Create link in dirname to gtmprofile and gtmcshrc files; incompatible with copyenv

--linkexec dirname Create link in dirname to gtm script; incompatible with copyexec

--overwrite-existing Install into an existing directory, overwriting contents; defaults to requiring new directory

--prompt-for-group * GT.M installation script will prompt for group; default is yes for production releases V5.4-002 or
later, no for all others

--ucaseonly-utils Install only upper case utility program names; defaults to both if not specified

--user username User who should own GT.M installation; default is root

--utf8 ICU_version Install UTF-8 support using specified major.minor ICU version; specify default to use default
version

--verbose - * Output diagnostic information as the script executes; default is to run quietly

• options that take a value (e.g, --group) can be specified as either --option=value or --option value

• options marked with * are likely to be of interest primarily to GT.M developers

• version is defaulted from the mumps file if one exists in the same directory as the installer

• This version must run as root.

To run the gtminstall script, unpack and run it a root. For example, on an x86_64 GNU/Linux platform, ./gtminstall installs
GT.M with M mode support in /usr/lib/fis-gtm/V6.1-000_x86_64.

Installing GT.M

11

Example:

$ sudo ./gtminstall # installs latest version in M mode only
$ sudo ./gtminstall --utf8 default # install latest version with UTF-8 mode support
$ sudo ./gtminstall --distrib /Distrib/GT.M V6.0-003 # install V6.0-0030 from a local
 directory

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX61.txt

12

Chapter 3. Basic Operations

Revision History

Revision V6.1-000 01 August 2014 In “Environment Variables” (page 17),
improved the descriptions of gtm_tpnotacidtime
and gtm_zquit_anyway and added
the descriptions of gtmcrypt_config,
gtmtls_passwd_<tlslabel>, and gtmcrypt_FIPS.

Revision V6.0-003/1 19 February 2014 In “Environment Variables” (page 17),
improved the description of gtm_nocenable.

Revision V6.0-003 27 January 2014 • In “gtm ” (page 17), added the -help and -?
command line options.

• In “Environment Variables” (page 17),
added the description of gtm_ipv4_only and
gtm_etrap.

Revision V6.0-001 27 February 2013 • Added the “Configuring huge pages for GT.M
x86[-64] on Linux ” (page 29) section.

• In “Environment Variables” (page 17),
added the description of gtm_side_effects,
gtm_extract_nocol, and gtm_crypt_plugin
environment variables.

Revision V6.0-000/1 21 November 2012 • In “Environment Variables” (page 17),
added the description of the environment
variables gtm_tprestart_log_delta,
gtm_tprestart_log_first, gtm_tpnotacidtime,
and gtm_zmaxtptime.

• Added a note which states that the
environment variable gtm_log is ignored from
V6.0-000 onwards.

Revision V6.0-000 19 October 2012 In “Environment Variables” (page 17), added
the description of the environment variable
gtm_custom_errors.

Revision V5.5-000/11 05 October 2012 In “Environment Variables” (page 17), added
the description of the environment variable
GTMXC_gpgagent.

Revision V5.5-000/5 17 July 2012 Corrected the description of the environment
variable gtm_non_block_write_retries to include
the PIPE write behavior.

Revision V5.5-000/1 5 March 2012 Updated for V5.5-000.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Basic Operations

13

GT.M Environment Setup

Several environment variables control the operation of GT.M. Some of them must be set up for normal operation, where as for
others GT.M assumes a default value if they are not set.

Your GT.M distribution comes with many scripts that set up a default GT.M environment for the shell of your choice. These
scripts are as follows:

1. gtmprofile: uses reasonable defaults to set up a system and GT.M application development environment for POSIX
shells. The gtmprofile script sets default values for environment variables gtm_dist, gtmgbldir, gtm_icu_version, gtm_log,
gtm_principal_editing, gtm_prompt, gtm_retention, gtmroutines, gtm_tmp, and gtmver. When you source the gtmprofile
script, it creates a default execution environment (global directory and a default database file with BEFORE_IMAGE
journaling) if none exists.

2. gtmcshrc: sets up a default GT.M environment for C-shell compatible shells. It sets up default values for gtm_dist,
gtmgbldir, gtm_chset and gtmroutines. It also creates aliases so you can execute GT.M and its utilities without typing
the full path. While gtmprofile is current with GT.M releases, gtmcshrc is at the same level of sophistication as
gtmprofile_preV54000. It is not as actively maintained as the gtmprofile script.

3. gtmprofile_preV54000: This script was provided as gtmprofile in GT.M distributions prior to V5.4-000. This script is a
POSIX shell equivalent of gtmschrc.

4. gtmbase: detects the shell type and adds gtmprofile to .profile or gtmchsrc to .cshrc so the shell automatically sources
gtmprofile or gtmschrc on a subsequent login operation. FIS does not recommend using gtmbase as is - use it as an example
of a script for you to develop suitable for your systems. It is not as actively maintained as the gtmprofile script.

5. gtm: starts GT.M in direct mode on POSIX shells. The gtm script sources gtmprofile. It also deletes prior generation journal
and temporary files older than the number of days specified by the environment variable gtm_retention. It attempts to
automatically recover the database when it runs and as such is suitable for "out of the box" usage of GT.M. Although it will
work for large multi-user environments, you may want to modify or replace it with more efficient scripting.

6. gdedefaults: a GDE command file that specifies the default values for database characteristics defined by GDE.

These scripts are designed to give you a friendly out-of-the-box GT.M experience. Even though you can set up an environment
for normal GT.M operation without using these scripts, it is important to go through these scripts to understand the how to
manage environment configuration.

gtmprofile

gtmprofile helps you set an environment for POSIX shells. It uses reasonable defaults to set up all environment variables for
normal GT.M operation. gtmprofile sets the following environment variables:

gtmprofile sets the following environment variables:

gtm_dist, gtmgbldir, gtm_icu_version, gtm_log, gtm_principal_editing, gtm_prompt, gtm_retention, gtmroutines, gtm_tmp,
gtmver.

If $gtm_chset is set to UTF-8, gtmprofile also attempts to set LC_CTYPE to the first usable utf8 locale.

The following shell variables are used by the script and left unset at its completion:

old_gtm_dist, old_gtmroutines, old_gtmver, tmp_gtm_tmp, tmp_passwd.

Basic Operations

14

The gtmpscript (and gtm) scripts, by design, are idempotent so that calling them repeatedly is safe. The GT.M installation
process ensures that gtmprofile always sets gtm_dist correctly. Idempotency is implemented by checking the value of
$gtm_dist, and skipping all changes to environment variables of $gtm_dist.

When gtm sources gtmprofile, it provides a default execution environment (global directory and a default database with
BEFORE_IMAGE journaling) if none exists. It also creates a directory .fis-gtm with a default structure like the following:

.fis-gtm
|-- V6.1-000_x86
| |-- g
| | |-- gtm.dat
| | |-- gtm.gld
| | |-- gtm.mjl
| |-- o
| | '-- utf8
| '-- r
'-- r

where V6.1-000_x86 represents current release and platform information. Note that this directory structure has different
locations for GT.M routines (r) , object files (o), and database-related files (g). gtmprofile sets gtmroutines to something like /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/o(/usr/gtmnode1/.fis-gtm/V6.0-003_x86/r /usr/gtmnode1/.fis-gtm/r) <path to the GT.M
distribution>. This specifies that GT.M searches for routines in /usr/gtmnode1/.fis-gtm/V6.0-003_x86/r, then /usr/gtmnode1/.fis-
gtm/r, and finally in your GT.M distribution directory. gtmroutines also specifies that all object files should be generated in /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/o, which also specifies the GT.M lookup location for finding object files.

Suppose you have a routine MyRoutine.m in /usr/gtmnode1/.fis-gtm/V6.1-000_x86/r. On compilation, GT.M stores MyRoutine.o
in /usr/gtmnode1/.fis-gtm/V6.0-003_x86/o. Everytime a process first runs this routine, GT.M looks in the /fis-gtm/V6.0-003_x86/
o directory and links it prior to its first execution. For a comprehensive discussion of GT.M source and object file management,
refer to the $ZROUTINES section in the GT.M Programmer's Guide.

When $gtm_chset is set to UTF-8, gtmprofile sets gtmroutines to something like /usr/gtmnode1/.fis-gtm/V6.1-000_x86/o/utf8(/
usr/gtmnode1/.fis-gtm/V6.0-003_x86/r /usr/gtmnode1/.fis-gtm/r) <path to the GT.M distribution>/utf8. So, on compilation,
GT.M stores MyRoutine.o in /usr/gtmnode1/.fis-gtm/V6.0-003_x86/o/utf8. Note that GT.M does not store object files in /
usr/gtmnode1/.fis-gtm/V6.0-003_x86/o which was the case in M mode. Everytime your run this routine, GT.M looks for
MyRoutine.o in the .../o/utf8 directory and executes it.gtmprofile automatically modifies environment variables based on the
required settings. In the above example, notice how gtmprofile modifies gtmroutines based on the character mode set for
gtm_chset.

If a GT.M environment exists, gtmprofile looks for and replaces substrings in environment variables with the GT.M version
(gtmver and gtm_dist). This allow you to to switch between different GT.M versions and character set modes (M and UTF-8).
This way you can use the same source code files to generate different object code files, depending on the GT.M version and the
setting of $gtm_chset.

On platforms where GT.M supports object code in shared libraries, if there are any shared libraries in object directories
such as /usr/gtmnode1/.fis-gtm/V6.1-000_x86_64/o, the gtmprofile script automatically includes them in the gtmroutines
environment variable.

The gtmprofile script also provides a framework to extend GT.M with plug-ins. Place the M code in $gtm_dist/plugin/r, the M
mode object code in the $gtm_dist/plugin/o directory and UTF-8 mode object modules in the $gtm_dist/plugin/o/utf8 directory.
On platforms where GT.M supports object code in shared libraries, you can create shared libraries instead of .o files. You
can place external call tables in the plugin subdirectory, as well as shared libraries of calls to C code. The gtmprofile script
automatically includes these in the gtmroutines environment variable.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Basic Operations

15

gtmprofile automatically changes the environment variable values based on the values of gtmver and gtmdir set by the last
sourced gtmprofile. Consider the following example:

$ env | grep gtm
$ source /usr/lib/fis-gtm/V6.1-000_x86_64/gtmprofile
$ env | grep gtm
gtm_repl_instance=/home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.repl
gtm_log=/tmp/fis-gtm/V6.1-000_x86_64
gtm_prompt=GTM>
gtm_retention=42
gtmver=V6.1-000_x86_64
gtm_icu_version=4.2
gtmgbldir=/home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.gld
PATH=/home/jdoe/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin
:/bin:/usr/games:/usr/lib/fis-gtm/V6.1-000_x86_64
gtmroutines=/home/jdoe/.fis-gtm/V6.1-000_x86_64/o(/home/jdoe/.fis-gtm/V6.0-003_x86_64/r
/home/jdoe/.fis-gtm/r) /usr/lib/fis-gtm/V6.1-000_x86_64/plugin/o
(/usr/lib/fis-gtm/V6.1-000_x86_64/plugin/r)
/usr/lib/fis-gtm/V6.1-000_x86_64/libgtmutil.so /usr/lib/fis-gtm/V6.0-003_x86_64/
gtmdir=/home/jdoe/.fis-gtm
gtm_principal_editing=EDITING
gtm_tmp=/tmp/fis-gtm/V6.1-000_x86_64
gtm_dist=/usr/lib/fis-gtm/V6.1-000_x86_64
$

Notice how gtmprofile sets up $gtmroutines to allow for a single source directory /home/jdoe/.fis-gtm/r to generate object
files used by multiple GT.M versions, in this case in /home/jdoe/.fis-gtm/V6.1-000_x86_64/o. Now, let's consider the following
example for a different version of GT.M.

Now, let us source gtmprofile for a different GT.M:

$ env | grep "gtm"
$ source /usr/lib/fis-gtm/V6.1-000_x86/gtmprofile
$ env | grep "gtm"
gtm_repl_instance=/home/jdoe/.fis-gtm/V6.1-000_x86/g/gtm.repl
gtm_log=/tmp/fis-gtm/V6.1-000_x86
gtm_prompt=GTM>
gtm_retention=42
gtmver=V6.1-000_x86
gtm_icu_version=4.4
gtmgbldir=/home/jdoe/.fis-gtm/V6.1-000_x86/g/gtm.gld
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:
/usr/lib/fis-gtm/V6.1-000_x86
gtmroutines=/home/jdoe/.fis-gtm/V6.1-000_x86/o(/home/jdoe/.fis-gtm/V6.0-003_x86/r
 /home/jdoe/.fis-gtm/r)
 /usr/lib/fis-gtm/V6.1-000_x86/plugin/o(/usr/lib/fis-gtm/V6.0-003_x86/plugin/r) /usr/lib/fis-gtm/V6.0-003_x86
gtmdir=/home/jdoe/.fis-gtm
gtm_principal_editing=EDITING
gtm_tmp=/tmp/fis-gtm/V6.1-000_x86
gtm_dist=/usr/lib/fis-gtm/V6.1-000_x86
$

Notice how gtmprofile automatically changes the environment variables to the new GT.M version. Notice that the same
routines in /home/jdoe/.fis-gtm/r now put their object files in /home/jdoe/.fis-gtm/V6.1-000_x86/o.

Now, let us edit gtmroutines and source the original gtmprofile:

Basic Operations

16

$ export gtmroutines="/tmp/$gtmver $gtm_dist"
$ source /usr/lib/fis-gtm/V6.1-000_x86_64/gtmprofile
$ echo $gtmroutines /tmp/V6.1-000_x86_64 /usr/lib/fis-gtm/V6.0-003_x86_64/libgtmutil.so
$

Notice how gtmprofile again automatically modifies gtmroutines.

Note

This scenario of sourcing gtmprofile is only for the sake of example.

gtmprofile creates the following aliases:

alias dse="$gtm_dist/dse"
alias gde="$gtm_dist/mumps -run GDE"
alias gtm="$gtm_dist/gtm"
alias lke="$gtm_dist/lke"
alias mupip="$gtm_dist/mupip"

If /var/log/fis-gtm/$gtmver directory exists, gtmprofile sets it as the value for $gtm_log. If gtmprofile does not find /var/log/fis-
gtm/$gtmver, it uses $gtm_tmp to set the value of $gtm_log, which may not meet your file retention needs.

gtmprofile creates the following aliases:

alias dse="$gtm_dist/dse"
alias gde="$gtm_dist/mumps -run GDE"
alias gtm="$gtm_dist/gtm"
alias lke="$gtm_dist/lke"
alias mupip="$gtm_dist/mupip"

If /var/log/fis-gtm/$gtmver directory exists, the gtmprofile script sets it as the value for $gtm_log. If gtmprofile does not find /
var/log/fis-gtm/$gtmver, it uses $gtm_tmp to set the value of $gtm_log, which may not meet your file retention needs.

gtmcshrc

Sets a default GT.M environment for C type shell. It sets the $gtm_dist, $gtmgbldir, $gtm_chset, $gtmroutines, and adds
$gtm_dist to the system environment variable PATH.

To source the gtmcshrc script, type:

$ source <path_to_GT.M_installation_directory>/gtmcshrc

You can also run the gtmbase script which places the above command in the .cshrc file so the script will get automatically
sourced the next time you log in.

gtmcshrc also creates the following aliases.

alias gtm '$gtm_dist/mumps -direct'
alias mupip '$gtm_dist/mupip'
alias lke '$gtm_dist/lke'
alias gde '$gtm_dist/mumps -r ^GDE'
alias dse '$gtm_dist/dse'

Now you run can GT.M and its utilities without specifying a full path to the directory in which GT.M was installed.

Basic Operations

17

gtmbase

Adds the following line to .profile or .cshrc file depending on the shell.

In the POSIX shell, gtmbase adds the following line to .profile:

. <gtm_dist pathname>/gtmprofile

In the C shell, adds the following line to .cshrc:

source <gtm_dist pathname>/gtmcshrc

gdedefaults

Specifies default or template values for database characteristics defined by GDE.

gtm

The gtm script starts with #!/bin/sh so it can run with any shell. Also, you can use it to both run a program and run in direct
mode. It sources gtmprofile and sets up default GT.M database files with BEFORE_IMAGE journaling. It automatically recovers
the database on startup.This script sets up everything you need to run GT.M for a simple out-of-box experience.

For multi-user multi-environment systems, you should modify or replace the gtm script for your configuration.

The gtm script deletes all prior generation journal files (*_<time and date stamp> files) older than $gtm_retention days from the
directory that contains the global directory (as pointed to by $gtmgbldir) and any subdirectories of that directory. By default,
$gtm_retention is 42. However, you might want to align it with the backup frequency of your database.

Note that the removal of prior generation journal files is not specific to the database/journal files indicated by the current
$gtmgbldir but the directory from where you run the gtm script.

If you plan to use GT.M in UTF-8 mode, set $gtm_chset to UTF-8 and then run the gtm script.

If you intend to use Database Encryption, set $gtm_passwd and $gtm_dbkeys first and then run the gtm script.

To run the gtm script type:

$ <path to your GT.M Distribution>/gtm

To invoke the help to assist first-time users, type:

$ <path to your GT.M Distribution>/gtm -help
gtm -dir[ect] to enter direct mode (halt returns to shell)
gtm -run <entryref> to start executing at an entryref
gtm -help / gtm -h / gtm -? to display this text

Environment Variables

A comprehensive list of environment variables that are directly or indirectly used by GT.M follows:

EDITOR is a standard system environment variable that specifies the full path to the editor to be invoked by GT.M in response
to the ZEDit command (defaults to vi, if $EDITOR is not set).

Basic Operations

18

gtm_badchar specifies the initial setting of the VIEW command that determines whether GT.M should raise an error when it
encounters an illegal UTF-8 character sequence.It is ignored in M mode.

gtm_baktmpdir specifies the directory where mupip backup creates temporary files. If $gtm_baktmpdir is not defined, GT.M
uses the $GTM_BAKTMPDIR environment variable if defined, and otherwise uses the current working directory.

gtm_chset determines the mode in which GT.M operates. If it has a value of "UTF-8" GT.M assumes that strings are encoded in
UTF-8. In response to a value of "M" (on indeed anything other than "UTF-8"), GT.M treats all 256 combinations of the 8 bits in
a byte as a single character.

gtm_chset_locale (z/OS only) specifies the locale for UTF-8 operations on z/OS.

gtm_collate_n specifies the shared library holding an alternative sequencing routine when collation is used. The syntax is
gtm_collate_n=pathname where n is an integer from 1 to 255 that identifies the collation sequence, and pathname identifies the
shared library containing the routines for that collation sequence.

gtm_db_startup_max_wait specifies how long to wait for a resolution of any resource conflict when they first access a
database file. GT.M uses semaphores maintained using UNIX Inter-Process Communication (IPC) services to ensure orderly
initialization and shutdown of database files and associated shared memory. Normally the IPC resources are held in an
exclusive state only for very brief intervals. However, under unusual circumstances that might include extreme large numbers
of simultaneous database initializations, a long-running MUPIP operation involving standalone access (like INTEG -FILE or
RESTORE), an OS overload or an unpredicted process failure the resources might remain unavailable for an unanticipated
length of time. $gtm_db_startup_max_wait specifies how long to wait for the resources to become available:

• -1 - Indefinite wait until the resource becomes available; the waiting process uses the gtm_procstuckexec mechanism at 48
and 96 seconds.

• 0 - No wait - if the resource is not immediately available, give a DBFILERR error with an associated SEMWT2LONG

• > 0 - Seconds to wait - rounded to the nearest multiple of eight (8); if the specification is 96 or more seconds, the waiting
process uses the gtm_procstuckexec mechanism at one half the wait and at the end of the wait; if the resource remains
unavailable, the process issues DBFILERR error with an associated SEMWT2LONG

The default value for the wait if $gtm_db_startup_max_wait is not defined is 96 seconds.

gtm_crypt_plugin: If you wish to continue using Blowfish CFB with V6.0-001 via the reference implementation of the
plugin, you need to change a symbolic link post-installation, or define the environment variable gtm_crypt_plugin. If the
environment variable gtm_crypt_plugin is defined and provides the path to a shared library relative to $gtm_dist/plugin, GT.M
uses $gtm_dist/plugin/$gtm_crypt_plugin as the shared library providing the plugin. If $gtm_crypt_plugin is not defined, GT.M
expects $gtm_dist/plugin/libgtmcrypt.so to be a symbolic link to a shared library providing the plugin. The expected name
of the actual shared library is libgtmcrypt_cryptlib_CIPHER.so (depending on your platform, the actual extension may differ
from .so), for example, libgtmcrypt_openssl_AESCFB. GT.M cannot and does not ensure that the cipher is actually AES CFB as
implemented by OpenSSL - GT.M uses CIPHER as salt for the hashed key in the database file header, and cryptlib is for your
convenience, for example, for troubleshooting. Installing the GT.M distribution creates a default symbolic link.

gtm_custom_errors specifies the complete path to the file that contains a list of errors that should automatically stop all
updates on those region(s) of an instance which have the Instance Freeze mechanism enabled.

gtm_dbkeys is used by the encryption reference plugin (not used by GT.M directly) for the name of a file providing a list of
database files and their corresponding key files.

gtm_dist specifies the path to the directory containing the GT.M system distribution. gtm_dist must be defined for each user.
If you are not using the gtm script or sourcing gtmprofile, consider defining gtm_dist in the login file or as part of the default
system environment. In UTF-8 mode, the gtm_dist environment variable specifies the path to the directory containing the

Basic Operations

19

GT.M system distribution for Unicode. The distribution for Unicode is located in subdirectory utf8 under the GT.M distribution
directory. For example, if the GT.M distribution is in /usr/lib/fis-gtm/V6.1-000_x86, set gtm_dist to point to /usr/lib/fis-gtm/
V6.0-003_x86/utf8 for UTF-8 mode. Correct operation of GT.M executable programs requires gtm_dist to be set correctly.

gtm_env_translate specifies the path to a shared library to implement the optional GT.M environment translation facility.

gtm_etrap specifies an initial value of $ETRAP to override the default value of "B" for $ZTRAP as the base level error handler.
The gtmprofile script sets gtm_etrap to "Write:(0=$STACK) ""Error occurred: "",$ZStatus,!" which you can customize to
suit your needs.

gtm_extract_nocol specifies whether a MUPIP JOURNAL -EXTRACT (when used without -RECOVER or -ROLLBACK) on
a database with custom collation should use the default collation if it is not able to read the database file. In a situation where
the database file is inaccessible or the replication instance is frozen with a critical section required for the access held by
another process and the environment variable gtm_extract_nocol is defined and evaluates to a non-zero integer or any case-
independent string or leading substrings of "TRUE" or "YES", MUPIP JOURNAL -EXTRACT issues the DBCOLLREQ warning
and proceeds with the extract using the default collation. If gtm_extract_nocol is not set or evaluates to a value other than a
positive integer or any case-independent string or leading substrings of "FALSE" or "NO", MUPIP JOURNAL -EXTRACT exits
with the SETEXTRENV error.

Warning

Note that if default collation is used for a database with custom collation, the subscripts reported by MUPIP
JOURNAL -EXTRACT are those stored in the database, which may differ from those read and written by
application programs.

gtm_fullblockwrites specifies whether a GT.M process should write a full database block worth of bytes when writing a
database block that is not full. Depending on your IO subsystem, writing a full block worth of bytes (even when there are
unused garbage bytes at the end) may result in better database IO performance by replacing a read-modify-read low level IO
operation with a single write operation.

gtm_gdscert specifies the initial value of the VIEW command that controls whether GT.M processes should test updated
database blocks for structural damage. By default, GT.M does not check database blocks for structural damage, because the
impact on performance is usually unwarranted.

gtm_gvdupsetnoop specifies the initial value of the VIEW command that controls whether a GT.M process should enable
duplicate SET optimization. If it is defined, and evaluates to a non-zero integer or any case-independent string or leading
substrings of "TRUE" or "YES", a SET command does not change the value of an existing node, GT.M does not perform the
update or execute any trigger code specified for the node.

gtm_icu_version specifies the MAJOR VERSION and MINOR VERSION numbers of the desired ICU. For example "3.6" denotes
ICU-3.6. If $gtm_chset has the value "UTF-8", GT.M requires libicu with version 3.6 or higher. If you must chose between
multiple versions of libicu or if libicu has been compiled with symbol renaming enabled, GT.M requires gtm_icu_version to be
explictly set.

gtm_ipv4_only specifies whether a Source Server should establish only IPv4 connections with a Receiver Server. If it is
defined, and evaluates to a non-zero integer, or any case-independent string or leading substring of "TRUE" or "YES", the Source
Server establishes only IPv4 connections with the Receiver Server. Set gtm_ipv4_only for environments where different server
names are not used for IPv4 and IPv6 addresses and the Source Server connects to a Receiver Server running a GT.M version
prior to V6.0-003.

gtm_jnl_release_timeout specifies the number of seconds that a replicating Source Server waits when there is no activity on
an open journal file before closing it. The default wait period is 300 seconds (5 minutes). If $gtm_jnl_release_timeout specifies

Basic Operations

20

0, the Source Server keeps the current journal files open until shutdown. The maximum value for $gtm_jnl_release_timeout is
2147483 seconds.

gtm_keep_obj specifies whether the gtminstall script should delete the object files from the GT.M installation directory. If
gtm_keep_obj is set to "Y", the gtminstall script enables the --keep-obj option. By default, --keep_obj is disabled.

gtm_lct_stdnull specifies whether a GT.M process should use standard collation for local variables with null subscripts or
legacy GT.M collation.

gtm_local_collate specifies an alternative collation sequence for local variables.

gtm_log specifies a directory where the gtm_secshr_log file is stored. The gtm_secshr_log file stores information gathered in
the gtmsecshr process. FIS recommends that a system-wide default be established for gtm_log so that gtmsecshr always logs
its information in the same directory, regardless of which user's GT.M process invokes gtmsecshr. In conformance with the
Filesystem Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for $gtm_log unless you are installing
the same version of GT.M in multiple directories. Note that $gtmver can be in the form of V6.1-000_x86 which represents the
current GT.M release and platform information. If you do not set $gtm_log, GT.M creates log files in a directory in /tmp (AIX,
GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX, Solaris). However, this is not recommended because it makes GT.M log files
vulnerable to the retention policy of a temporary directory.

Important

Starting with V6.0-000, gtmsecshr logs its messages in the system log and the environment variable gtm_log
is ignored.

gtm_tprestart_log_delta specifies the number of transaction restarts for which GT.M should wait before reporting
a transaction restart to the operator logging facility. If gtm_tprestart_log_delta is not defined, GT.M initializes
gtm_tp_restart_log_delta to 0.

gtm_tprestart_log_first specifies the initial number of transaction restarts for which GT.M should wait before reporting
any transaction restart to the operator logging facility. If gtm_tprestart_log_delta is defined and gtm_tprestart_log_first is not
defined, GT.M initializes gtm_tprestart_log_first to 1.

gtm_max_sockets specifies the maximum number of client connections for socket devices. The default is 64.

gtm_memory_reserve specifies the size in kilobytes of the reserve memory that GT.M should use in handling and reporting
an out-of-memory condition. The default is 64 (KB).

gtm_nocenable specifies whether the $principal terminal device should ignore <CTRL-C> or use <CTRL-C> as a signal to
place the process into direct mode; a USE command can modify this device characteristic. If gtm_nocenable is defined and
evaluates to a non-zero integer or any case-independent string or leading substrings of "TRUE" or "YES", $principal ignores
<CTRL-C>. If gtm_nocenable is not set or evaluates to a value other than a positive integer or any case-independent string or
leading substrings of "FALSE" or "NO", <CTRL-C> on $principal places the process into direct mode at the next opportunity
(usually at a point corresponding to the beginning of the next source line).

gtm_non_blocked_write_retries modifies FIFO or PIPE write behavior. A WRITE which would block is retried up to the
number specified with a 100 milliseconds delay between each retry. The default value is 10 times.

gtm_noundef specifies the initial value of the VIEW command that controls whether a GT.M process should treat undefined
variables as having an implicit value of an empty string. If it is defined, and evaluates to a non-zero integer or any case-
independent string or leading substring of "TRUE" or "YES", then GT.M treats undefined variables as having an implicit value of
an empty string. By default, GT.M signals an error on an attempt to use the value of an undefined variable.

Basic Operations

21

gtm_passwd used by the encryption reference plugin (not used by GT.M directly) for the obfuscated (not encrypted) password
to the GNU Privacy Guard key ring.

gtm_patnumeric specifies the initial value of the ISV $ZPATNUMERIC in UTF-8 mode.

gtm_pattern_file and gtm_pattern_table specify alternative patterns for the ? (pattern) syntax.

gtm_principal specifies the value for $principal, which designates an alternative name (synonym) for the principal $IO device.

gtm_principal_editing determines whether the previous input to a READ command can be recalled and edited before
pressing ENTER to submit it.

Note

The GT.M direct mode commands have a more extensive capability in this regard, independent of the value
of this environment variable.

gtm_prompt specifies the initial value of the ISV $ZPROMPT, which controls the GT.M direct mode prompt. By default, the
direct mode prompt is "GTM>".

gtm_procstuckexec specifies a shell command or a script to execute when any of the following conditions occur:

• An explicit MUPIP FREEZE or an implicit freeze, such as BACKUP, INTEG -ONLINE, and so on, after a one minute wait on a
region.

• MUPIP actions find kill_in_prog (KILLs in progress) to be non-zero after a one minute wait on a region. Note that GT.M
internally maintains a list of PIDs (up to a maximum of 8 PIDs) currently doing a KILL operation.

• The BUFOWNERSTUCK, INTERLOCK_FAIL, JNLPROCSTUCK, SHUTDOWN, WRITERSTUCK, MAXJNLQIOLOCKWAIT,
MUTEXLCKALERT, SEMWT2LONG, and COMMITWAITPID operator messages are being logged.

You can use this as a monitoring facility for processes holding a resource for an unexpected amount of time. Typically, for
the shell script or command pointed to by gtm_procstuckexec, you would write corrective actions or obtain the stack trace of
the troublesome processes (using their PIDs). GT.M passes arguments to the shell command / script in the order specified as
follows:

1. condition is the name of the condition. For example, BUFOWNERSTUCK, INTERLOCK_FAIL, and so on.

2. waiting_pid is the PID of the process reporting the condition.

3. blocking_pid is the PID of the process holding a resource.

4. count is the number of times the script has been invoked for the current condition (1 for the first occurrence).

Each invocation generates an operator log message and if the invocation fails an error message to the operator log. The shell
script should start with a line beginning with #! that designates the shell.

Note

Make sure user processes have sufficient space and permissions to run the shell command / script.

gtm_obfuscation_key: If $gtm_obfuscation_key specifies the name of file readable by the process, the encryption reference
plug-in uses an SHA-512 hash of the file's contents as the XOR mask for the obfuscated password in the environment variable

Basic Operations

22

gtm_passwd. When gtm_obfuscation_key does not point to a readable file, the plug-in creates an XOR mask based on the userid
and inode of the mumps executable and then computes an SHA-512 hash of the XOR mask to use as a mask.

gtm_obfuscation_key can be used as a mechanism to pass an obfuscated password between unrelated processes (for example, a
child process with a different userid invoked via a sudo mechanism), or even from one system to another (for example, over an
ssh connection).

gtm_quiet_halt specifies whether GT.M should disable the FORCEDHALT message when the process is stopped via MUPIP
STOP or by a SIGTERM signal (as sent by some web servers).

gtm_repl_instance specifies the location of the replication instance file when database replication is in use.

gtm_repl_instsecondary specifies the name of the replicating instance in the current environment. GT.M uses
$gtm_repl_instsecondary if the -instsecondary qualifer is not specified.

gtm_retention (not used by GT.M directly) - used by the gtm script to delete old journal files and old temporary files it creates.

gtm_side_effects: When the environment variable gtm_side_effects is set to one (1) at process startup, GT.M generates code
that performs left to right evaluation of actuallist arguments, function arguments, operands for non-Boolean binary operators,
SET arguments where the target destination is an indirect subscripted glvn, and variable subscripts. When the environment
variable is not set, or set to zero (0), GT.M retains its traditional behavior, which re-orders the evaluation of operands using
rules intended to improve computational efficiency. This reordering assumes that functions have no side effects, and may
generate unexpected behavior (x+$increment(x) is a pathological example). When gtm_side_effects is set to two (2), GT.M
generates code with the left-to-right behavior, and also generates SIDEEFFECTEVAL warning messages for each construct
that potentially generates different results depending on the order of evaluation. As extrinsic functions and external calls
are opaque to the compiler at the point of their invocation, it cannot statically determine whether there is a real interaction.
Therefore SIDEEFFECTEVAL warnings may be much more frequent than actual side effect interactions and the warning mode
may be most useful as a diagnostic tool to investigate problematic or unexpected behavior in targeted code rather than for
an audit of an entire application. Note that a string of concatenations in the same expression may generate more warnings
than the code warrants. Other values of the environment variable are reserved for potential future use by FIS. It is important
to note that gtm_side_effects affects the generated code, and must be in effect when code is compiled - the value when that
compiled code is executed is irrelevant. Note also that XECUTE and auto-ZLINK, explicit ZLINK and ZCOMPILE all perform
run-time compilation subject to the characteristic selected when the process started. Please be aware that programming style
where one term of an expression changes a prior term in the same expression is an unsafe programming practice. The existing
environment variable gtm_boolean may separately control short-circuit evaluation of Boolean expressions but a setting of
1 (or 2) for gtm_side_effects causes the same boolean evaluations as setting gtm_boolean to 1 (or 2). The differences in the
compilation modes may include not only differences in results, but differences in flow of control.

gtm_snaptmpdir specifies the location to place the temporary "snapshot" file created by facilities such as on-line mupip integ.
If $gtm_snaptmpdir is not defined, GT.M uses the $GTM_BAKTMPDIR environment variable if defined, and otherwise uses the
current working directory.

gtm_stdxkill enables the standard-compliant behavior to kill local variables in the exclusion list if they had an alias that as not
in the exclusion list. By default, this behavior is disabled.

gtm_sysid specifies the value for the second piece of the $SYstem ISV. $SYSTEM contains a string that identifies the executing
M instance. The value of $SYSTEM is a string that starts with a unique numeric code that identifies the manufacturer. Codes
were originally assigned by the MDC (MUMPS Development Committee). $SYSTEM in GT.M starts with "47" followed by a
comma and $gtm_sysid.

gtm_tmp specifies a directory where socket files used for communication between gtmsecshr and GT.M processes are stored.
All processes using the same GT.M should have the same $gtm_tmp.

Basic Operations

23

gtm_tpnotacidtime specifies the maximum time that a GT.M process waits for non-Isolated timed command (JOB, LOCK,
OPEN, READ, or ZALLOCATE) running within a transaction to complete before it releases all critical sections it owns and
sends a TPNOTACID information message to the system log. A GT.M process owns critical sections on all or some of the
regions participating in a transactions only during final retry attempts (when $TRETRY>3). gtm_tpnotacidtime specifies time in
seconds; the default is 2 seconds. The maximum value of gtm_tpnotacidtime is 30 and the minimum is 0. If gtm_tpnotacidtime
specifies a time outside of this range, GT.M uses the default value. The GT.M behavior of releasing critical sections in final retry
attempt to provide protection from certain risky coding patterns which, because they are not Isolated, can cause deadlocks
(in the worst case) and long hangs (in the best case). As ZSYSTEM and BREAK are neither isolated nor timed, GT.M initiates
TPNOTACID behavior for them immediately as it encounters them during execution in a final retry attempt (independent of
gtm_tpnotacidtime). Rapidly repeating TPNOTACID messages are likely associated with live-lock, which means that a process
is consuming critical resources repeatedly within a transaction, and is unable to commit because the transaction duration is too
long to commit while maintaining ACID transaction properties.

gtm_trace_gbl_name enables GT.M tracing at process startup. Setting gtm_trace_gbl_name to a valid global variable
name instructs GT.M to report the data in the specified global when a VIEW command disables the tracing, or implicitly at
process termination. This setting behaves as if the process issued a VIEW "TRACE" command at process startup. However,
gtm_trace_gbl_name has a capability not available with the VIEW command, such that if the environment variable is defined
but evaluates to zero (0) or, only on UNIX, to the empty string, GT.M collects the M-profiling data in memory and discards
it when the process terminates (this feature is mainly used for in-house testing). Note that having this feature activated for
process that otherwise don't open a database file (such as GDE) can cause them to encounter an error.

gtm_trigger_etrap provides the initial value for $ETRAP in trigger context; can be used to set trigger error traps for trigger
operations in both mumps and MUPIP processes.

gtm_zdate_form specifies the initial value for the $ZDATE ISV.

gtm_zinterrupt specifies the initial value of the ISV $ZINTERRUPT which holds the code that GT.M executes (as if it is the
argument for an XECUTE command) when a process receives a signal from a MUPIP INTRPT command.

gtm_zlib_cmp_level specifies the zlib compression level used in the replication stream by the source and receiver servers. By
default, replication does not use compression.

gtm_zmaxtptime specifies the initial value of the $ZMAXTPTIME Intrinsic Special Variable, which controls whether and
when GT.M issues a TPTIMEOUT error for a TP transaction that runs too long. gtm_zmaxtptime specifies time in seconds and
the default is 0, which indicates "no timeout" (unlimited time). The maximum value of gtm_zmaxtptime is 60 seconds and the
minimum is 0; this range check does not apply to SET $ZMAXTPTIME. GT.M ignores gtm_zmaxtptime if it contains a values
outside of this recognized range.

gtm_zquit_anyway specifies whether the code of the form QUIT <expr> execute as if it were SET <tmp>=<expr> QUIT:$QUIT
tmp QUIT, where <tmp> is a temporary local variable in the GT.M runtime system that is not visible to application code. This
setting is not a compiler-time setting, but rather a run-time one. If gtm_zquit_anyway is defined and evaluates to 1 or any
case-independent string or leading substrings of "TRUE" or "YES", code of the form QUIT <expr> executes as if it were SET
<tmp>=<expr> QUIT:$QUIT tmp QUIT. If gtm_zquit_anyway is not defined or evaluates to 0 or any case-independent string or
leading substrings of "FALSE" or "NO", there is no change in the execution of code of the form QUIT <expr>.

gtm_ztrap_form and gtm_zyerror specify the behavior of error handling specified by $ZTRAP as described in the Error
Processing chapter of the GT.M Programmer's Guide.

gtm_ztrap_new specifies whether a Set of $ZTRAP also implicitly News it.

GTMCI specifies the call-in table for function calls from C code to M code.

gtmcompile specifies the initial value of the $ZCOmpile ISV.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Basic Operations

24

gtmcrypt_config specifies the location of the configuration file required for database encryption and/or TLS support.
A configuration file is divided into two sections–database encryption section and TLS section. The database encryption
section contains a list of database files and their corresponding key files. Do not add a database encryption section if you
are not using an encrypted database. The TLS section contains a TLSID label that identifies the location of root certification
authority certificate in PEM format and leaf-level certificate with its corresponding private key file. Note that the use of the
gtmcrypt_config environment variable require the libconfig library to be installed.

gtmcrypt_FIPS specifies whether the plugin reference implementation should attempt to use either OpenSSL or Libgcrypt
to provide database encryption that complies with FIPS 140-2. When the environment variable $gtmcrypt_FIPS is set to 1 (or
evaluates to a non-zero integer, or any case-independent string or leading substring of "TRUE" or "YES"), the plugin reference
implementation attempts to use libgcrypt (from GnuPG) and libcrypto (OpenSSL) in "FIPS mode".

gtmgbldir specifies the initial value of the $ZGBLDIR ISV. $ZGBLDIR identifies the global directory. A global directory maps
global variables to physical database files, and is required to access M global variables. Users who maintain multiple global
directories must choose one to use. To automate this definition, define gtmgbldir in the user's login file.

gtmroutines specifies the initial value of the $ZROutines ISV.

gtmtls_passwd_<label> $gtmtls_passwd_<label> specifies the obfuscated password of the encrypted private key pair. You can
obfuscate passwords using the 'maskpass' utility provided along with the encryption plugin. If you choose to use unencrypted
private keys, set the gtmtls_passwd_<label> environment variable to a non-null dummy value; this prevents inappropriate
prompting for a password.

gtmver (not used by GT.M directly) - The current GT.M version. The gtmprofile script uses $gtmver to set other environment
variables.

GTMXC_gpgagent specifies the location of gpgagent.tab. By default, GT.M places gpgagent.tab in the $gtm_dist/plugin/
directory. GTMXC_gpgagent is used by pinentry-gtm.sh and is meaningful only if you are using Gnu Privacy Guard version 2.

LC_CTYPE is a standard system environment variable used to specify a locale. When $gtm_chset has the value "UTF-8",
$LC_CTYPE must specify a UTF-8 locale (e.g., "en_US.utf8").

LC_ALL is a standard system environment variable used to select a locale with UTF-8 support. LC_ALL is an alternative to
LC_TYPE, which overrides LC_TYPE and has a more pervasive effect on other aspects of the environment beyond GT.M.

LD_LIBRARY_PATH is a standard system environment variable (LIBPATH in AIX) to point to the location of ICU. GT.M
requires ICU 3.6 (or above) to perform Unicode related functionality.

old_gtm_dist (not used by GT.M directly) - The path of the prior GT.M distribution. The gtmprofile script uses this value to set
other environment variables.

old_gtmroutines (not used by GT.M directly) - The prior routine search path. The gtmprofile script uses this value to set other
environment variables.

old_gtmver (not used by GT.M directly) - The value of gtmver that was set when the gtmprofile script was last sourced. The
gtmprofile script uses this value to set other environment variables.

tmp_gtm_tmp (not used by GT.M directly) - It is used by the gtmprofile script in maintaining gtm_tmp.

tmp_passw (not used by GT.M directly) - It is used by the gtmprofile script in maintaining gtm_passwd.

TZ is a standard system environment variable that specifies the timezone to be used by GT.M processes, if they are not to use
the default system timezone (GT.M assumes the system clock is set to UTC).

Basic Operations

25

The gtmprofile and gtmschrc scripts sets the following environment variables. FIS recommends using the gtmprofile script (or
the gtm script which sources gtmprofile) to set up an environment for GT.M.

Environment Variables Set up by GT.M shell scripts

gtm_dist* gtmprofile, gtmschrc

gtmgbldir* gtmprofile, gtmcshrc

gtm_icu_version gtmprofile

gtm_log* gtmprofile

gtm_principal_editing gtmprofile

gtm_prompt gtmprofile

gtm_retention gtmprofile

gtmroutines* gtmprofile, gtmcshrc

gtm_tmp gtmprofile

gtmver gtmprofile

gtm_repl_instance gtmprofile

LC_CTYPE gtmprofile

old_gtm_dist gtmprofile

old_gtmroutines gtmprofile

old_gtmver gtmprofile

tmp_gtm_tmp gtmpropfile

tmp_passw gtmprofile

* denotes environment variables that must be defined for normal GT.M operation.

While creating an environment for multiple processes accessing the same version of GT.M, bear in mind the following
important points:

1.
A GT.M version has an associated gtmsecshr (located by $gtm_dist). If multiple processes are accessing the same GT.M
version, each process must use the same combination of $gtm_tmp and $gtm_log.

2. In conformance with the Filesystem Hierarchy Standard, FIS recommends /var/log/fis-gtm/$gtmver as the value for
$gtm_log. Note that $gtmver can be in the form of V5.4-001_x86 which represents the current GT.M release and platform
information.

3. FIS recommends setting $gtm_tmp to a temporary directory /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX,
Solaris). The gtmprofile script sets $gtm_tmp to /tmp/fis-gtm/$gtmver.

4. If you do not set $gtm_log, GT.M creates log files in a directory in /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp
(HP-UX, Solaris). However, this is not recommended because it makes GT.M log files vulnerable to the retention policy of a
temporary directory.

Basic Operations

26

Always set the same value of $gtm_tmp for all processes using the same GT.M version. Having different $gtm_tmp for
multiple processes accessing the same GT.M version may prevent processes from being able to communicate with gtmsecshr
and cause performance issues.

Configuring and operating GT.M with Unicode™ support (optional)
The configure script provides the option to install GT.M with or without Unicode™ support for encoding international
character sets. This section describes the system environment required to install and operate GT.M with Unicode™ support.
Users who handle data in ASCII or other single-byte character sets such as one of the ISO-8859 representations and do not
foresee any use of character sets beyond single byte character sets, may proceed to the next section.

M mode and UTF-8 mode

A GT.M process can operate in either M mode or UTF-8 mode. In certain circumstances, both M mode and UTF-8 mode may
concurrently access the same database.

$gtm_chset determines the mode in which a process operates. If it has a value of M, GT.M treats all 256 combinations of the 8
bits in a byte as a character, which is suitable for many single-language applications.

If $gtm_chset has a value of UTF-8, GT.M (at process startup) interprets strings as being encoded in UTF-8. In this mode, all
functionality related to Unicode™ becomes available and standard string-oriented operations operate with UTF-8 encoding. In
this mode, GT.M detects character boundaries (since the size of a character is variable length), calculates glyph display width,
and performs string conversion between UTF-8 and UTF-16.

If you install GT.M with Unicode support, all GT.M components related to M mode reside in your GT.M distribution directory
and Unicode-related components reside in the utf8 subdirectory of your GT.M distribution. For processes in UTF-8 mode, in
addition to gtm_chset, ensure that $gtm_dist points to the utf8 subdirectory, that $gtmroutines includes the utf8 subdirectory
(or the libgtmutil.so therein) rather than its parent directory.

Compiling ICU

GT.M uses ICU 3.6 (or above) to perform Unicode™-related operations. GT.M generates the distribution for Unicode only if
ICU 3.6 (or above) is installed on the system. Therefore, install an appropriate ICU version before installing GT.M to perform
functionality related to Unicode.

Note that the ICU installation instructions may not be the same for every platform. If libicu has been compiled with symbol
renaming enabled, GT.M requires $gtm_icu_version be explicitly set. By default, GT.M uses the most current installed
version of ICU. GT.M expects ICU to have been built with symbol renaming disabled and issues an error at startup if the
currently installed version of ICU has been built with symbol renaming enabled. To use a different version of ICU (not the
currently installed) or a version of ICU built with symbol renaming enabled, use $gtm_icu_version to specify the MAJOR
VERSION and MINOR VERSION numbers of the desired ICU formatted as MajorVersion.MinorVersion (for example "3.6" to
denote ICU-3.6). When $gtm_icu_version is so defined, GT.M attempts to open the specific version of ICU. In this case, GT.M
works regardless of whether or not symbols in this ICU have been renamed. A missing or ill-formed value for this environment
variable causes GT.M to only look for non-renamed ICU symbols. Note that display widths for a few characters are different
starting in ICU 4.0.

Note

If you are using gtmprofile, you do not have to set $gtm_icu_version.

After installing ICU 3.6 (or above), you also need to set the following environment variables to an appropriate value.

Basic Operations

27

1. LC_CTYPE

2. LC_ALL

3. LD_LIBRARY_PATH

4. TERM

Starting GT.M

To start GT.M from a POSIX shell:

1. Execute gtm from your shell prompt:

$ <path_to_gtm_installation_directory>/gtm

To start GT.M in UTF-8 mode from a POSIX shell:

1. First, set $gtm_chset to UTF-8.

$ export gtm_chset="UTF-8"

2. Execute the gtm script.

$ <path_to_gtm_installation_directory>/gtm

To start GT.M from a C-type shell:

1. First source the gtmschrc script to set up a default GT.M environment. At your shell prompt, type:

2. $ source <path_to_gtm_installation_directory>/gtmchrc

3. Run the gtm alias to start GT.M in direct mode.

$ gtm

To start GT.M in UTF-8 mode from a C-type shell:

1. Set the enviornment variable gtm_chset to UTF-8.

$ setenv gtm_chset UTF-8

2. Source the gtmchrc script to set up default GT.M unicode environment.

$ source <path_to_gtm_installation_directory>/gtmchrc

3. Run the gtm alias to start GT.M in direct mode.

$ gtm

To start GT.M without using any script:

1. Define gtm_dist, gtm_log, gtm_tmp, gtmgbldir, and gtmroutines. Ensure that gtm_dist points to the location of your GT.M
distribution.

2. Add gtm_dist to the system environment variable PATH.

Basic Operations

28

3. Ensure that you have set an appropriate value for TERM.

4. If possible, add these environment variables in your login file so you do not have to create them again the next time you
start your shell.

5. Set the following aliases to run GT.M and its utlities.

alias dse="$gtm_dist/dse"
alias gde="$gtm_dist/mumps -run ^GDE"
alias gtm="$gtm_dist/mumps -direct"
alias lke="$gtm_dist/lke"
alias mupip="$gtm_dist/mupip"

6. Run the gtm alias to start GT.M in direct mode.

$ gtm

To start GT.M in UTF-8 mode without using any script:

1. Define gtm_dist, gtm_log, gtmgbldir, and gtmroutines. Ensure that gtm_dist points to the uft8 subdirectory of your GT.M
distribution.

2. Set gtm_routines to include the utf8 subdirectory of your GT.M distribution. Note that the utf8 subdirectory includes all
Unicode-related GT.M functionality. Type a command like the following:

$ gtmroutines=". $gtm_dist `echo $gtm_dist | sed 's/utf8\(\/\)*//'`"

3. Ensure that you have installed ICU 3.6 (or above) and have set appropriate values for LC_CTYPE, LC_ALL,
LD_LIBRARY_PATH, and TERM.

If you have built ICU with symbol renaming enabled, set gtm_icu_version to an appropriate ICU verison.

4. Add gtm_dist to the system environment variable PATH.

5. Set gtm_chset to UTF-8.

6. If possible, add these environment variables in your login file so you do not have to create them again the next time you
start your shell.

7. Set the following aliases to run GT.M and its utlities.

alias dse="$gtm_dist/dse"
alias gde="$gtm_dist/mumps -run ^GDE"
alias gtm="$gtm_dist/mumps -direct"
alias lke="$gtm_dist/lke"
alias mupip="$gtm_dist/mupip"

8. Type the following command to start GT.M in direct mode.

$ gtm

9. At the GT.M prompt, type the following command.

GTM>w $ZCHSET
UTF-8 ; the output confirms UTF-8 mode.

Basic Operations

29

Note

If you are configuring a GT.M environment without using the gtmprofile script (or the gtm script which
sources gtmprofile), bear in mind the following recommendation from FIS:

• All GT.M processes should use the same settings for gtm_log and gtm_tmp, especially for production
environments. This is because gtmsecshr inherits these values from whichever GT.M process first uses its
services.

• If there are multiple GT.M versions active on a system, FIS recommends different sets of gtm_log and
gtm_tmp values for each version as using the same values for different distributions can cause significant
performance issues.

GT.M has three invocation modes: compiler, direct, and auto-start. To invoke GT.M in these modes, provide the following
arguments to the gtm script or the mumps command.

1. -direct: Invokes GT.M in direct mode where you can enter M commands interactively.

2. <list of M source files>: Invokes GT.M in compiler mode, invoke GT.M by entering a list of file names to compile as a
argument. GT.M then compiles the specified programs into .o files. UNIX wildcards (* and ?) are acceptable within the file
names.

3. -run ^routine_name: -r invokes GT.M in auto-start mode. The second argument is taken to be an M entryref, and that
routine is automatically executed, bypassing direct mode. Depending on the shell being used, you may need to put the
entryref in quotes.

When executing M programs, GT.M incrementally links any called programs. For example, the command GTM> d ^TEST
links the object file TEST.o and executes it; if the TESTM program calls other M routines, those are automatically compiled and
linked.

Configuring huge pages for GT.M x86[-64] on Linux

GT.M on Linux supports using huge pages (depending on the CPU architecture, typically 2MiB or 4MiB rather than the
default 4KiB) for shared memory segments for BG access and for the heap of mumps processes. Using huge pages reduces
the need for page tables at the cost of a slight increase in total system virtual memory usage. While your mileage may vary,
FIS believes that many large applications will benefit from configuring and using huge pages. If you do not configure your
system for huge pages, GT.M continues to use the default page size. Note that using huge pages requires no change whatsoever
at the application code level, or even to database management operations such as replication, backup, integ, reorg, etc. - the
changes discussed here pertain entirely to configuring system memory and the virtual memory manager to improve application
performance.

To use huge pages:

• You must have a 32- or 64-bit x86 CPU, running a Linux kernel with huge pages enabled. All currently Supported Linux
distributions appear to support huge pages; to confirm, use the command: grep hugetlbfs /proc/filesystems which should
report: nodev hugetlbfs

• You must have libhugetlbfs.so installed in a standard location for system libraries. Installing the library using your Linux
system's package manager should place it in a standard location. (Note that libhugetlbfs is not in Debian repositories and
must be manually installed; GT.M on Debian releases is Supportable, not Supported.)

Basic Operations

30

• You must have a sufficient number of huge pages available:

• To reserve Huge Pages boot Linux with the hugepages=num_pages kernel boot parameter; or, shortly after bootup when
unfragmented memory is still available, with the command: hugeadm --pool-pages-min DEFAULT:num_pages command

• For subsequent on-demand allocation of Huge Pages, use: hugeadm --pool-pages-max DEFAULT:num_pages or set the
value of /proc/sys/vm/nr_overcommit_hugepages. These delayed (from boot) actions do not guarantee availability of the
requested number of huge pages; however, they are safe as, if a sufficient number of huge pages is not available, Linux
simply uses traditional sized pages.

• To use huge pages for shared memory segments for the BG database access mode, both of the following are required:

• Permit GT.M processes to use huge pages for shared memory segments (where available, FIS recommends 1, below;
however not all file systems support extended attributes). Either:

1. set the CAP_IPC_LOCK capability needs for your mumps, mupip and dse processes with a command such as setcap
'cap_ipc_lock+ep' $gtm_dist/mumps, or

2. permit the group used by GT.M processes needs to use huge pages with, as root, echo gid >/proc/sys/vm/
hugetlb_shm_group.

• Set the environment variable HUGETLB_SHM for each process to yes.

• To use huge pages for process working space and dynamically linked code:

• Set the environment variable HUGETLB_MORECORE for each process to yes.

• Although not required to use huge pages, your application is also likely to benefit from including the path to libhugetlbfs.so
in the LD_PRELOAD environment variable.

• If you enable huge pages for all applications (by setting HUGETLB_MORECORE, HUGETLB_SHM, and LD_PRELOAD
as discussed above in /etc/profile and/or /etc/csh.login), you may find it convenient to suppress warning messages from
common applications that are not configured to take advantage of huge pages by also setting the environment variable
HUGETLB_VERBOSE to zero (0).

At this time, huge pages cannot be used for MM databases; the text, data, or bss segments for each process; or for process stack.

Refer to the documentation of your Linux distribution for details. Other sources of information are:

• http://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

• http://lwn.net/Articles/374424/

• http://www.ibm.com/developerworks/wikis/display/LinuxP/libhuge+short+and+simple

• the HOWTO guide that comes with libhugetlbfs (http://sourceforge.net/projects/libhugetlbfs/files/)

Note

• In order to assure predictable performance, FIS strongly recommends that you invest the effort to
appropriately tune your system before using huge pages in production. For example, use of on demand
huge pages (over-committing) may result in delays while the kernel performs memory management
activities to satisfy requests for memory - but this may or may not be material in your situation.

http://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
http://lwn.net/Articles/374424/
http://www.ibm.com/developerworks/wikis/display/LinuxP/libhuge+short+and+simple
http://sourceforge.net/projects/libhugetlbfs/files/

Basic Operations

31

• Since the memory allocated by Linux for shared memory segments mapped with huge pages is rounded
up to the next multiple of huge pages, there is potentially unused memory in each such shared memory
segment. You can therefore increase any or all of the number of global buffers, journal buffers, and lock
space to make use of this otherwise unused space. You can make this determination by looking at the
size of shared memory segments using ipcs. Contact FIS GT.M support for a sample program to help you
automate the estimate.

• Transparent huge pages may further improve virtual memory page table efficiency. Some Supported
releases automatically set transparent_hugepages to "always"; others may require it to be set at or shortly
after boot-up. Consult your Linux distribution's documentation.

Important

A fatal SIGBUS error occurs when a GT.M process using huge pages tries to spawn another process and
Linux does not have sufficient available huge pages to provide the required memory for the spawned process.
The following involve spawning additional processes:

• JOB

• OPEN of a PIPE device

• ZSYSTEM

• interprocess signaling that requires the services of gtmsecshr when gtmsecshr is not already running

• SPAWN commands in DSE, GDE, and LKE

• Argumentless MUPIP RUNDOWN

• Replication-related MUPIP commands that start server processes and/or helper processes

Depending on when huge pages become unavailable, the SIGBUS error may go to the initiating process or
may only prevent the new process from starting. The solution is to tune Linux to ensure that the number of
huge pages required by your application are always available to your application. Because such tuning may
require a reboot, an interim workaround is to unset the environment variable HUGETLB_MORECORE for
GT.M processes until you are able to reboot or otherwise make available an adequate supply of huge pages.

32

Chapter 4. Global Directory Editor

Revision History

Revision V6.1-000 01 August 2014 • In “Global Directory” (page 32), explained
the concepts of mapping different subscripts
of the same global to different regions.

• In “Global Director Editor Commands” (page
42), added example of globals spanning
regions, the description of the new -
GBLNAME, -COLLATION, MUTEX_LOCK
qualifiers.

Revision V6.0-003 27 January 2014 • In “Region Qualifiers” (page 54), corrected
the syntax of [NO]STDNULLCOLL and -
COLLATION_DEFAULT .

• In “Segment Qualifiers” (page 58), added
a paragraph about what happens when
database file with automatic extension
disabled (EXTENSION_COUNT=0) starts to
get full.

Revision V6.0-001 27 February 2013 In “Segment Qualifiers” (page 58) and under
the -ALLOCATION section, specified that GT.M
always reserves 32 global buffers for BG access
method out of the requested allocation.

Revision V6.0-000/1 21 November 2012 Updated for V6.0-000.

Revision V6.0-000 19 October 2012 In “Region Qualifiers” (page
54), added the description of -
[NO]INST[_FREEZE_ON_ERROR].

Revision V5.5-000/10 28 September 2012 Added the description of -[NO]STDNULLCOLL,
corrected the description of -
NULL_SUBSCRIPTS, and corrected the
maximum value for -LOCK_SPACE.

Revision V5.5-000/8 03 August 2012 Improved the description of the LOCK_SPACE
qualifier and GDE Overview.

Revision V5.5-000/4 6 June 2012 Added AUTOSWITCHLIMIT as an option for -
JOURNAL region qualifier.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Global Directory

A global directory is analogous to a telephone directory. Just as a telephone directory helps you find the phone number (and
the address) given a person's name, a global directory helps GT.M processes find the database file of an M global variable node.
But because its life is independent of the databases it maps, a global directory has a second purpose in addition to holding key
mappings, which is to hold database characteristics for MUPIP CREATE. While changes to the mappings take effect as soon as

Global Directory Editor

33

a process loads a new global directory, MUPIP CREATE transfers the other characteristics to the database file, but other GT.M
processes never use the global directory defined characteristics, they always use those in the database file.

GT.M manages routines in files and libraries separately from globals. For more information on routine management, refer to the
Development Cycle chapter in GT.M Programmer's Guide.

A set of M global variables (Names or Name spaces) and / or their subscripts map to Regions that define common sets of
properties such as the maximum record length and whether null subscripts collate in conformance to the M standard. Each
Region maps to a Segment that defines the properties relating to the file system such as the file name, the initial allocation, and
number of global buffers. These properties and mapping rules are stored in a binary file called global directory. By default, a
global directory file has an extension of .gld. You can specify any filename and extension of your choice for a global directory
as long as it is valid on your operating system; GT.M documentation always uses the default extension.

The location of the global directory is pointed to by the Intrinsic Special Variable $ZGBLDIR. GT.M processes initialize
$ZBGLDIR at process startup from the environment variable gtmgbldir and can modify it during execution. For example, with a
simple SET $ZGBLDIR command, a process can switch back and forth between development and testing databases.

Consider a global variable ^TMP that holds only temporary data that is no longer meaningful when a system is rebooted. A
global directory can map ^TMP to region TEMP that maps to a database file called scratch.dat, with all other globals mapped to
gtm.dat. A global directory allows the separation of persistent data (gtm.dat) from non-persistent data(scratch.dat), so that each
database file may get appropriately configured for operations—for example, the database administrator may choose to exclude
scratch.dat from backup/archival procedures or periodically delete and recreate scratch.dat using MUPIP CREATE.

Consider the following illustration:

There are four M global variables--^Gharial, ^Hoopoe, ^Jacare, and ^Trogon. ^Gharial and ^Jacare map to region REPTILES
that maps to database file creep.dat and ^Hoopoe and ^Trogon map to region BIRDS that maps to database file flap.dat. The

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Global Directory Editor

34

default namespace * maps to a region called DEFAULT that maps to database file gtm.dat. * denotes all globals other than the
explicitly named ^Gharial, ^Hoope, ^Jacare, and ^Trogon. All globals store data in their respective database files. Each database
file has a single active journal file. To enforce access restrictions on globals so that herpetologists have access to ^Gharial
and ^Jacare and only ornithologists have access to ^Hoopoe and ^Trogon, one just needs to assign appropriate read / write
permissions to creep.dat and flap.dat.

Note

Each database file can have a single active journal file. A journal can be linked to its predecessor journal file
to form a chain of journal files.

You can also map different subscripts of the same global to different regions when subscripts have logically separable data.
Consider the following global directory example:

^US and ^EURWest have logically separable subscripts that map to different regions. ^EURCentral holds data that has a
different collation order than others so it maps to a different region. Such mapping improves operational administration and
permits a larger total size. It may also improve performance if the access patterns of the distinct parts allow accesses to all or
some of them to use optimizations in the GT.M database engine, for example, to optimize serial accesses.

In a nutshell, the database attributes and mapping rules defined in a global directory allow you to:

• Finer-grained Access Control- To block access, or updates, to a portion of the data.

• Improve Operational Administration- When a global becomes so big that that breaking it up improves operational
administration or permit a larger total size.

• Compliment Application Design- To separate global and / or their subscripts in a way that achieves a design goal without
writing addition code. For example, mapping globals to regions that are not replicated.

• Manage Volatility- some data is static, or relatively so, and you wish to leverage that to tailor your backup and integrity
verification patterns, or to use MM access.

• Improve Manageability and Performance- When a global variable is overloaded with logically separate data, distributing
the logically separate components each to its own database region improves manageability and performance when access
patterns use optimization in the GT.M database engine.

GDE Overview

The GT.M Global Directory Editor (GDE) is a utility for creating, examining, and modifying a global directory. GDE is a
program written in M and you can invoke it from the shell with $gtm_dist/mumps -run ^GDE.

Global Directory Editor

35

Because GDE is an M program, you can also invoke GDE from a GT.M process with DO ^GDE. If you invoke GDE with a DO
and modify the map of global directly currently opened by that process, you must HALT and restart the process for the process
to pick up the revised mapping. FIS expects users normally run GDE from the shell --$gtm_dist/mumps -run GDE.

The input to GDE can be a command file. In a production environment, FIS recommends using command files to define
database configurations and putting them under version control.

Caution

A global directory stores database attributes and mapping rules. Processes use mapping rules to determine
which database file contains a global variable node. MUPIP CREATE uses database attributes to create new
database file(s). Once MUPIP CREATE applies the database attributes to create a database file, GT.M does not
use the attributes until the next MUPIP CREATE. If you use MUPIP SET (or DSE) to change the attributes of
a database file, always perform an equivalent change to any global directory used for a subsequent MUPIP
CREATE. Conversely, if you change attributes with GDE, existing database files must be explicitly changed
with MUPIP SET or DSE.

Identifying the Current Global Directory

At process startup, the environment variable gtmgbldir identifies the global directory to the process. M application code can
access and change the global directory through the $ZGBLDIR intrinsic special variable, which is initialized from $gtmgbldir at
process startup. M application code can also use extended global references with the || or {} syntax.

Note that $gtmgbldir / $ZGBLDIR are pathnames. If they do not start with a "/", then the pathname is relative and GT.M
searches for the global directory starting in the current working directory.

To change the Global Directory used by processes, specify a new value for gtmgbldir.

Example:

$ export gtmgbldir=/home/jdoe/node1/prod.gld

When you invoke GDE and no Global Directory exists for gtmgbldir, GDE creates a minimal default Global Directory that is a
starting point or template for building global directories for your specific needs.

To retain the default Global Directory, exit GDE without making any changes.

Example:

$ export gtmgbldir=/home/jdoe/node1/prod.gld

Creating a Default Global Directory

When you invoke GDE and no Global Directory exists for gtmgbldir, GDE produces a default Global Directory that contains a
minimal set of required components and values for database characteristics. It can be used for purposes such as development
and testing work. A default Global Directory also serves as a starting point or template for building custom global directories.

To retain the default Global Directory, quit GDE without making any changes.

Example:

$ gtmgbldir=/usr/accntg/jones/mumps.gld

Global Directory Editor

36

$ export gtmgbldir
$ $gtm_dist/mumps -dir
GTM>do ^GDE
%GDE-I-GDUSEDEFS, Using defaults for Global Directory
/usr/accntg/jones/mumps.gld
GDE> EXIT
%GDE-I-VERIFY, Verification OK
%GDE-I-GDCREATE, Creating Global Directory file
/usr/accntg/jones/mumps.gld

Mapping Global Variables in a Global Directory

Mapping is the process of connecting a global variable name or a subtree or a subscript range to a database file.

A complete mapping has the following four components:

• NAME

• REGION

• SEGMENT

• FILE

These components may be defined in any order, but the final result must be a complete logical path from name to file:

NAME(s) ---> REGION ---> SEGMENT ---> FILE

The default Global Directory contains one complete mapping that comprises these entries for name, region, segment, and file.

* ---> DEFAULT ---> DEFAULT ---> mumps.dat
(NAME) (REGION) (SEGMENT) (FILE)

The * wildcard identifies all possible global names. Subsequent edits create entries for individual global names or name prefixes.

Regions and segments store information used to control the creation of the file. The characteristics stored with the region and
segment are passed to MUPIP only when creating the database file using the CREATE command, so subsequent changes to
these characteristics in the Global Directory have no effect on an existing database.

On EXIT, GDE validates the global directory to ensure that every legal global variable node maps to exactly one region; that
every region has at least one global variable node mapping to it and that it maps to exactly one segment; that every segment
has exactly one region mapping to it; and that the attributes for each region and segment are internally consistent. GDE
will not create a structurally unsound global directory, and will not exit until it validates the global directory. Informational
messages advise you of structural inconsistencies.

Examining the Default Global Directory

A Global Directory looks like this:

 *** TEMPLATES ***
 Std Inst
 Def Rec Key Null Null Freeze Qdb
 Region Coll Size Size Subs Coll Jnl on Error Rndwn
 --
 <default> 0 4080 255 NEVER Y Y DISABLED DISABLED

Global Directory Editor

37

 Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
 --
 <default> <based on DB file-spec> Y 2308 2048 2048 8386560

 Segment Active Acc Typ Block Alloc Exten Options
 --
 <default> * BG DYN 4096 5000 10000 GLOB =1000
 LOCK = 40
 RES = 0
 ENCR = OFF
 MSLT =1024
 <default> MM DYN 4096 5000 10000 DEFER
 LOCK = 40
 MSLT =1024

 *** NAMES ***
 Global Region
 --
 * DEFAULT

 *** REGIONS ***
 Std Inst
 Dynamic Def Rec Key Null Null Freeze Qdb
 Region Segment Coll Size Size Subs Coll Jnl on Error Rndwn
 --
 DEFAULT DEFAULT 0 4080 255 NEVER Y Y DISABLED DISABLED

 *** JOURNALING INFORMATION ***
 Region Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
 --
 DEFAULT $gtmdir/$gtmver/g/gtm.mjl
 Y 2308 2048 2048 8386560

 *** SEGMENTS ***
 Segment File (def ext: .dat)Acc Typ Block Alloc Exten Options

 DEFAULT $gtmdir/$gtmver/g/gtm.dat
 BG DYN 4096 5000 10000 GLOB=1000
 LOCK= 40
 RES = 0
 ENCR=OFF
 MSLT=1024

 *** MAP ***
 - - - - - - - - - - Names - - - - - - - - - -
 From Up to Region / Segment / File(def ext: .dat)
 --
 % ... REG = DEFAULT
 SEG = DEFAULT
 FILE = $gtmdir/$gtmver/g/gtm.dat
 LOCAL LOCKS REG = DEFAULT
 SEG = DEFAULT
 FILE = $gtmdir/$gtmver/g/gtm.dat

There are five primary sections in a Global Directory:

• TEMPLATES

• NAMES

• REGIONS

• SEGMENTS

• MAP

Global Directory Editor

38

The function of each section in the Global Directory is described as follows:

TEMPLATES

This section of the Global Directory provides a default value for every database or file parameter passed to GT.M as part of a
region or segment definition. GDE uses templates to complete a region or segment definition where one of these necessary
values is not explicitly defined.

GDE provides initial default values when creating a new Global Directory. You can then change any of the values using the
appropriate -REGION or -SEGMENT qualifiers with the TEMPLATE command.

NAMES

An M program sees a monolithic global variable namespace. The NAMES section of the Global Directory partitions the
namespace so that a global name or a global name with a subscript range reside in different database files. An M global can
reside in one more database file, each database file can store many M globals.

REGIONS

The REGIONS section lists all of the regions in the Global Directory. Each region defines common properties for a set of M
global variables or nodes; therefore, multiple sets of names from the NAMES section map onto a single region.

You assign these values by specifying the appropriate qualifier when you create or modify individual regions. If you do not
specify a value for a particular parameter, GDE assigns the default value from the TEMPLATES section.

SEGMENTS

This section of the Global Directory lists currently defined segments. While regions specify properties of global variables,
segments specify the properties of files. There is a one-to-one mapping between regions and segments. You assign these values
by specifying the appropriate qualifier when you create or modify individual segments. If you do not specify a value for a
particular parameter, GDE assigns the default value from the TEMPLATES section.

MAP

This section of the Global Directory lists the current mapping of names to region to segment to file. In the default Global
Directory, there are two lines in this section: one specifies the destination for all globals, the other one is for M LOCK resources
with local variable names. If you add any new mapping component definitions (that is, any new names, regions, or segments),
this section displays the current status of that mapping. Any components of the mapping not currently defined display "NONE".
Because GDE requires all elements of a mapping to be defined, you will not be able to EXIT (and save) your Global Directory
until you complete all mappings.

Global Directory Abbreviations

GDE uses the following abbreviations to display the output of a global directory. The following list show global directory
abbreviations with the associated qualifiers. For a description of the function of individual qualifiers, see "GDE Command
Summary".

Abbreviation Full Form
Acc ACCESS_METHOD
Alloc ALLOCATION
AutoSwitch AUTOSWITCHLIMIT
Block BLOCK_SIZE
Buff BUFFER_SIZE
Def Coll COLLATION_DEFAULT

Global Directory Editor

39

Exten EXTENSION_COUNT
File FILE_NAME
GLOB GLOBAL_BUFFER_COUNT
Inst Freeze On Error INST_FREEZE_ON_ERROR
JNL JOURNAL
KeySize KEY_SIZE
LOCK LOCK_SPACE
MSLT MUTEX_SLOTS
Null Subs NULL_SUBSCRIPTS
Qdb Rndwn QDBRUNDOWN
Std Null Coll STDNULLCOLL
Rec Size RECORD_SIZE
RES RESERVED_BYTES
Region REGION
Typ DYNAMIC_SEGMENT

Customizing a Global Directory

Once you have installed GT.M and verified its operation, create Global Directories based on your needs. To create customized
Global Directories, use the appropriate GDE commands and qualifiers to build each desired Global Directory. The GDE
commands are described later in this chapter.

You can also create a text file of GDE commands with a standard text editor and process this file with GDE. In a production
environment, this gives better configuration management than interactive usage with GDE.

Adding a Journaling Information Section

If you select the -JOURNAL option when you ADD or CHANGE a region in a Global Directory, the following section is added
to your Global Directory and displays when you invoke SHOW. The columns provided display the values you selected with the
journal options, or defaults provided by FIS for any options not explicitly defined.

 *** JOURNALING INFORMATION ***
 Region Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
 --
 DEFAULT $gtmdir/$gtmver/g/gtm.mjl
 Y 2308 2048 2048 8386560

For more information about journaling, see the section on the JOURNAL qualifier in this chapter and Chapter 6: “GT.M
Journaling” (page 130).

Using GDE

The default installation procedure places the GDE utility into a directory assigned to the environment variable gtm_dist.

To invoke GDE:

from within GTM, use the command:

GTM>do ^GDE

from the shell, enter:

$ mumps -r GDE

Global Directory Editor

40

GDE displays informational messages like the following, and then the GDE> prompt:

%GDE-I-LOADGD, loading Global Directory file /prod/mumps.gld
%GDE-I-VERIFY, Verification OK
GDE>

If this does not work, contact your system manager to investigate setup and file access issues.

To leave GDE:

1. Use the GDE EXIT command to save all changes and return to the caller.

GDE> EXIT

2. Use the GDE QUIT command to discard all changes and return to the caller. This will not save any changes.

GDE> QUIT

Guidelines for Mapping

This section lists the parameters that apply to defining each component of a mapping.

NAMES

The NAMES section contains mappings of M global name spaces. More than one name space can map to a single region but a
single name space can only map to one region.

A name space:

• Is case sensitive.

• Must begin with an alphabetic character or a percent sign (%).

• Can be a discrete "global" name, for example, aaa corresponds to the global variable ^aaa.

• Can be a global name ending with a wild card ("*"), for example, abc* represents the set of global nodes which have abc as the
starting prefix.

• Can be a subtree of a global name, for example, abc(1) represents a subtree of the global ^abc.

• Can be a subscript range, for example, abc(1:10) represents all nodes starting from ^abc(1) up to (but not including) to
^abc(10).

• A global name can be one to 31 alphanumeric characters. However, the combined length of a global and its subscripts
is limited to 1,019 bytes (the maximum key size supported by GT.M). Note that the byte length of the subscripted global
specification can exceed the maximum KeySize specified for its region.

• Maps to only one region in the Global Directory.

REGIONS

The REGIONS section contain mappings of database region. A region is a logical structure that holds information about a
portion of a database, such as key-size and record-size. A key is the internal representation of a global variable name. In this
chapter the terms global variable name and key are used interchangeably. A record refers to a key and its data.

A Global Directory must have at least one region. A region only maps to a single segment. More than one name may map to a
region.

Global Directory Editor

41

A region name:

• Can include alphanumerics, dollar signs ($), and underscores (_).

• Can have from 1 to 31 characters.

GDE automatically converts region names to uppercase, and uses DEFAULT for the default region name.

SEGMENTS

The SEGMENTS section contains mappings for segments. A segment defines file-related database storage characteristics. A
segment must map to a single file. A segment can be mapped by only one region.

GT.M uses a segment to define a physical file and access method for the database stored in that file.

A segment-name:

• Can include alphanumerics, dollar signs ($), and underscores (_)

• Can have from one to 31 characters

GDE automatically converts segment names to uppercase. GDE uses DEFAULT for the default segment name.

FILE

Files are the structures provided by UNIX for the storage and retrieval of information. Files used by GT.M must be random-
access files resident on disk.

By default, GDE uses the file-name mumps.dat for the DEFAULT segment. GDE adds the .dat to the file name when you do not
specify an extension. Avoid non-graphic and punctuation characters with potential semantic significance to the file system in
file names as they will produce operational difficulties.

Example of a Basic Mapping

To complete this procedure, you must have already opened a Global Directory.

• ADD a new global variable name.

GDE> add -name cus -region=cusreg

This maps the global name cus to the region cusreg.

• ADD region cusreg, if it does not exist.

GDE> add -region cusreg -dynamic=cusseg

This creates the region cusreg and connects it to the segment cusseg. -d[ynamic] is a required qualifier that takes the
associated segment-name as a value.

• ADD segment cusreg, if it does not exist, and link it to a file.

GDE> add -segment cusseg -file=cus.dat

This creates the segment cusseg and connects it to the file cus.dat.

Global Directory Editor

42

To review the information you have added to the Global Directory, use the SHOW command.

To perform a consistency check of the configuration, use the VERIFY command.

To exit the Global Directory and save your changes, use the EXIT command. GDE performs an automatic verification. If
successful, the mappings and database specifications become part of the Global Directory, available for access by processes,
utilities, and the run-time system.

Only MUPIP CREATE uses the database specifications; run-time processes and other utility functions use only the map.

Global Director Editor Commands

This section describes GDE commands. GDE allows abbreviations of commands. The section describing each command
provides the minimum abbreviation for that command and a description of any qualifiers that are not object-related. The
section discussing the object-type describes all the associated object-related qualifiers.

Command Syntax:

The general format of GDE commands is:

command [-object-type] [object-name] [-qualifier]

where:

-object-type Indicates whether the command operates on a -N[AME] space, -R[EGION], or -S[EGMENT].

object-name Specifies the name of the N[AME] space, R[EGION], or S[EGMENT]. Objects of different types may have
the same name. Name spaces may include the wildcard operator (*) as a suffix.

-qualifier Indicates an object qualifier.

The format description for each individual command specifies required qualifiers for that command.

The @, EXIT, HELP, LOG, QUIT, SETGD, and SPAWN commands do not use this general format. For the applicable format,
refer to the section explaining each of these commands.

Comments on command lines start with an exclamation mark (!) and run to the end of line.

Caution

An exclamation mark not enclosed in quotation marks ("")(for example in a subscript) causes GDE to ignore
the rest of that input line.

Specifying File Names in Command Lines

file-names must either appear as the last item on the command line or be surrounded by quotation marks. Because UNIX file
naming conventions permit the use of virtually any character in a file-name, once a qualifier such as -FILE_NAME or -LOG
introduces a file-name and the first character after the equal sign is not a quotation mark, GT.M treats the entire remainder of
the line as the file-name. When using quotation marks around file-names, GDE interprets a pair of embedded quotation marks
as a single quotation mark within the file-name. Note that the use of Ctrl or punctuation characters such as exclamation mark
(!), asterisk (*), or comma (,) in a file-name is likely to create significant operational file management challenges. FIS strongly
recommends against such practices.

Global Directory Editor

43

Font/Capitalization Conventions Used in this Chapter

All GT.M and GDE commands and qualifiers may be entered in either upper or lower case at the command prompt. However,
when you SHOW your current Global Directory, GDE uses the following case conventions:

• Region and segment names always display in uppercase

• Name space object names always appear in case in which they are entered.

• File-names always appear in case in which they are entered.

Note

The .dat extension is appended to the file-name when the database file is created, but does not appear in the
Global Directory listing, unless you enter it that way.

The descriptions of these commands and qualifiers appear in various cases and fonts throughout this documentation. This
section describes the conventions used in describing these commands and qualifiers.

• In text: all GT.M commands and qualifiers appear in uppercase.

• In examples: the entire command line is shown in lower case, and appears in bold typewriter font.

@

The @ command executes a GDE command file. Use the @ command to execute GDE commands stored in a text file.

The format of the @ command is:

@file-name

The file-name specifies the command file to execute. Use the file-name alone for a file in the current working directory or
specify the relative path or the full path.

GDE executes each line of the command file as if it were entered at the terminal.

Example:

GDE> @standard

This command executes the GDE commands in the file to standard in the current working directory. standard should contain
GDE commands; comments should start with an exclamation mark (!).

Add

The ADD command inserts a new name, region, or segment into the Global Directory.

The format of the ADD command is one of the following:

A[DD] -N[AME] namespace -R[EGION]=region-name
A[DD] -R[EGION] region-name -D[YNAMIC]=segment-name [-REGION-qualifier...]
A[DD] -S[EGMENT] segment-name [-SEGMENT-qualifier...] -F[ILE_NAME]=file-name
A[DD] -G[BLNAME] global-name [-GBLNAME-qualifier ...]

The ADD command requires specification of an object-type and object-name. GDE supplies default values from the templates
for qualifiers not explicitly supplied in the command.

Global Directory Editor

44

namespace specifies a global name or a global name with subscript(s) or a global name with a subscript range in the form of
global[[*]|[(from-subscript:[to-subscript])]].

Name spaces and file-names are case-sensitive; other objects are not case-sensitive.

-Name

Maps a namespace to a region in the global directory. The format of the ADD -NAME command is:

A[DD]-N[AME] namespace -R[EGION]=region-name

• You can map a global and its subtrees to different regions.

• You can also use colon (:) to map ranges of subscripted names and their subtrees to a region. Ranges are closed on the
left and open on the right side of the colon. For example, add -name PRODAGE(0:10) -region DECADE0 maps
^PRODAGE(0) to ^PRODAGE(9), assuming the application always uses integer subscripts, to region DECADE0.

• You can also use $CHAR() and $ZCHAR() to specify unprintable characters as subscripts. "" (an empty string) or no value
(e.g. 20: or :20 or :) specify open-ended ranges, which span, on the left, from the first subscript ("") to, on the right, the last
possible string.

• Regions that contain global variables sharing the same unsubscripted name that span regions must use standard null
collation; attempting to use the deprecated original null collation produces an error.

Example:

GDE> add -name IMPL -region=OTHERMUMPS ! Map MUMPS implementations to OTHERMUMPS
GDE> add -name IMPL("GT.M") -region=MYMUMPS ! While mapping GT.M to
 MYMUMPS

These examples map an entire subtree of a global to a region.

Example:

GDE> add -name PRODAGE(0:10) -region=DECADE0 ! Ranges are closed on the left and open
 on the right
GDE> add -name PRODAGE(10:20) -region=DECADE1 ! PRODAGE(10) maps to DECADE1
GDE> add -name PRODAGE(20:30) -region=DECADE2

This example uses a colon (:) to map ranges of subscripted names and their subtrees to a region. Note that ranges are specific
numbers or strings - GDE does not support wildcards (using "*") in ranges.

Example:

GDE> add -name=PRODAGE(:10) -region=DECADE0 ! This line and
 the next are equivalent
GDE> add -name PRODAGE("":10) -region=DECADE0 ! numbers up to, but not including, 10
GDE> add -name PRODAGE(20:) -region=DECADE2 ! 20 thru all numbers (> 20) + strings
GDE> add -name PRODAGE(20:"") -region=DECADE2 ! same as the add just above

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX110.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX111.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX112.txt

Global Directory Editor

45

These examples demonstrate the use of $CHAR() and $ZCHAR() to specify unprintable characters; Notice that the arguments
are positive integers (exponential - E syntax not allowed), and valid code points for $CHAR() or in range for $ZCHAR(), both
with respect to the current $ZCHSET. Also, "" (an empty string) or no value (e.g. 20: or :20 or :) specify open-ended ranges,
which span, on the left, from the first subscript ("") to, on the right, the last possible string.

Example:

GDE> add -name MODELNUM -region=NUMERIC
GDE> add -name MODELNUM($char(0):) -region=STRING

This example map numeric subscripts and strings to separate regions.

Example:

GDE> add -name DIVISION("Europe","a":"m") -region EUROPEAL
GDE> add -name DIVISION("Europe","m":"z") -region EUROPEM
GDE> add -name DIVISION("Australia") -region AUSTRALIA
GDE> add -name DIVISION("USA","South","a":"m") -region USSAL
GDE> add -name DIVISION("USA","South","m":"{") -region USSMZ
GDE> add -name DIVISION("USA","WestCoast") -region USWC

This example maps global variables with the same unsubscripted name at multiple subscript levels.

Example:

GDE> add -name x -region=REG1
GDE> add -name x(5) -region=REG1
GDE> add -name x(5,10:) -region=REG2
GDE> add -name x(5:20) -region=REG2
GDE> add -name x(20) -region=REG2
GDE> add -name x(20,40) -region=REG2
GDE> add -name x(20,40,50:) -region=REG3
GDE> add -name x(20,40:) -region=REG3
GDE> add -name x(20:) -region=REG3

This example performs the following mapping:

• from ^x, upto but not including ^x(5,10), maps to REG1

• from ^x(5,10), upto but not including ^x(20,40,50), maps to to REG2

• from ^x(20,40,50) through the last subscript in ^x maps to REG 3

-Segment

Maps a segment to a database file. The syntax of the ADD -SEGMENT command is:

A[DD]-S[EGMENT] segment-name [-SEGMENT-qualifier...]
 -F[ILE_NAME]=file-name

Example:

GDE> add -segment temp -file_name=scratch

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX116.txt

Global Directory Editor

46

This command creates a segment-name TEMP and maps it to the file scratch.dat in the current working directory. However,
if you were to specify scratch as the file-name, in other words, an environment variable, each process uses the file using the
translation of that environment variable at run-time.

-Region

Maps a region to a segment. The syntax of the ADD -REGION command is:

A[DD]-R[EGION] region-name -D[YNAMIC]=segment-name [-REGION-qualifier...]

-Gblname

Provides a mechanism to specify the collation for global variables sharing the same unsubscripted name. Specifying a collation
is necessary for globals that span multiple regions and and use an alternate collation. Because the global name EURCentral
(described in the Introduction section) uses an alternate collation, it requires an entry in the GBLNAME section. The format of
the ADD -GBLNAME command is:

A[DD] -G[BLNAME] -C[OLLATION]=collation_number

• Because string subscripts are subject to collation (the unsubscripted portion of a global variable name and numeric subscripts
are not), GDE needs to know the collation sequence number associated with each unsubscripted global variable name. M
standard collation (the default) has a collation number of zero (0). As a consequence, when you use alternative collation(s)
(other than 0), the collation transforms must be available to GDE in the same way as they are to other GT.M components. All
of a global (all nodes sharing the same unsubscripted global name) must have a single collation, which is implicitly the case
for globals that do not span multiple regions.

• Globals that do not span multiple regions and do not have any collation characteristics defined in the GBLNAME section of
the global directory take on the default collation characteristics defined in the database region to which they map. On the
other hand, globals that span multiple regions have their collation implicitly (collation 0), or explicitly, established by the
GBLNAME section of the global directory and cannot adopt a differing collation based on the region collation characteristic.
Because GT.M determines collation for globals spanning multiple regions by the GBLNAME characteristic, which cannot
change once the database files are created, GDE reports collation on many error messages.

Example:

GDE> add -gblname EURCentral -collation=1
GDE> show -gblname

 *** GBLNAMES ***
 Global Coll Ver
 --
 EURCentral 1 0

Change

The CHANGE command alters the name-to-region or region-to-segment mapping and /or the environment for a region or
segment.

The format of the CHANGE command is:

C[HANGE]-N[AME] namespace -R[EGION]=new-region
C[HANGE]-R[EGION] region-name [-REGION-qualifier...]
C[HANGE]-S[EGMENT] segment-name [-SEGMENT-qualifier...]

Global Directory Editor

47

C[HANGE] -G[BLNAME] -C[OLLATION]=collation_number

The CHANGE command requires specification of an object-type and object-name.

Once you exit GDE, mapping changes take effect for any subsequent image activation (for example, the next RUN or the
mumps -direct command). Changes to database parameters only take effect for new database files created with subsequent
MUPIP CREATE commands that use the modified Global Directory. Use the MUPIP SET command (or in some cases DSE) to
change characteristics of existing database files.

Example:

GDE> change -region master -dynamic=temp -key=100

This command changes the region master to use the segment temp and establishes a maximum KEY_SIZE of 100 characters for
the next creation of a file for this region. The segment change takes effect the first time the system uses the Global Directory
after the GDE session EXITs, while the KEY_SIZE change takes effect after the next MUPIP CREATE that creates a new
database file for segment temp.

Delete

The DELETE command removes a name, region, or segment from the Global Directory. The DELETE command does not
delete any actual data. However, GT.M does not access database files that do not have mapped global variables except through
extended references using an alternative global directory that does not map to them. Note that GT.M replication does not
support global updates made with extended references, unless they actually map to a database file that is a part of the replicated
instance.

The format of the DELETE command is:

D[ELETE] -N[AME] namespace
D[ELETE] -R[EGION] region-name
D[ELETE] -S[EGMENT] segment-name
D[ELETE] -G[BLNAME] global-name

The DELETE command requires specification of an object-type and object-name.

Deleting a name removes the namespace-to-region mapping. Deleting a region unmaps all names mapped to the region.
Deleting a segment unmaps the region mapped to the segment.

You may map the deleted names to another region or the deleted region to another segment using the CHANGE command.

The default namespace (*) cannot be deleted.

Example:

GDE> del -name T*

This command deletes the explicit mapping of all global names starting with the letter "T." This command does not delete any
global variables. However, it may make preexisting globals starting with the letter "T" invisible, at least while using this global
directory, because the T* global names map to the default namespace going forward.

Exit

The EXIT command writes all changes made in the current GDE editing session to the Global Directory and terminates the
current editing session.

Global Directory Editor

48

The format of the EXIT command is:

E[XIT]

GDE performs a full verification test (VERIFY) on the data. If the verification succeeds, GDE writes the new Global Directory to
file system and issues a verification message.

If the verification fails, GDE displays a listing of all unverifiable mappings and waits for corrections. Make appropriate
corrections, or leave the Global Directory in its original, unedited state by using the QUIT command.

If you have not made any changes to the Global Directory, GDE does not save a new Global Directory unless the original global
directory had an older format which GDE has automatically upgraded. Note that while GDE upgrades older global directories
to the current version, there is no facility to downgrade global directories to prior versions, so you should always save copies of
any global directories that might be needed to retrieve archival data.

Help

The HELP command displays online information about GDE commands and qualifiers.

The format of the HELP command is:

H[ELP] [topic...]

where topic specifies the GDE command for which you want information. If you omit the topic, GDE prompts you for it.

LOCks

The LOCKS command specifies the region into which GT.M maps "local" locks(those with resource names not starting with a
caret symbol ^). GDE maps locks on resource names, starting with a caret symbol, to the database region mapped for the global
variable name matching the resource name.

The format of the LOCKS command is:

LOC[KS] -R[EGION]=region-name

The LOCKS -REGION= qualifier allows specification of a region for local locks. By default, GDE maps local locks to the
DEFAULT region .

Example:

GDE> lock -region=main

This command maps all locks on resource names that don't start with the caret symbol, "^" to the region main.

Caution

GT.M associates LOCKs for global names with the database region holding the corresponding unsubscripted
global name. Suppose a global called ^EURWest spans multiple regions in multiple global directories, a
command like LOCK ^EURWest may not work in the same way as it would do if ^EURWest did not span
multiple regions. Before using a command like LOCK ^EURWest where ^EURWest spans multiple regions in
multiple directories, ensure that the corresponding unsubscripted ^EURWest map to the same region in all
the global directories. Alternatively, you can use LOCK globalname (with no leading up-arrow) and control
LOCK interactions with the LOCKS global directory characteristic or use transaction processing to eliminate
the use of LOCKs to protect global access.

Global Directory Editor

49

LOG

The LOG command creates a log file of all GDE commands and displays for the current editing session. Because the system
places an exclamation point (!) (i.e., the comment symbol) before all display lines that are not entered by the user. In the log, the
log can be used with the @ symbol as a command procedure.

The format of the LOG command is:

LOG
LOG -ON[=file-name]
LOG -OF[F]

The LOG command, without a qualifier, reports the current status of GDE logging. The LOG command displays a message
showing whether logging is in effect and the specification of the current log file for the GDE session.

The log facility can be turned on and off using the -ON or -OFF qualifiers any time during a GDE session. However, GDE closes
the log files only when the GDE session ends.

The -ON qualifier has an optional argument of a file, which must identify a legal UNIX file. If LOG -ON has no file-argument,
GDE uses the previous log file for the editing session. If no log file has previously been specified during this editing session,
GDE uses the default log file GDELOG.LOG.

Example:

GDE> log -on="standard.log"

This command turns on logging of the session and directs the output to standard.log.

Quit

The QUIT command ends the current editing session without saving any changes to the Global Directory. GDE does not update
the Global Directory file.

The format of the QUIT command is:

Q[UIT]

If the session made changes to the Global Directory, GDE issues a message warning that the Global Directory has not been
updated.

Rename

The RENAME command allows you to change a namespace, the name of a region, or the name of a segment.

The format of the RENAME command is:

R[ENAME] -N[AME] old-name new-name
R[ENAME] -R[EGION] old-region-name new-region-name
R[ENAME] -S[EGMENT] old-segment-name new-segment-name
R[ENAME] -G[BLNAME] old-global-name new-global-name

The RENAME command requires specification of an object-type and two object-names.

Global Directory Editor

50

When renaming a region, GDE transfers all name mappings to the new region. When renaming a segment, GDE transfers the
region mapping to the new segment.

Example:

GDE> rename -segment stable table

This command renames segment stable to table and shifts any region mapped to stable so it is mapped to table.

SEtgd

The SETGD command closes out edits on one Global Directory and opens edits on another.

The format of the SETGD command is:

SE[TGD] -F[ILE]=file-name [-Q[UIT]]

The -FILE=file-name specifies a different Global Directory file. When you provide a file-name without a full or relative
pathname GDE uses the current working directory; if the file is missing an extension, then GDE defaults the type to .gld.

The -QUIT qualifier specifies that any changes made to the current Global Directory are not written and are lost when you
change Global Directories.

SETGD changes the Global Directory that GDE is editing. If the current Global Directory has not been modified, or the -QUIT
qualifier appears in the command, the change simply occurs. However, if the current Global Directory has been modified,
GDE verifies the Global Directory, and if the verification is successful, writes that Global Directory. If the verification is not
successful, the SETGD fails.

Example:

GDE> SETGD -f="temp"

This changes the Global Directory being edited to temp. The quotation marks around the file name identifies the name of the
file unequivocally to UNIX. If the -f is the final qualifier on the line, then the quotation marks are unnecessary.

SHow

The SHOW command displays information contained in the Global Directory about names, regions, and segments.

The format of the SHOW command is:

SH[OW] -C[OMMAND] -F[ILE]=[gde-command-file]
SH[OW] -N[AME] [namespace]
SH[OW] -R[EGION] [region-name]
SH[OW] -S[EGMENT] [segment-name]
SH[OW] -M[AP] [-R[EGION]=region-name]
SH[OW] -T[EMPLATE]
SH[OW] -G[BLNAME]
SH[OW] -A[LL]

-COMMAND: Displays GDE commands that recreate the current Global Directory state.

-F[ILE]=gde-command-file: Optionally specifies a file to hold the GDE commands produced by -COMMAND. -FILE must must
always appear after -COMMAND.

Global Directory Editor

51

Please consider using command files produced with the SHOW -COMMAND -FILE for creating new regions and segments in
a global directory as the defaults come from the templates. If you inadvertently upgrade a global directory, you can use SHOW
-COMMAND to create a file of commands that you can input to GDE with the prior GT.M release to recreate the prior global
directory file.

Note

When GDE encounters an error while executing the @command-file command, it stops processing the
command file and returns to the operator prompt, which gives the operator the option of compensating
for the error. If you subsequently issue @command-file command again in the same session for the same
command-file, GDE resumes processing it at the line after the last error.

-NAME, -REGION, -SEGMENT, -GBLNAME, -MAP, -TEMPLATE, and -ALL are qualifiers that cause GDE to display selected
portions of the Global Directory as follows:

-MAP: Displays the current mapping of all names, regions, segments, and files. This qualifier corresponds to the section of the
SHOW report titled ***MAP***. The output of a SHOW -MAP may be restricted to a particular region by specifying a -REGION
qualifier with a region name argument.

-TEMPLATE: Displays the current region and segment templates. This qualifier corresponds to the section of the SHOW report
titled:

TEMPLATES

-ALL: Displays the entire Global Directory. This qualifier corresponds to displaying "all" sections of the SHOW report:

TEMPLATES, ***NAMES***, ***REGIONS***, ***SEGMENTS***, ***MAP***.

By default, SHOW displays -ALL.

If you want to print the Global Directory, create a log file by executing LOG -ON= before executing the SHOW command. The -
LOG command captures all the commands entered and output. You can print the log file if you want a hard copy record.

If you want to export the current Global Directory state, create a GDE command file with the SHOW -COMMAND -FILE=gde-
command-file and run it in the target environment.

Example:

GDE>show -template

 *** TEMPLATES ***
 Std Inst
 Def Rec Key Null Null Freeze Qdb
 Region Coll Size Size Subs Coll Jnl on Error Rndwn
 --
 <default> 0 4080 255 NEVER Y Y DISABLED DISABLED
 Jnl File (def ext: .mjl) Before Buff Alloc Exten AutoSwitch
 --
 <default> <based on DB file-spec> Y 2308 2048 2048 8386560

 Segment Active Acc Typ Block Alloc Exten Options
 --
 <default> * BG DYN 4096 5000 10000 GLOB =1000
 LOCK = 40
 RES = 0
 ENCR = OFF
 MSLT =1024
 <default> MM DYN 4096 5000 10000 DEFER
 LOCK = 40

Global Directory Editor

52

 MSLT =1024

This displays only the TEMPLATES section of the Global Directory.

GDE>SHOW -command
TEMPLATE -REGION -COLLATION_DEFAULT=0
TEMPLATE -REGION -NOINST_FREEZE_ON_ERROR
TEMPLATE -REGION -JOURNAL=(ALLOCATION=2048,AUTOSWITCHLIMIT=8386560,BEFORE_IMAGE,BUFFER_SIZE=2308,EXTENSION=2048)
TEMPLATE -REGION -KEY_SIZE=64
TEMPLATE -REGION -NULL_SUBSCRIPTS=NEVER
TEMPLATE -REGION -NOQDBRUNDOWN
TEMPLATE -REGION -RECORD_SIZE=256
TEMPLATE -REGION -STDNULLCOLL
!
TEMPLATE -REGION -NOJOURNAL
!
TEMPLATE -SEGMENT -ACCESS_METHOD=BG
TEMPLATE -SEGMENT -ALLOCATION=100
TEMPLATE -SEGMENT -BLOCK_SIZE=1024
TEMPLATE -SEGMENT -NOENCRYPTION_FLAG
TEMPLATE -SEGMENT -EXTENSION_COUNT=100
TEMPLATE -SEGMENT -GLOBAL_BUFFER_COUNT=1024
TEMPLATE -SEGMENT -LOCK_SPACE=40
TEMPLATE -SEGMENT -MUTEX_SLOTS=1024
TEMPLATE -SEGMENT -RESERVED_BYTES=0
!
TEMPLATE -SEGMENT -ACCESS_METHOD=MM
TEMPLATE -SEGMENT -ALLOCATION=100
TEMPLATE -SEGMENT -BLOCK_SIZE=1024
TEMPLATE -SEGMENT -DEFER
TEMPLATE -SEGMENT -NOENCRYPTION_FLAG
TEMPLATE -SEGMENT -EXTENSION_COUNT=100
TEMPLATE -SEGMENT -GLOBAL_BUFFER_COUNT=1024
TEMPLATE -SEGMENT -LOCK_SPACE=40
TEMPLATE -SEGMENT -MUTEX_SLOTS=1024
TEMPLATE -SEGMENT -RESERVED_BYTES=0
!
TEMPLATE -SEGMENT -ACCESS_METHOD=BG
!
DELETE -REGION DEFAULT
DELETE -SEGMENT DEFAULT
ADD -REGION AUSREG -DYNAMIC_SEGMENT=AUSSEG
ADD -REGION DEFAULT -DYNAMIC_SEGMENT=DEFAULT
ADD -REGION FRREG -DYNAMIC_SEGMENT=FRSEG
ADD -REGION POREG -DYNAMIC_SEGMENT=POSEG
ADD -REGION UKREG -DYNAMIC_SEGMENT=UKSEG
ADD -REGION USSALREG -DYNAMIC_SEGMENT=USSALSEG
ADD -REGION USSMZREG -DYNAMIC_SEGMENT=USSMZSEG
!
ADD -SEGMENT AUSSEG -FILE_NAME="AUS.dat"
ADD -SEGMENT DEFAULT -FILE_NAME="gtm.dat"
ADD -SEGMENT FRSEG -FILE_NAME="France.dat"
ADD -SEGMENT POSEG -FILE_NAME="Poland.dat"
ADD -SEGMENT UKSEG -FILE_NAME="UK.dat"
ADD -SEGMENT USSALSEG -FILE_NAME="USSAL.dat"
ADD -SEGMENT USSMZSEG -FILE_NAME="USSMZ.dat"
!
ADD -GBLNAME EURCentral -COLLATION=1
!
LOCKS -REGION=DEFAULT
ADD -NAME Australia -REGION=AUSREG
ADD -NAME EURCentral("Poland") -REGION=POREG
ADD -NAME EURWest("France") -REGION=FRREG
ADD -NAME EURWest("UK") -REGION=UKREG
ADD -NAME US("South","a":"m") -REGION=USSALREG
ADD -NAME US("South","m":"{") -REGION=USSMZREG
!

This command displays the GDE commands to recreate the spanning region example described in the Introduction section.

Global Directory Editor

53

Template

The TEMPLATE command maintains a set of -REGION and -SEGMENT qualifier values for use as templates when ADDing
regions and segments. When an ADD command omits qualifiers, GDE uses the template values as defaults.

GDE maintains a separate set of -SEGMENT qualifier values for each ACCESS_METHOD. When GDE modifies the
ACCESS_METHOD, it activates the appropriate set of TEMPLATEs and sets all unspecified qualifiers to the template defaults
for the new ACCESS_METHOD. Use the GDE SHOW command to display qualifier values for all ACCESS_METHODs.

The format of the TEMPLATE command is:

T[EMPLATE] -R[EGION] [-REGION-qualifier...]
T[EMPLATE] -S[EGMENT] [-SEGMENT-qualifier...]

The TEMPLATE command requires specification of an object-type.

Example:

GDE> template -segment -allocation=200000

This command modifies the segment template so that any segments ADDed after this time produce database files with an
ALLOCATION of 200,000 GDS blocks.

Verify

The VERIFY command validates information entered into the current Global Directory. It checks the name-to-region mappings
to ensure all names map to a region. The VERIFY command checks region-to-segment mappings to ensure each region maps
to a segment, each segment maps to only one region, and the segment maps to a UNIX file. The EXIT command implicitly
performs a VERIFY -ALL.

The format of the VERIFY command is:

V[ERIFY]
V[ERIFY] -N[AME] [namespace]
V[ERIFY] -R[EGION] [region-name]
V[ERIFY] -S[EGMENT] [segment-name]
V[ERIFY] -M[AP]
V[ERIFY] -G[BLNAME]
V[ERIFY] -T[EMPLATE]
V[ERIFY] -A[LL]

The object-type is optional. -MAP, -TEMPLATE, and -ALL are special qualifiers used as follows:

-MAP Checks that all names map to a region, all regions map to a segment, and all segments map to a file.

-TEMPLATE Checks that all templates currently are consistent and useable.

-ALL Checks all map and template data.

VERIFY with no qualifier, VERIFY -MAP, and VERIFY -ALL each check all current information.

Example:

GDE> verify -region regis

This command verifies the region regis.

Global Directory Editor

54

Name, Region, and Segment Qualifiers

The -NAME, -REGION, and -SEGMENT qualifiers each have additional qualifiers used to further define or specify
characteristics of a name, region, or segment. The following sections describe these additional qualifiers.

Name Qualifiers

The following -NAME qualifier can be used with the ADD or CHANGE commands.

-REGION=region-name

Specifies the name of a region. Region names are not case-sensitive, but are represented as uppercase by GDE.

The minimum length is one alphabetic character.

The maximum length is 31 alphanumeric characters.

Example:

GDE> add -name a* -region=areg

This command creates the namespace a*, if it does not exist, and maps it to the region areg.

Summary

GDE NAME Qualifiers

QUALIFIER DEFAULT MINIMUM MAXIMUM

-R[EGION]=region-name (characters) (none) 1A 16A/N

Region Qualifiers

The following -REGION qualifiers can be used with the ADD, CHANGE, or TEMPLATE commands.

-C[OLLATION_DEFAULT]=number

Specifies the number of the collation sequence definition to be used as the default for this database file. The number can be any
integer from 0 to 255. The number you assign as a value must match the number of a defined collation sequence that resides in
the shared library pointed to by the environment variable gtm_collate_n. For information on defining this environment variable
and creating an alternate collation sequence, refer to the "Internationalization" chapter in the GT.M Programmer's Guide.

The minimum COLLATION_DEFAULT number is zero, which is the standard M collation sequence.

The maximum COLLATION_DEFAULT number is 255.

By default, GDE uses zero (0) as the COLLATION_DEFAULT.

-D[YNAMIC_SEGMENT]=segment-name

Specifies the name of the segment to which the region is mapped. Segment-names are not case-sensitive, but are displayed as
uppercase by GDE.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Global Directory Editor

55

The minimum length is one alphabetic character.

The maximum length is 31 alphanumeric characters.

-K[EY_SIZE]=size in bytes

Specifies the maximum size of keys, in bytes, which can be stored in the region. The KEY_SIZE must be less than the
RECORD_SIZE. GDE rejects the command if the KEY_SIZE is inappropriate for the RECORD_SIZE.

The minimum KEY_SIZE is three bytes.

The maximum KEY_SIZE is 1,019 bytes.

When determining the maximum key size, applications should consider the following:

• GT.M uses packed decimal representation for numeric subscripts which may be larger or smaller than the original
representation.

• GT.M substitutes an element terminator for the caret (^), any comma (,), and any right parenthesis ()).

• GT.M adds an extra byte for every string element, including the global name.

For example, the key ^ACN ("Name", "Type") internally occupies 17 bytes.

By default, GDE uses a KEY_SIZE of 64 bytes.

-R[ECORD_SIZE]=size in bytes

Specifies the maximum size (in bytes) of a global variable node's value that can be stored in a region.

If the size of a global exceeds one database block, GT.M implicitly spans that global across multiple database blocks. In the
event a global variable node spans multiple blocks, and the process is not already within a TP transaction, the GT.M run-time
system automatically and transparently performs the entire operation within an implicit TP transaction (as it does for Triggers).

The minimum RECORD_SIZE is zero. A RECORD_SIZE of zero only allows a global variable node that does not have a value. A
typical use of a global variable node with RECORD_SIZE of zero is for creating indices (where the presence of a node is all that
is required).

The maximum RECORD_SIZE is 1,048,576 bytes (1MiB).

By default, GDE uses a RECORD_SIZE of 256 bytes.

-[NO]N[ULL_SUBSCRIPTS]=[ALWAYS|NEVER|EXISTING]

Indicates whether GT.M allows null subscripts for global variables stored in the region (that is, whether GT.M permits
references such as ^aaa("",1)).

ALWAYS indicates that the null subscripts for global variables are allowed.

NEVER indicates that null subscripts for global variables are not allowed.

EXISTING indicates that null subscripts for global variable can be accessed and updated, but not created anew.

By default, regions have -NULL_SUBSCRIPTS=NEVER.

Global Directory Editor

56

-[NO]STDNULLCOLL

Determines whether GT.M null subscripts collate in conformance to the M standard.

If STDNULLCOLL is specified, subscripts of globals in the database follow the M standard where the null subscript collates
before all other subscripts.

If NOSTDNULLCOLL is specified, null subscripts collate between numeric and string subscripts. FIS strongly recommends that
you use STDNULL and against using this non-standard null collation, which is the default for historical reasons.

-[NO]INST[_FREEZE_ON_ERROR]

Controls whether custom errors in a region should automatically cause an Instance Freeze. This qualifier modifies the value of
"Inst Freeze on Error" file header element.

For more information on setting up a list of custom errors that automatically invoke an Instance Freeze, refer to “Instance
Freeze” (page 193).

For more information on setting or clearing an Instance Freeze on an instance irrespective of whether any region is enabled for
Instance, refer to “Starting the Source Server” (page 230).

-[NO]Q[DBRUNDOWN]

Quickens normal process shutdown where a large number of processes accessing a database file are required to shutdown
almost simultaneously, for example, in benchmarking scenarios. When a terminating GT.M process observes that a large
number of processes are attached to a database file and QDBRUNDOWN is enabled, it bypasses checking whether it is the last
process accessing the database. Such a check occurs in a critical section and bypassing it also bypasses the usual RUNDOWN
actions which accelerates process shutdown removing a possible impediment to process startup. By default, QDBRUNDOWN is
disabled.

Note that with QDBRUNDOWN there is a possibility of race condition that might leave the database fileheader and IPC
resources in need of cleanup. Although QDBRUNDOWN minimizes the probability of such a race condition, it cannot eliminate
it. FIS recommends restricting QDBRUNDOWN usage to special circumstances such as benchmarking and recommends
NOQDBRUNDOWN for normal GT.M usage. When using QDBRUNDOWN, FIS recommends an explicit MUPIP RUNDOWN of
the database file after the last process exits, to ensure the cleanup of database fileheader and IPC resources.

-[NO]J[OURNAL][=journal-option-list]

This qualifier establishes characteristics for the journal file on newly created databases.

-NOJOURNAL specifies that updates to the database file are not journaled. -NOJOURNAL does not accept an argument
assignment.

-JOURNAL specifies that journaling is allowed. -JOURNAL takes one or more arguments in a journal-option-list. The journal-
option-list contains keywords separated with commas (,) enclosed in parentheses () with file-names quoted (for example,
change -region test -journal=(before,file="foo") . If the list contains only one keyword, the parentheses and quotes are optional.

Although you do not have to establish the criteria for your journaling process at this point, it is efficient to do so, even if you
are not entirely sure you will use journaling. The options available for -JOURNAL set up the environment, so it is ready for you
to enable with MUPIP SET -JOURNAL. You can also change or add any of the established options at that time.

For more information about journaling, see Chapter 6: “GT.M Journaling” (page 130).

Global Directory Editor

57

The journal-option-list includes:

• [NO]BE[FORE_IMAGE]

• F[ILE_NAME]=file-specification-name

• AUTOSWITCHLIMIT=blocks

• A[LLOCATION]=blocks

• E[XTENSION]=blocks

• BU[FFER_SIZE]=pages

The following section describes some -JOURNAL options.

-AU[TOSWITCHLIMIT]=blocks

Specifies the limit on the size of a journal file. When the journal file size reaches the limit, GT.M automatically switches to a
new journal file with a back-pointer to the prior journal file.

-[NO]BE[FORE_IMAGE]

[NO]BEFORE_IMAGE controls whether the journal should include before-image records.

The BEFORE_IMAGE option is required if you plan to consider "roll-back" (Backward) recovery of the associated database file
or if you plan to use certain database replication options. For a description of this type of recovery, refer to Chapter 6: “GT.M
Journaling” (page 130).

-F[ILE_NAME]="file-name"

Specifies the name of the journal file.

Unless the name is the sole journaling option, and is the last parameter on the line, it should always be enclosed in quotation
marks in this context.

Journal file-specifications-names are limited to 255 characters.

By default, GDE derives the file-specification-name from the database "file-name".

By default, GDE uses a journal file extension of .mjl.

Journal Options Summary

With GDE, you can create the journal files and define the journal parameters; however, you must use MUPIP SET to explicitly
turn it ON, and you must specify BEFORE/NOBEFORE at that time.

For information on all Journal options and their allowable minimum and maximum values, see “SET -JOURNAL Options ” (page
143) in the "GT.M Journaling" chapter.

Summary

The following table summarizes GDE region qualifiers. It provides their abbreviations, defaults (as provided by FIS), and
allowable minimum and maximum values.

Global Directory Editor

58

GDE REGION Qualifiers

QUALIFIER DEFAULT MINIMUM MAXIMUM

-C[OLLATION_DEFAULT]=number (integer) 0 0 255

-D[YNAMIC_SEGMENT] =segment-name (char) - 1 16

-K[EY_SIZE]=size in bytes (integer) 64 3 1,019

-R[ECORD_SIZE]=size in bytes (integer) 256 7 1,048,576 (1 MiB)

-N[ULL_SUBSCRIPTS]=[ALWAYS|NEVER|EXISTING] NEVER - -

-[NO]STDNULLCOLL N - -

-[NO]INST[_FREEZE_ON_ERROR] DISABLED - -

-[NO]Q[DBRUNDOWN] DISABLED - -

-[NO]J[OURNAL] [=journal-option-list] -NOJ - -

Segment Qualifiers

The following -SEGMENT qualifiers can be used with the ADD, CHANGE, or TEMPLATE commands.

-AC[CESS_METHOD]=code

Specifies the access method or the GT.M buffering strategy for storing and retrieving data from the global database file.

• code can have 2 values - Buffered Global (BG) or Memory Mapped (MM). The default value is BG.

• With BG, the global buffer pool manages the buffers (the OS/file system may also provide additional buffering). You get the
choice of using BEFORE_IMAGE or NOBEFORE_IMAGE journaling for your database. For details on the implications of
these forms of Journaling, see Chapter 6: “GT.M Journaling” (page 130).

• BG supports both forward and backward recovery and rollback to recover a database without a restore. For more
information forward and backward recovery and rollback, see Chapter 5: “General Database Management” (page 67).

• BG is a likely choice when you need faster recovery times from system failures.

• With MM, GT.M bypasses the global buffer pool and relies entirely on the OS/file system to manage the data traffic between
memory and disk. GT.M has no control over the timing of disk updates, therefore there is a greater reliance on the OS/file
system for database performance.

• MM supports NOBEFORE_IMAGE journaling only. GT.M issues an error if you use MM with BEFORE_IMAGE
Journaling. MM also supports MUPIP FORWARD -RECOVER and MUPIP JOURNAL -ROLLBACK with the -RESYNC or
-FETCHRESYNC qualifiers to generate lost and broken transaction files. For more information, see the Journaling and
Replication chapters.

• MM does not support backward recovery/rollback.

• Depending on your file system, MM may be an option when you need performance advantage in situations where the
above restrictions are acceptable.

Global Directory Editor

59

• GDE maintains a separate set of segment qualifier values for each ACCESS_METHOD.

• When GDE modifies the ACCESS_METHOD, it activates the appropriate set of TEMPLATEs and sets all unspecified
qualifiers to the default values of the new ACCESS_METHOD.

Example:

GDE> change -segment DEFAULT -access_method=MM

This command sets MM as the access method or the GT.M buffering strategy for storing and retrieving database for segment
DEFAULT.

-AL[LOCATION]=blocks

Specifies the number of blocks GT.M allocates to a disk file when MUPIP creates the file. For GDS files, the number of bytes
allocated is the size of the database file header plus the ALLOCATION size times the BLOCK_SIZE.

• The minimum ALLOCATION is 10 blocks.

• The maximum ALLOCATION is 1,040,187,392 blocks.

• By default, GDE uses an ALLOCATION of 100 blocks.

• The maximum size of a database file is 1,040,187,392(992Mi) blocks.

• Out of the requested allocation, GT.M always reserves 32 global buffers for BG access method for read-only use to ensure
that non-dirty global buffers are always available.

• The default ALLOCATION was chosen for initial development and experimentation with GT.M. Because file fragmentation
impairs performance, make the initial allocation for production files and large projects large enough to hold the anticipated
contents of the file for a length of time consistent with your UNIX file reorganization schedule.

-BL[OCK_SIZE]=size

Specifies the size, in bytes, of each database block in the file system. The BLOCK_SIZE must be a multiple of 512. If the
BLOCK_SIZE is not a multiple of 512, GDE rounds off the BLOCK_SIZE to the next highest multiple of 512 and issues a
warning message.

If the specified BLOCK_SIZE is less than the minimum, GDE uses the minimum BLOCK_SIZE. If the specified BLOCK_SIZE is
greater than the maximum, GDE issues an error message.

A BLOCK_SIZE that is equal to the page size used by your UNIX implementation serves well for most applications, and is a
good starting point.

You should determine the block sizes for your application through performance timing and benchmarking. In general, larger
block sizes are more efficient from the perspective of the input/output subsystem. However, larger block sizes use more system
resources (CPU and shared memory) and may increase collision and retry rates for transaction processing.

Note

Global nodes that span blocks incur some overhead and optimum application performance is likely to be
obtained from a BLOCK_SIZE that accommodates the majority of nodes within a single block. If you adjust
the BLOCK_SIZE, you should also adjust GLOBAL_BUFFER_COUNT.

Global Directory Editor

60

GDE does not allow you to change the block size to an arbitrary number. It always rounds the block size to the next higher
multiple of 512, because the database block size must always be a multiple of 512.

The minimum BLOCK_SIZE is 512 bytes.

The maximum BLOCK_SIZE is 65,024 bytes.

Note

FIS recommends against using databases with block sizes larger than 16KiB. If a specific global variable has
records that have large record sizes, FIS recommends placing that global variable in a file by itself with large
block sizes and using more appropriate block sizes for other global variables. 4KiB and 8KiB are popular
database block sizes.

By default, GDE uses a BLOCK_SIZE of 1024 bytes.

-[NO]ENcryption

Specifies whether or not the database file for a segment is flagged for encryption. Note that MUPIP CREATE acquires an
encryption key for this file and puts a cryptographic hash of the key in the database file header.

-EX[TENSION_COUNT]=blocks

Specifies the number of extra GDS blocks of disk space by which the file should extend. The extend amount is interpreted as the
number of usable GDS blocks to create with the extension. To calculate the number of host operating system blocks added with
each extension, multiply the number of GDS blocks added by (GDS BLOCK_SIZE/host BLOCK_SIZE); add one local bitmap
block for each 512 blocks added in each extension to the amount from step 1. If the extension is not a multiple of 512, remember
to roundup when figuring the number of bitmap blocks.

When a MUPIP EXTEND command does not include a -BLOCKS= qualifier, EXTEND uses the extension size in the database
header.

The extension amount may be changed with the MUPIP SET command.

The minimum EXTENSION is zero blocks.

When a database file with automatic extension disabled (EXTENSION_COUNT=0) starts to get full, GT.M records the
FREEBLSLOW warning in the system log. So as to not compromise performance, GT.M checks whenever the master bit map
must be updated to show that a local bit map is full, and issues the warning if there are fewer than 512 free blocks or if the
number of free blocks is less than total blocks/32. This means that for databases whose size is 512 blocks or less the warning
comes at the last successful update before the database becomes full.

The maximum EXTENSION is 65,535 blocks.

By default, GDE uses an EXTENSION of 100 blocks.

Like allocation, the default extension amount was chosen for initial development and experimentation. Use larger extensions
for larger actual applications. Because multiple file extensions adversely affect performance, set up extensions appropriate to
the file allocation.

-F[ILE_NAME]=file-name

Global Directory Editor

61

Specifies the file for a segment.

The maximum file name length is 255 characters.

By default, GDE uses a file-name of mumps followed by the default extension, which is .dat. You can specify any filename and
extension of your choice for a database file as long as it is valid on your operating system.

-G[LOBAL_BUFFER_COUNT]=size

Specifies the number of global buffers for a file. Global buffers reside in shared memory and are part of the database caching
mechanisms. Global buffers do not apply to MM databases.

Choose the settings for this qualifier carefully. Small numbers of global buffers tend to throttle database performance. However,
if your system has limited memory and the database file traffic is not heavy enough to hold the cache in RAM, increasing
GLOBAL_BUFFER_COUNT may trigger paging.

If database global buffers are paged out, it will result in poor performance. Therefore, do not increase this factor to a large value
without careful observation.

The proper number of GLOBAL_BUFFERs depends on the application and the amount of primary memory available on the
system. Most production databases exhibit a direct relationship between the number of GLOBAL_BUFFERs and performance.
However, the relationship is not linear, but asymptotic, so that increases past some point have progressively less benefit.
This point of diminishing returns depends on the application. For most applications, FIS expects the optimum number of
GLOBAL_BUFFERs to be between 1K and 64K.

Because transaction processing can be involved in an update and a transaction is limited to half the GLOBAL_BUFFER_COUNT,
the value for GLOBAL_BUFFER_COUNT should therefore be at least twenty-six plus twice the number of the blocks required
by the largest global variable node in your application.

Generally, you should increase the number of GLOBAL_BUFFERs for production GDS database files. This is because GT.M uses
the shared memory database cache associated with each GDS file for the majority of caching.

The minimum GLOBAL_BUFFER_COUNT for BG is 64 blocks.

The maximum for GLOBAL_BUFFER_COUNT for BG is 2,147,483,647 blocks, but may vary depending on your platform.

By default, GDE uses a GLOBAL_BUFFER_COUNT that is appropriate for initial development use on each platform, but
probably too small for production applications.

Note

If global buffers are "paged out," improvements in system performance resulting from more global buffers
will be more than offset by the dramatic slowdown that results from globals buffers that are "paged out."

-L[OCK_SPACE]=integer

Specifies the number of pages of space to use for the lock database stored with this segment. The size of a page is always 512
bytes.

As GT.M runs out of space to store LOCK control information, LOCKs become progressively less efficient. If a single process
consumes all the LOCK space, it cannot continue, and any other processes cannot proceed using LOCKs.

The minimum LOCK_SPACE is 10 pages.

Global Directory Editor

62

The maximum LOCK_SPACE is 65,536 pages.

By default, GDE uses a LOCK_SPACE of 40 pages.

LOCK_SPACE usage depends on the number of locks and the number of processes waiting for locks. To estimate lock space
needs, here is a rule of thumb:

• 1.5KiB overhead for the lock space, plus

• 640 bytes for each lock base name, plus

• 128 bytes for each subscript, plus

• 128 bytes for each waiting process.

Generally, you would limit LOCK_SPACE only when memory is scarce or you want to be made aware of unexpected levels
of LOCK usage. For most other cases, there is no reason to limit the LOCK_SPACE. If you are introducing new code, FIS
recommends using TSTART and TCOMMIT as a more efficient alternate for most LOCKs because it pushes the responsibility
for Isolation onto GT.M, which internally manages them with optimistic algorithms.

-M[UTEX_SLOTS]=integer

Specifies the number of mutex slots for a database file. GT.M uses mutex slots to manage database contention. FIS recommends
you configure the slots to cover the maximum number of processes you expect to concurrently access the database file, as an
insufficient number of slots can lead to much steeper and more severe degradation of performance under heavy loads. The
minimum is 1Ki and the maximum is 32Ki. The default of 1Ki should be appropriate for most situations.

-R[ESERVED_BYTES]=size

Specifies the size to be reserved in each database block. RESERVED_BYTES is generally used to reserve room for compatibility
with other implementations of M or to observe communications protocol restrictions. RESERVED_BYTES may also be used as a
user-managed fill factor.

The minimum RESERVED_BYTES is zero bytes.

The maximum Reserved_Bytes is the block size minus the size of the block header (which is 7 or 8 depending on your platform)
minus the maximum record size.

By default, GDE uses a RESERVED_BYTES size of zero bytes.

Summary

The following table summarizes GDE segment qualifiers. It provides abbreviations, defaults (as provided by FIS), and allowable
minimum and maximum values.

GDE SEGMENT Qualifiers

QUALIFIER DEFAULT MIN MAX

-AC[CESS_METHOD]=BG|MM BG - -

** BLOCK_SIZE minus the size of the block header

* May vary by platform

Global Directory Editor

63

GDE SEGMENT Qualifiers

QUALIFIER DEFAULT MIN MAX

-AL[LOCATION]=size (blocks) 100 10 1,040,187,392(992Mi)

-BL[OCK_SIZE]=size (bytes) 1,024 512 65,024

-[NO]EN[CRYPTION] 0

-EX[TENSION_COUNT]=size (blocks) 100 0 65,535

-F[ILE_NAME]=file-name (chars) mumps.dat - 255

-G[LOBAL_BUFFER_COUNT]=size (blocks) 1024* 64 2,147,483,647

-L[OCK_SPACE]=size (pages) 40 10 65536

-M[UTEX_SLOTS]=integer 1,024 1,024 32,768

-R[ESERVED_BYTES]=size (bytes) 0 0 block size-7

** BLOCK_SIZE minus the size of the block header

* May vary by platform

Gblname Qualifiers

The following -GBLNAME qualifier can be used with the ADD, CHANGE, or TEMPLATE commands.

-C[OLLATION]=collation_number

Specifies the collation number for a global name; a value of 0 specifies standard M collation. The first time that a GT.M
processes accesses a global variable name in a database file, it determines the collation sequence as follows:

• If a Global Variable Tree (GVT) exists (that is, global variable nodes exist, or have previously existed, even if they have been
KILL'd), use the existing collation:

• If there is a collation specified in the Directory Tree (DT) for that variable, use it after confirming that this matches the
collation in the global directory.

• else (that is, there is no collation specified in the DT):

• If there is collation specified for that global variable in the global directory use it

• else if there is a default for that database file, use it

• else (that is, neither exists), use standard M collation

• else (that is, a GVT does not exist, which in turn means there is no DT):

• If there is collation specified for that global variable in the global directory use it

• else, if there is a default for that database file, use it

• else (that is, neither exists), use standard M collation

Global Directory Editor

64

GDE Command Summary

The following table summarizes GDE commands, abbreviations, object types, required object names, and optional qualifiers.

GDE Command Summary

Command Specified Object Type Required Object Name/[Optional] Qualifier

@ N/A file-name

A[DD] -N[AME] namespace

-R[EGION]=region-name

- -R[EGION] region-name

-D[YNAMIC]=segment-name [-REGION-qualifier...]

- -S[EGMENT] segment-name

-F[ILE_NAME]=file-name [-SEGMENT-qualifier...]

- -G[BLNAME] global-name

-C[OLLATION]=collation

C[HANGE] -N[AME] namespace

-R[EGION]=new-region

- -R[EGION] region-name

[-REGION-qualifier...]

- -S[EGMENT] segment-name

[-SEGMENT-qualifier]

- -G[BLNAME] global-name

-C[OLLATION]=collation

D[ELETE] -N[AME] namespace

- -R[EGION] region-name

- -S[EGMENT] segment-name

- -G[BLNAME] global-name

-C[OLLATION]=collation

E[XIT] N/A N/A

HE[LP] N/A Keyword

LOC[KS] N/A -R[EGION]=region-name

LOG N/A [-ON][=file-name]

* -ALL is the default for the SHOW and VERIFY commands.

Global Directory Editor

65

GDE Command Summary

Command Specified Object Type Required Object Name/[Optional] Qualifier

[-OF[F]]

Q[UIT] N/A N/A

R[ENAME] -N[AME] old-name new-name

- -R[EGION] old-reg-name new-reg-name

- -S[EGMENT] old-seg-name new-seg-name

- -G[BLNAME] global-name

-C[OLLATION]=collation

SE[TGD] N/A -F[ILE]=file-name [-Q[UIT]]

SH[OW] -N[AME] [namespace]

- -R[EGION] [region-name]

- -S[EGMENT] [segment-name]

- -G[BLNAME] global-name

-C[OLLATION]=collation

- -M[AP] [R[EGION]=region-name]

- T[EMPLATE] N/A

- -A[LL]* N/A

T[EMPLATE] -R[EGION] [-REGION-qualifier...]

- -S[EGMENT] [-SEGMENT-qualifier...]

V[ERIFY] -N[AME] [namespace]

- -R[EGION] [region-name]

- -S[EGMENT] [segment-name]

- -G[BLNAME] global-name

-C[OLLATION]=collation

- -M[AP] N/A

- -T[EMPLATE] N/A

- -A[LL]* N/A

* -ALL is the default for the SHOW and VERIFY commands.

Global Directory Editor

66

GDE Command Qualifier Summary

The following table summarizes all qualifiers for the ADD, CHANGE, and TEMPLATE commands. The defaults are those
supplied by FIS.

GDE Command Qualifiers

QUALIFIER DEF MIN MAX NAM REG SEG

-AC[CESS_METHOD]=code BG - - - - X

-AL[LOCATION]=size(blocks) 100 10 1,040,187,392(992Mi)- - X

-BL[OCK_SIZE]=size(bytes) 1024 512 65024 - - X

-C[OLLATION_DEFAULT]=id-number
(integer)

0 0 255 - X -

-D[YNAMIC_SEGMENT]=segment-name
(chars)

* 1A 16A/N - X -

-EX[TENSION_COUNT]=size (blks) 100 0 65535 - - X

-F[ILE_NAME]=file-name (chars) ** 1A 255A/N - - X

-G[LOBAL_BUFFER_COUNT]=size (blocks) 1,024 *** 64 2,147,483,647

- - X

-K[EY_SIZE]=size (bytes) 64 3 1,019 - X -

-L[OCK_SPACE]=size (pages) 40 10 65,536 - - X

-M[UTEX_SLOTS]=integer 1,024 1,024 32,768 - - X

-[NO]INST[_FREEZE_ON_ERROR] FALSE - - - X -

-[NO]Q[DBRUNDOWN] FALSE - - - X -

-[NO]J[OURNAL]=option-list -NOJ - - - X -

-N[ULL_SUBSCRIPTS]=[ALWAYS|NEVER|
EXISTING]

NEVER or

- - - X -

-[NO]STDNULLCOLL[=TRUE|FALSE] FALSE - - - X -

-R[ECORD_SIZE]=size (bytes) 256 7 1,048,576 - X -

-R[EGION] region-name (chars) * 1A 16A/N X - -

-R[ESERVED_BYTES]=size (bytes) 0 0 blocksize - - X

* DEFAULT is the default region- and segment-name

** MUMPS is the default file-name

*** May vary by platform

**** -NONULL_SUBSCRIPTS

67

Chapter 5. General Database Management

Revision History

Revision V6.1-000 01 August 2014 • In “Introduction” (page 68), added a note
recommending against runing any GT.M
component as root.

Revision V6.0-003 27 January 2014 • In “SET ” (page 109), added the -
Mutex_slots qualifier.

• In “RUNDOWN ” (page 108), added the -
Override qualifier.

Revision V6.0-001/2 10 April 1013 In “BACKUP” (page 71), added notes for
"Before starting a MUPIP BACKUP".

Revision V6.0-001/1 22 March 1013 Improved the formatting of all command
syntaxes.

Revision V6.0-001 27 February 2013 • In “BACKUP” (page 71), added
information about the BKUPRUNNING
message and added information on the
handling of KILLs in Progress and Abandoned
Kills during a backup.

• In “EXTRACT ” (page 82), added the
description of -STDOUT.

• In MUPIP INTEG, specified the threshold
limit of incorrectly marked busy errors in “-
MAP” (page 92) and added information
on clearing KILLs in Progress and Adandoned
Kills.

Revision V6.0-000/1 21 November 2012 • In MUPIP SET, added the description of “-
PArtial_recov_bypass” (page 110).

• Updated “TRIGGER ” (page 116) for
V6.0-000.

Revision V6.0-000 19 October 2012 In MUPIP SET, added the description of “-
INST_freeze_on_error” (page 112).

Revision V5.5-000/11 05 October 2012 Corrected the description of the -ADJACENCY
qualifier and added more information about
“INTEG ” (page 88).

Revision V5.5-000/10 28 September 2012 Corrected the maximum value of “-
Lock_space” (page 111) and improved the
description of “-Flush_time” (page 111).

Revision V5.5-000/8 03 August 2012 • In “SET ” [109], improved the description of
the LOCK_SPACE qualifier.

• In “BACKUP” [71], added a note about
supporting only one concurrent backup.

Revision V5.5-000/4 6 June 2012 • In “LOAD ” [98], added the description of
-STDIN and its example.

General Database Management

68

• In “REORG ” [102], added the description
of -TRUNCATE.

• In “-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]
” [155], added the description of -ONLINE.

Revision V5.5-000 27 February 2012 Updated “REORG ” [102] for V5.5-000. Also,
improved the description of -EXCLUDE and -
SELECT qualifiers.

Revision 1 10 November 2011 In the “SET ” [109] section, changed "MUPIP
SEt" to "MUPIP SET".

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

This chapter describes common database management operations such as creating database files, modifying database
characteristics, database backup and restore, routine integrity checks, extracting or loading data, and optimizing performance.

GT.M uses M Peripheral Interchange Program (MUPIP) for GT.M database management, database journaling, and logical
multisite replication (LMS). This chapter summarizes the MUPIP commands pertaining to GT.M database management and
serves as a foundation for more advanced GT.M functionality described for Journaling and LMS.

For MUPIP commands pertaining to database journaling, refer to Chapter 6: “GT.M Journaling” (page 130).

For MUPIP commands pertaining to multisite database replication, refer to Chapter 7: “Database Replication” (page 173).

Note

Two MUPIP operations - INTRPT and STOP - perform process management functions. All other MUPIP
operations relate to the operation of the database.

The GT.M installation procedure places the MUPIP utility program in a directory specified by $gtm_dist.

Invoke MUPIP by executing the mupip program at the shell prompt. If this does not work, consult your system manager
(MUPIP requires that the $gtm_dist point to the directory containing the MUPIP executable image).

$gtm_dist/mupip
MUPIP>

MUPIP asks for commands, with the MUPIP> prompt. Enter the EXIT command at the MUPIP> prompt to stop the utility.
MUPIP performs one operation at a time, and automatically terminates after most operations.

When additional information appears on the command line after the mupip program name, MUPIP processes the additional
information as its command, for example:

$gtm_dist/mupip stop 1158

This starts MUPIP and stops the process with Process ID (PID) 1158.

Some MUPIP commands require information contained in the global directory. Therefore, a process must have access to a valid
global directory before using any MUPIP commands other than EXIT, INTRPT, JOURNAL, RESTORE, STOP and the -file option
of any command that has that option.

General Database Management

69

The environment variable gtmgbldir specifies the active global directory.

A gtmgbldir value of mumps.gld tells MUPIP to look for a global directory file mumps.gld in the current directory. For more
information on the global directory, refer to “Global Directory Editor” (page 32).

Important

FIS recommends against running GT.M components as root. When run as root, GT.M components use the
owner and group of the database file as the owner and group of newly created journal files, backup files,
snapshot files, shared memory, and semaphores. In addition, they set the permissions on the resulting files,
shared memory, and semaphores, as if running as the owner of the database file and as a member of the
database file group.

Operations - Standalone and Concurrent Access

While most MUPIP operations can be performed when GT.M processes are actively accessing database files, some operations
require stand-alone access. When using standalone access, no other process can access the database file(s). When using
concurrent access, other processes can read or update the database file(s) while MUPIP accesses them. A few operations permit
concurrent access to read database files, but not to update them. All MUPIP operations can be performed with stand-alone
access - there is never a requirement for another process to be accessing database files when MUPIP operates on them.

Most MUPIP operations require write access to the database files with which they interact. The exceptions are INTRPT and
STOP, which do not require database access, but may require other privileges; EXTRACT, which requires read access; and
INTEG, which may require write access, depending on the circumstances it encounters and the qualifiers with which it is
invoked. The following table displays some of the MUPIP operations and their database access requirements.

Operations MUPIP command Database Access Requirements

Backup database files MUPIP BACKUP Backup never requires standalone access and concurrent write
access is controlled by -[NO]ONLINE.

Create and initialize database
files

MUPIP CREATE Standalone access

Converts a database file from
one endian format to the other
(BIG to LITTLE or LITTLE to
BIG)

MUPIP ENDIANCVT Standalone access

Recover database files (for
example, after a system crash)
and extract journal records

MUPIP JOURNAL Standalone access

Restore databases from
bytestream backup files

MUPIP RESTORE Standalone access

Properly close database files
when processes terminate
abnormally.

MUPIP RUNDOWN Standalone access

Modify database and/or journal
file characteristics

MUPIP SET Standalone access is required if the MUPIP SET command specifies
-ACCESS_METHOD, -GLOBAL_BUFFERS, -MUTEX_SLOTS, -

General Database Management

70

Operations MUPIP command Database Access Requirements

LOCK_SPACE or -NOJOURNAL, or if any of the -JOURNAL options
ENABLE, DISABLE, or BUFFER_SIZE are specified.

Backup database files MUPIP BACKUP Concurrent access.

Grow the size of BG database
files

MUPIP EXTEND Concurrent access.

Export data from database files
into sequential (flat) or binary
files

MUPIP EXTRACT Although MUPIP EXTRACT command works with concurrent
access, it implicitly freezes the database to prevent updates.
Therefore, from an application standpoint, you might plan for a
standalone access during a MUPIP EXTRACT operation.

Prevent updates to database files MUPIP FREEZE Standalone access.

Check the integrity of GDS
databases

MUPIP INTEG Concurrent access. However, standalone access is required if MUPIP
INTEG specifies -FILE.

Import data into databases MUPIP LOAD Although MUPIP LOAD works with concurrent access, you should
always assess the significance of performing a MUPIP LOAD
operation when an application is running because it may result in
an inconsistent application state for the database.

Defragment database files to
improve performance

MUPIP REORG Concurrent access.

Send an asynchronous signal to
a GT.M process

MUPIP INTRPT Non-database access.

Stop GT.M processes MUPIP STOP Non-database access.

MUPIP

The general format of MUPIP commands is:

mupip command [-qualifier[...]] [object[,...]] [destination]

MUPIP allows the abbreviation of commands and qualifiers. In each section describing a command or qualifier, the abbreviation
is also shown (for example, B[ACKUP]). The abbreviated version of the command you can use on the command line is B. To
avoid future compatibility problems and improve the readability, specify at least four characters when using MUPIP commands
in scripts.

Although you can enter commands in both upper and lower case (the mupip program name itself must be in lower case on
UNIX/Linux), the typographical convention used in this chapter is all small letters for commands. Another convention is in the
presentation of command syntax. If the full format of the command is too long for a single line of print, the presentation wraps
around into additional lines.

$ mupip backup -bytestream -transaction=1 accounts,history,tables,miscellaneous
 /var/production/backup/

When you enter a MUPIP command, one of its variable arguments is the region-list. region-list identify the target of the
command and may include the UNIX wildcards "?" and "*". Region-lists containing UNIX wildcard characters must always

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX153.txt

General Database Management

71

be quoted, for example, "*" to prevent inappropriate expansion by the UNIX shell. Similarly, for file and directory names you
might want to avoid non-graphic characters and most punctuations except underbars (_), not because of GT.M conventions but
because of inappropriate expansion by UNIX shells.

MUPIP qualifier values are restricted only by the maximum size of the command input line, which is 4KB on some systems and
upto 64KB on others.

Commands and Qualifiers

The MUPIP commands described in this section are used for common database operations and serves as the foundation for
more advanced functionality like Journaling and Replication.

BACKUP

Saves the contents of the database. It provides a consistent application snapshot across all database regions involved in the
backup operation.
The format of the MUPIP BACKUP command is:

B[ACKUP]
[
 -BK[UPDBJNL]={DISABLE|OFF}]
 -B[YTESTREAM] [-NET[TIMEOUT]]
 -DA[TABASE]
 -DBG
 -[NO]NEWJNLFILES[=[NO]PREVLINK],[NO]S[YNC_IO]]
 -O[NLINE]
 -REC[ORD]
 -REPL[ACE]
 -REPLINSTANCE=target_location
 -S[INCE]={DATABASE|BYTESTREAM|RECORD}
 -T[RANSACTION]=hexadecimal_transaction_number
] region-list[,...] destination-list

Important

MUPIP BACKUP does a more comprehensive job of managing backup activities than other backup
techniques such as a SAN backup, breaking a disk mirror, or a file system snapshot because it integrates
journal management, instance file management, and records timestamps in the database file headers. To use
other techniques, you must first freeze all regions concurrently with a command such as MUPIP FREEZE -
ON "*" in order to ensure a consistent copy of files with internal structural integrity. FIS neither endorses nor
tests any third party products for backing up a GT.M database.

• MUPIP BACKUP supports two methods of database backup: -BYTESTREAM and -DATABASE. MUPIP BACKUP -
BYTESTREAM directs the output to a broad range of devices, including disks, TCP sockets, and pipes. MUPIP BACKUP -
DATABASE directs the output to random access devices (that is, disks).

• [NO]ONLINE qualifier determines whether MUPIP BACKUP should suspend updates to regions. For example, MUPIP
BACKUP -NOONLINE suspends updates to all regions from the time it starts the first region until it finishes the last region.
However, it does not suspend processes that only read from the database.

• By default, MUPIP BACKUP is -DATABASE -ONLINE.

General Database Management

72

• If any region name does not map to an existing accessible file, or if any element of the destination list is invalid, BACKUP
rejects the command with an error.

• region-list may specify more than one region of the current global directory in a list. Regions are separated by a comma, and
wildcards can be used to specify them. Any region-name may include the wildcard characters * and % (remember to escape
them to protect them from inappropriate expansion by the shell). Any region name expansion occurs in M (ASCII) collation
order.

• Depending on the type of backup, destination-list may be a single directory, or a comma separated list of destinations
including files, piped commands, or a TCP socket address (a combination of IPv4 or IPV6 hostname and a port number).

• Region-list and destination-list items are matched in order - the first region is mapped to the first destination, the second
to the second destination, and so on. If GT.M encounters a region mapped to a directory, GT.M treats that directory as the
destination for all subsequent regions in the region-list.

• GT.M implicitly timestamps both BYTESTREAM and DATABASE backups using relative timestamps (transaction numbers).
You can also explicitly specific a RECORD timestamp for custom-control (SANS or mirrored disk) backup protocol. You
might want to use these timestamps as reference points for subsequent backups.

• It takes approximately one (1) minute (per region) for BACKUP -ONLINE to give up and bypass a KILLs in progress; backup
does not wait for Abandoned Kills to clear.

• The environment variable gtm_baktmpdir specifies the directory where mupip backup creates temporary files. If
gtm_baktmpdir is not defined, GT.M uses the deprecated GTM_BAKTMPDIR environment variable if defined, and otherwise
uses the current working directory.

• When you restrict access to a database file, GT.M propagates those restrictions to shared resources associated with the
database file, such as semaphores, shared memory, journals and temporary files used in the course of MUPIP BACKUP.

• GT.M supports only one concurrent -ONLINE backup on a database. MUPIP BACKUP displays the BKUPRUNNING message
if started when there is an already running BACKUP.

• MUPIP BACKUP protects against overwriting of existing destination files. However, it cannot protect other destinations, for
example, if the destination is a pipe into a shell command that overwrites a file.

Before starting a MUPIP BACKUP

Perform the following tasks before you begin a database backup.

• Ensure adequate disk space for target location and temporary files. Set the environment variable
gtm_baktmpdir to specify the directory where MUPIP BACKUP creates temporary files. If gtm_baktmpdir
is not defined, GT.M uses the deprecated GTM_BAKTMPDIR environment variable if defined, and
otherwise uses the current working directory. Do not place temporary files in the current directory for
large databases in production environments.

• When using replication, ensure that the Source/Receiver process is alive (MUPIP REPLIC -SOURCE/-
RECEIVER -CHECKHEALTH). Always backup the replicating instance file with the database (BACKUP -
REPLINST).

• If you intend to use a -DATABASE backup at the same time in the same computer system as the source
database, be sure to disable journaling in the backed up database with -BKUPDBJNL=DISABLE.

General Database Management

73

• When doing a complete backup, switch journal files as part of the backup command using -
NEWJNLFILES=NOPREVLINK. This aligns the journal files with the backup and simplifies journal file
retention.

• If you follow separate procedures for backup and archive (moving to secondary storage), you can save time
by starting archive as soon as MUPIP BACKUP completes the process of creating a backup database file
for a region. You do not need to wait for MUPIP BACKUP to complete processing for all regions before
starting archive. For example, a message like:

DB file /home/jdoe/.fis-gtm/V6.0-001_x86_64/g/gtm.dat backed up in file /backup/gtm.dat
Transactions up to 0x0000000000E92E04 are backed up.

confirms that gtm.dat is backed up correctly and is ready for archive.

• Determine an appropriate frequency, timing, and backup method (-BYTESTREAM or -COMPREHENSIVE)
based on the situation.

• Ensure the user issuing backup commands has appropriate permissions before starting the backup. Backup
files have the ownership of the user running MUPIP BACKUP.

• There is one circumstance under which a MUPIP BACKUP is not advised. When your operational
procedures call for taking backups of unmodified databases and journal files on rebooting a system after a
crash, then use an underlying operating system command (cp, cpio, gzip, tar, and so on) which will open
the files read-only. Note that for ordinary system crashes where the system simply stops writing to open
files at power down, you can use MUPIP JOURNAL to recover journaled database files, and taking backups
on reboot should not be required. However, for system crashes with the possibility of damage to files
already written to disk (for example, if the crash involved an IO controller with the potential for having
written random data to disk immediately prior to power down), such backups on reboot are appropriate.

Example:

$ mupip backup "*" /gtm/bkup

This example creates ready-to-run database backup of all regions.

-BKupdbjnl

A backup database shares the same journaling characteristics of the source database. However, with BKUPDBJNL you can
disable or turns off journaling in the backup database. Use this qualifier if you intend to open your backup database at the same
time in the same environment as the source database.

The format of the BKUPDBJNL qualifier is:

-BK[UPDBJNL]={DISABLE|OFF}

• Specify DISABLE to disable journaling in the backup database.

• Specify OFF to turn off journaling is in the backup database.

• Only one of the qualifiers DISABLE or OFF can be specified at any given point.

General Database Management

74

-Bytestream

Ttransfers MUPIP BACKUP output to a TCP connection, file (or a backup directory), or a pipe. If there are multiple .dat files,
BYTESTREAM transfers output to a comma separated list of TCP connections, incremental backup files and/or directories, or
pipes. When used with -SINCE or -TRANSACTION, MUPIP BACKUP allow incremental backup, that is, include database blocks
that have changed since a prior point specified by the -SINCE or -TRANSACTION.

Note

MUPIP BACKUP output to a TCP connection saves disk I/O bandwidth on the current system.

All bytream backups needs to be restored to a random access file (with MUPIP RESTORE) before being used as a database file. -
BYTESTREAM can also send the output directly to a listening MUPIP RESTORE process via a TCP/IP connection or a pipe.

The format of the BYTESTREAM qualifier is:

-B[YTESTREAM]

• -BYTESTREAM is compatible with -SINCE and -TRANSACTION.

• -INCREMENTAL is deprecated in favor of -BYTESTREAM. For upward compatibility, MUPIP temporarily continues to
support the deprecated -INCREMENTAL.

-Database

Creates a disk-to-disk backup copy of the files of all selected regions. DATABASE backup copy is a ready-to-use a GT.M
database unlike BYTESREAM backup which is required to be restored to a random access file.

Note

The DATABASE qualifier does not support backup to magnetic tape.

The format of the DATABASE qualifier is:

-D[ATABASE]

• By default, MUPIP BACKUP uses -DATABASE.

• The DATABASE qualifier is only compatible with the -[NO]NEW[JNLFILES], -ONLINE, and -RECORD qualifiers.

• -COMPREHENSIVE is depreciated in favor of -DATABASE. For upward compatibility, MUPIP temporarily continues to
support the deprecated -COMPREHENSIVE.

-NETtimeout

Specifies the timeout period when a bytestream BACKUP data is sent over a TCP/IP connection. The format of the
NETTIMEOUT qualifier is:

NET[TIMEOUT]=seconds

• The default value is 30 seconds.

• Use only with: -BYTESTREAM.

General Database Management

75

-NEWJNLFILES

Determines the journaling charactertistics of the database files being backed-up. All the established journaling characteristics
apply to new journal files. This qualifier is effective only for an ONLINE backup (the default), when the database has journaling
enabled.

The format of the NEWJNLFILES qualifier is:

-[NO]NEWJNLFILES[=[NO]PREVLINK], [NO]S[YNC_IO]]

• -NEWJNLFILES can take the following three values:

1. PREVLINK: Back links new journal files with the prior generation journal files. This is the default value.

2. NOPREVLINK: Indicates that there should be no back link between the newly created journals and prior generation
journal files.

3. SYNC_IO: Specifies that every WRITE to a journal file to be committed directly to disk. On high-end disk subsystems (for
example, those that include non-volatile cache and that consider the data to be committed when it reaches this cache),
this might result in better performance than the NOSYNC_IO option. NOSYNC_IO turn off this option.

• -NONEWJNLFILES causes journaling to continue with the current journal files. It does not accept any arguments.

• The default is -NEWJNLFILES=PREVLINK.

-Online

Specifies that while a MUPIP BACKUP operation is active, other processes can update the database without affecting the result
of the backup. The format of the ONLINE qualifier is:

-[NO]O[NLINE]

• MUPIP BACKUP -ONLINE creates a backup of the database as of the moment the backup starts. If the running processes
subsequently update the database, the backup does not reflect those updates.

• MUPIP BACKUP -ONLINE on regions(s) waits for up to one minute so any concurrent KILL or MUPIP REORG operations
can complete. If the KILL or MUPIP REORG operations do not complete within one minute, MUPIP BACKUP -ONLINE
starts the backup with a warning that the backup may contain incorrectly marked busy blocks. Such blocks waste space
and can desensitize operators to much more dangerous errors, but otherwise don't affect database integrity. If you get
such an error, it may be better to stop the backup and restart it when KILL or MUPIP REORG operations are less likely to
interfere. Performing MUPIP STOP on a process performing a KILL or MUPIP REORG operation may leave the database
with incorrectly marked busy blocks. In this situation, GT.M converts the ongoing KILLs flag to abandoned KILLs flag.
If MUPIP BACKUP -ONLINE encounters ADANDONED_KILLS, it gives a message and then starts the backup. An
ABANDONED_KILLS error means both the original database and the backup database possibly have incorrectly busy blocks
which should be corrected promptly.

• By default, MUPIP BACKUP is -ONLINE.

-Record

Timestamps (in the form of a transaction number) a database file to mark a reference point for subsequent bytestream,
database, or custom backup (SANS or disk mirror) protocols. Even though -DATABASE and -BYTESTREAM both mark their

General Database Management

76

own relative timestamps, -RECORD provides an additional timestamp option. MUPIP FREEZE also provides the -RECORD
qualifier because a FREEZE may be used to set the database up for a SAN or disk-mirror based backup mechanism.

The format of the RECORD qualifier is:

-R[ECORD]

• Use -RECORD (with the hypen) to timpestamp a refererence point and use RECORD as a keyword (as in -SINCE=RECORD)
to specific the starting point for a MUPIP BACKUP operation.

• -RECORD replaces the previously RECORDed transaction identifier for the database file.

-REPLace

Overwrites the existing destination files.

The format of the REPLACE qualifier is:

-[REPL]ACE

• By default, MUPIP BACKUP protect against overwriting the destination files. -REPLACE disables this default behavior.

• -REPLACE is compatible only with -DATABASE.

-REPLInstance

Specifies the target location to place the backup of the replication instance file.

Note

The replication instance file should always be backed up with the database file.

The format of the REPLINSTANCE qualifier is:

-REPLI[NSTANCE]=<target_location>

-Since

Includes blocks changed since the last specified backup. The format of the SINCE qualifier is:

-S[INCE]={DATABASE|BYTESTREAM|RECORD}

• D[ATABASE] - Backup all changes since the last MUPIP BACKUP -DATABASE.

• B[YTESTREAM] - Backup all changes since the last MUPIP BACKUP -BYTESTREAM.

• R[ECORD] - Backup all changes since the last MUPIP BACKUP -RECORD.

By default, MUPIP BACKUP -BYTESTREAM operates as -SINCE=DATABASE.

Incompatible with: -TRANSACTION.

General Database Management

77

-Transaction

Specifies the transaction number of a starting transaction that causes BACKUP -BYTESTREAM to copy all blocks that have
been changed by that transaction and all subsequent transactions. The format of the TRANSACTION qualifier is:

-T[RANSACTION]=transaction-number

• A Transaction number is always 16 digit hexadecimal number. It appears in a DSE DUMP -FILEHEADER with the label
"Current transaction".

• If the transaction number is invalid, MUPIP BACKUP reports an error and rejects the command.

• It may be faster than a DATABASE backup, if the database is mostly empty.

• Incompatible with: -DATABASE, -SINCE

Note

A point in time that is consistent from an application perspective is unlikely to have the same transaction
number in all database regions. Therefore, except for -TRANSACTION=1, this qualifier is not likely to be
useful for any backup involving multiple regions.

Examples for MUPIP BACKUP

Example:

$ mupip backup -bytestream REPTILES,BIRDS bkup

Suppose that the environment variable gtmgbldir has regions REPTILES and BIRDS that map to files called REPTILES.DAT and
BIRDS.DAT (no matter which directory or directories the files reside in). Then the above example creates bytestream backup
files REPTILES.DAT and BIRDS.DAT in the bkup directory since the last DATABASE backup.

Example:

$ mupip backup -bkupdbjnl="OFF" "*"

This command turns off journaling in the backup database.

Example:

$ mupip backup -bytestream "*" tcp://philadelphia:7883,tcp://tokyo:8892

Assuming a Global Directory with two regions pointing to ACN.DAT and HIST.DAT, this example creates a backup of
ACN.DAT to a possible MUPIP RESTORE process listening at port 7883 on server philadelphia and HIST.DAT to a possible
MUPIP RESTORE process listening at port 8893 on server tokyo.

Always specify the <machine name> and <port> even if both backup and restore are on the same system, and ensure that the
MUPIP RESTORE process is started before the MUPIP BACKUP process.

Example:

$ mupip backup -database -noonline "*" bkup
DB file /home/gtmnode1/gtmuser1/mumps.dat backed up in file bkup/mumps.dat
Transactions up to 0x00000000000F42C3 are backed up.

General Database Management

78

BACKUP COMPLETED.

This command creates a disk-to-disk backup copy of all regions of the current database in directory bkup. GT.M freezes all the
regions during the backup operation.

Example:

$ mupip backup -bytestream -nettimeout=420 DEFAULT tcp://${org_host}:6200

This command creates a backup copy of the DEFAULT region with timeout of 420 seconds.

Example:

$ mupip backup -bytestream DEFAULT '"| gzip -c > online5pipe.inc.gz"'

This command sends (via a pipe) the backup of the DEFAULT region to a gzip command.

Example:

$ mupip backup -online DEFAULT bkup
DB file /gtmnode1/gtmuser1/mumps.dat backed up in file bkup/mumps.dat
Transactions up to 0x00000000483F807C are backed up.

BACKUP COMPLETED.

This command creates a backup copy of the DEFAULT region of the current database in directory bkup. During the backup
operation, other processes can read and update the database.

Example:

$ mupip backup -record DEFAULT bkup

This command sets a reference point and creates a backup copy of the DEFAULT region of the current database in directory
bkup.

Example:

$ mupip backup -online -record DEFAULT bkup1921
DB file /home/reptiles/mumps.dat backed up in file bkup1921/mumps.dat
Transactions up to 0x00000000000F4351 are backed up.

Example:

$ mupip backup -bytestream -since=record DEFAULT bkup1921onwards
MUPIP backup of database file /home/reptiles/mumps.dat to bkup1921onwards/mumps.dat
DB file /home/reptiles/mumps.dat incrementally backed up in file bkup1921onwards/mumps.dat
6 blocks saved.
Transactions from 0x00000000000F4351 to 0x00000000000F4352 are backed up.

BACKUP COMPLETED.

The first command sets a reference point and creates a backup copy of the DEFAULT region of the current database in directory
bkup1921. The second command completes a bytestream backup starting from the reference point set by the first command.

General Database Management

79

Example:

$ mupip backup -bytestream -transaction=1 DEFAULT bkup_dir
MUPIP backup of database file /gtmnode1/gtmuser1/mumps.dat to bkup_dir/mumps.dat
DB file /gtmnode1/gtmuser1/mumps.dat incrementally backed up in file bkup/mumps.dat
5 blocks saved.
Transactions from 0x0000000000000001 to 0x0000000000000003 are backed up.

BACKUP COMPLETED.

This command copies all in-use blocks of the DEFAULT region of the current database to directory bkup_dir.

Example:

$ mupip backup -newjnlfiles=noprevlink,sync_io "*" backupdir

This example creates new journal files for the current regions, cuts the previous journal file link for all regions in the global
directory, enables the SYNC_IO option and takes a backup of all databases in the directory backupdir.

CREATE

Creates and initializes database files using the information in a Global Directory file. If a file already exists for any segment,
MUPIP CREATE takes no action for that segment.

The format of the CREATE command is:

CR[EATE] [-R[EGION]=region-name]

The single optional -REGION qualifier specifies a region for which to create a database file.

Note that one GT.M database file grows to a maximum size of 224M (234,881,024) blocks. This means, for example, that with an
8KB block size, the maximum single database file size is 1,792GB (8KB*224M). Note that this is the size of one database file -- a
logical database (an M global variable namespace) can consist of an arbitrary number of database files.

-Region

Specifies a single region for creation of a database file. By default, MUPIP CREATE creates database files for all regions in the
current Global Directory that do not already have a database file.

The format of the REGION qualifier is:

-R[EGION]=region-name

Examples for MUPIP CREATE

Example:

$ mupip create -region=REPTILES

This command creates the database file specified by the Global Directory (named by the GT.M Global Directory environment
variable) for region REPTILES.

General Database Management

80

DOWNGRADE

The MUPIP DOWNGRADE command changes the file header format to V4 or V5. The format of the MUPIP DOWNGRADE
command is:

D[OWNGRADE] -V[ERSION]={V4|V5} file-name

For V4:

• It reduces the size from 8 bytes to 4 bytes for fields like current transaction (CTN), maximum tn (MTN) and others that
contain transaction numbers.

• It removes the results of any prior DBCERTIFY run on the database.

• You cannot downgrade a V5 database which has standard null collation. In such a case, perform a MUPIP EXTRACT -
FORMAT=ZWR operation on the V5 database and then perform a MUPIP LOAD operation on a V4 database.

-VERSION={V4|V5}

Specifies file header format. For more information on the downgrade criteria for your database, refer to the release notes
document of your current GT.M version.

Examples for MUPIP DOWNGRADE

Example:

$ mupip downgrade mumps.dat

This command changes the file-header of mumps.dat to V4 format.

ENDIANCVT

Converts a database file from one endian format to the other (BIG to LITTLE or LITTLE to BIG). The format of the MUPIP
ENDIANCVT command is:

ENDIANCVT [-OUTDB=<outdb-file>] -OV[ERRIDE] <db-file>

• <db-file> is the source database for endian conversion. By default ENDIANCVT converts <db-file> in place.

• outdb writes the converted output to <outdb-file>. In this case, ENDIANCVT does not modify the source database <db-file>.

• ENDIANCVT produces a <outdb-file>of exactly the same size as <db-file>.

Important

Ensure adequate storage for <outdb-file> to complete the endian conversion successfully.

• ENDIANCVT requires standalone access to the database.

• GT.M displays a confirmation request with the “from” and “to” endian formats to perform the conversion. Conversion begins
only upon receiving positive confirmation, which is a case insensitive "yes".

General Database Management

81

• In a multi-site replication configuration, the receiver server automatically detects the endian format of an incoming
replication stream and converts it into the native endian format. See Database Replication chapter for more information.

• Encrypted database files converted with ENDIANCVT require the same key and the same cipher that were used to encrypt
them.

Note

GT.M on a big endian platform can convert a little endian database into big endian and vice versa; as can
GT.M on a little endian platform. GT.M (run-time and utilities other than MUPIP ENDIANCVT) on a given
endian platform opens and processes only those databases that are in the same endian format. An attempt to
open a database of a format other than the native endian format produces an error.

-OVerride

Enables MUPIP ENDIANCVT to continue operations even if GT.M encounters the following errors:

• "minor database format is not the current version"

• "kills in progress"

• "a GT.CM server is accessing the database"

Note that the OVERRIDE qualifier does not override critical errors (database integrity errors, and so on) that prevent a
successful endian format conversion.

Examples for MUPIP ENDIANCVT

$ mupip endiancvt mumps.dat -outdb=mumps_cvt.dat
Converting database file mumps.dat from LITTLE endian to BIG endian on a LITTLE endian system

Converting to new file mumps_cvt.dat

Proceed [yes/no] ?

This command detects the endian format of mumps.dat and converts it to the other endian format if you type yes to confirm.

EXIT

Stops a MUPIP process and return control to the process from which MUPIP was invoked.

The format of the MUPIP EXIT command is:

EXI[T]

The EXIT command does not accept any qualifiers.

EXTEND

Increases the size of a database file. By default, GT.M automatically extends a database file when there is available space.

The format of the MUPIP EXTEND command is:

General Database Management

82

EXTE[ND] [-BLOCKS=<data-blocks-to-add>] region-name

• The only qualifier for MUPIP EXTEND is BLOCKS.

• The required region-name parameter specifies the name of the region to expand.

• EXTEND uses the Global Directory to map the region to the dynamic segment and the segment to the file.

-Blocks

Specifies the number of GDS database blocks by which MUPIP should extend the file. GDS files use additional blocks for
bitmaps. MUPIP EXTEND adds the specified number of blocks plus the bitmap blocks required as overhead. For more
information about bitmaps, refer to Chapter 9: “GT.M Database Structure(GDS)” (page 265). The format of the BLOCK
qualifier is:

-BLOCKS=data-blocks-to-add

By default, EXTEND uses the extension value in the file header as the number of GDS blocks by which to extend the database
file. You can specify as many blocks as needed as long as you are within the maximum total blocks limit (which could be as
high as 224 million GDS blocks).

Examples for MUPIP EXTEND

$ mupip extend DEFAULT -blocks=400

This command adds 400 GDE database block to region DEFAULT.

Example:

$ mupip extend REPTILES -blocks=100

This command adds 100 GDE database blocks to the region REPTILES.

EXTRACT

Backups certain globals or to extract data from the database for use by another system. The MUPIP EXTRACT command copies
globals from the current database to a sequential output file in one of three formats-GO, BINARY, or ZWR. The format of the
EXTRACT command is:

EXTR[ACT]
[
 -FO[RMAT]={GO|B[INARY]|Z[WR]}
 -FR[EEZE]
 -LA[BEL]=text
 -[NO]L[OG]
 -S[ELECT]=global-name-list]
]
{-ST[DOUT]|file-name}

• By default, MUPIP EXTRACT uses -FORMAT=ZWR.

• MUPIP EXTRACT uses the Global Directory to determine which database files to use.

General Database Management

83

• MUPIP EXTRACT supports user collation routines. When used without the -FREEZE qualifier, EXTRACT may operate
concurrently with normal GT.M database access.

• To ensure that MUPIP EXTRACT reflects a consistent application state, suspend the database updates to all regions involved
in the extract, typically with the FREEZE qualifier, or backup the database with the ONLINE qualifier and extract files from
the backup.

• EXTRACT places its output in the file defined by the file- name. EXTRACT may output to a UNIX file on any device that
supports such files, including magnetic tapes.

• In UTF-8 mode, MUPIP EXTRACT write sequential output file in the UTF-8 character encoding. Ensure that MUPIP
EXTRACT commands and corresponding MUPIP LOAD commands execute with the same setting for the environment
variable gtm_chset.

Note

Magnetic tapes may have a smaller maximum file size than disks.

For information on extracting globals with the %GO utility, refer to "M Utility Routines" chapter of the GT.M Programmer's
Guide. MUPIP EXTRACT is typically faster, but %GO can be customized.

The following sections describe the qualifiers of MUPIP EXTRACT command.

-FOrmat

Specifies the format of the output file. The format of the FORMAT qualifier is:

-FO[RMAT]=format_code

The format code is any one of the following:

1. B[INARY] - Binary format, used for database reorganization or short term backups. MUPIP EXTRACT -FORMAT=BINARY
works much faster than MUPIP EXTRACT -FORMAT=GO and MUPIP EXTRACT -FORMAT=ZWR. Note: There is no
defined standard to transport binary data from one GT.M implementation to another. Further, FIS reserves the right to
modify the binary format in new versions. The first record of a BINARY format data file contains the header label. The
header label is 87 characters long. The following table illustrates the components of the header label.

BINARY Format Data File Header Label

CHARACTERS EXPLANATION

1-26 Fixed-length ASCII text: "GDS BINARY EXTRACT LEVEL 4".

27-40 Date and time of extract in the $ZDATE() format: "YEARMMDD2460SS".

41-45 Decimal maximum block size of the union of each region from which data was extracted.

46-50 Decimal maximum record size of the union of each region from which data was extracted.

51-55 Decimal maximum key size of the union of each region from which data was extracted.

56-87 Space-padded label specified by the -LABEL qualifier. For extracts in UTF-8 mode, GT.M prefixes
UTF-8 and a space to -LABEL. The default LABEL is "GT.M MUPIP EXTRACT"

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

84

2. GO - Global Output format, used for files to transport or archive. -FORMAT=GO stores the data in record pairs. Each global
node produces one record for the key and one for the data. MUPIP EXTRACT -FORMAT=GO has two header records - the
first is a test label (refer to the LABEL qualifier) and the second contains a data, and time.

3. ZWR - ZWRITE format, used for files to transport or archive that may contain non-graphical information. Each global node
produces one record with both key and data. MUPIP EXTRACT -FORMAT=ZWR has two header records, which are the
same as for FORMAT=GO, except that the second record ends with the text " ZWR"

-FReeze

Prevents database updates to all database files from which the MUPIP EXTRACT command is copying records. FREEZE ensures
that a MUPIP EXTRACT operation captures a "sharp" image of the globals, rather than one "blurred" by updates occurring
while the copy is in progress.

The format of the FREEZE qualifier is:

-FR[EEZE]

By default, MUPIP EXTRACT does not "freeze" regions during operation.

-LAbel

Specifies the text string that becomes the first record in the output file. MUPIP EXTRACT -FORMAT=BINARY truncates the
label text to 32 characters. The format of the LABEL qualifier is:

-LA[BEL]=text

• By default, EXTRACT uses the label "GT.M MUPIP EXTRACT."

• For more detailed information about the -FORMAT=BINARY header label, refer to the description of EXTRACT -
FORMAT=BINARY.

-LOg

Displays a message on stdout for each global extracted with the MUPIP EXTRACT command. The message displays the number
of global nodes, the maximum subscript length and maximum data length for each global. The format of the LOG qualifier is:

-[NO]LO[G]

By default, EXTRACT operates -LOG.

-Select

Specifies globals for a MUPIP EXTRACT operation. The format of the SELECT qualifier is:

-S[ELECT]= global-specification

• By default, EXTRACT selects all globals, as if it had the qualifier -SELECT=*

• The caret symbol (^) in the specification of the global name is optional.

The global-specification can be:

General Database Management

85

• A parenthetical list, such as (a,B,C). In this case, MUPIP EXTRACT selects all globals except ^a, ^B, and ^C.

• A global name, such as MEF. In this case, MUPIP EXTRACT selects only global ^MEF.

• A range of global names, such as A7:B6. In this case, MUPIP EXTRACT selects all global names between ^A7 and ^B6,
inclusive.

• A list, such as A,B,C. In this case, MUPIP EXTRACT selects globals ^A, ^B, and ^C.

• Global names with the same prefix, such as PIGEON*. In this case, EXTRACT selects all global names from ^PIGEON
through ^PIGEONzzzzz.

Note

If the rules for selection are complex, it may be easier to construct an ad hoc Global Directory that maps the
global variables to be extracted to the database file. This may not be permissible if the database file is part of
a replicated instance. If this is the case, work with a backup of the database.

-STdout

Redirects database extract to the standard output stream. The format of the STDOUT qualifier is:

-ST[DOUT]

Examples for MUPIP EXTRACT

Example:

$ mupip extract -format=go -freeze big.glo

This command prevents database updates during a MUPIP EXTRACT operation.

Example:

$ mupip extract -format=GO mumps_i.go

This command creates an extract file called mumps_i.go in "Global Output" format. Use this format to transport or archive files.
The first record of a GO format file contains the header label, "GT.M MUPIP EXTRACT," as text.

Example:

$ mupip extract -format=BINARY v5.bin

This command creates an extract file called v5.bin in Binary format. Use this format for reorganizing a database or for short-
term backups.

Example:

$ mupip extract -format=ZWR -LABEL=My_Label My_Extract_File

This example extracts all globals from the current database to file My_Extract_File (in ZWRITE format) with label My_Label.

Example:

$ mupip extract -nolog FL.GLO

General Database Management

86

This command creates a global output file, FL.GLO, (which consists of all global variables in the database) without displaying
statistics on a global-by-global basis. As there is no label specified, the first record in FL.GLO contains the text string "GT.M
MUPIP EXTRACT."

Example:

$ mupip extract -select=Tyrannosaurus /dev/tty

This command instructs EXTRACT to dump the global ^Tyrannosaurus to the device (file-name) /dev/tty.

FREEZE

Temporarily suspends (freezes) updates to the database. If you prefer a non-GT.M utility to perform a backup or reorganization,
you might use this facility to provide standalone access to your GT.M database. You might use MUPIP FREEZE to suspend (and
later resume) database updates for creating mirrored disk configuration or re-integrating a mirror.

GT.M BACKUP, INTEG, and REORG operations may implicitly freeze and unfreeze database regions. However, for most
operations, this freeze/unfreeze happens internally and is transparent to the application.

The format of the MUPIP FREEZE command is:

F[REEZE] {-OF[F] [-OV[ERRIDE]]|-ON [-R[ECORD]]} region-list

• The region-list identifies the target of the FREEZE.

• MUPIP FREEZE waits for one minute so that concurrent KILL or MUPIP REORG operations can complete. If the KILL or
MUPIP REORG commands do not complete within one minute, MUPIP FREEZE terminates operations and unfreezes any
regions it had previously marked as frozen.

• To ensure that a copy or reorganized version of a database file contains a consistent set of records, concurrent MUPIP
utilities, such as BACKUP (without the ONLINE qualifier) and EXTRACT, include mechanisms to ensure that the database
does not change while the MUPIP utility is performing an action. FIS recommends the use of the -ONLINE qualifier with
BACKUP.

• A MUPIP FREEZE can be removed only by the user who sets the FREEZE or by using -OVERRIDE.

• After MUPIP FREEZE -ON, processes that are attempting updates "hang" until the FREEZE is removed by the MUPIP FREEZE
-OFF command or DSE. Make sure that procedures for using MUPIP FREEZE, whether manual or automated, include
provisions for removing the FREEZE in all appropriate cases, including when errors disrupt the normal flow.

• A -RECOVER/-ROLLBACK for a database reverts to a prior database update state. Therefore, a -RECOVER/-ROLLBACK
immediately after a MUPIP FREEZE -ON removes the freeze. However, -RECOVER/-ROLLBACK does not succeed if there are
processes attached (for example when a process attempt a database update immediately after a MUPP FREEZE -ON) to the
database.

FREEZE must include one of the qualifiers:

-OF[F]
-ON

The optional qualifiers are:

-OV[ERRIDE]
-R[ECORD]

General Database Management

87

-OFf

Clears a freeze set by another process with the same userid.

The format of the OFF qualifier is:

OF[F]

• When used with -OVERRIDE, -OFF stops a freeze operation set by a process with a different userid.

• Incompatible with: -ON, -RECORD

-ON

Specifies the start of a MUPIP FREEZE operation. The format of the ON qualifier is:

-ON

Incompatible with: -OFF, -OVERRIDE

-OVerride

Release a freeze set by a process with a different userid. GT.M provides OVERRIDE to allow error recovery in case a procedure
with a freeze fails to release. The format of the OVERRIDE qualifier is:

-OV[ERRIDE]

• OVERRIDE should not be necessary (and may even be dangerous) in most schemes.

• Incompatible with: -ON, -RECORD

-Record

Specifies that a MUPIP FREEZE operation should record an event as a reference point. You might use MUPIP FREEZE to set up
your database for a custom-backup mechanism (SAN or mirror-based).

The format of the RECORD qualifier is:

-R[ECORD]

• You might use -RECORD to integrate MUPIP BACKUP -BYTESTREAM with an external backup mechanism.

• -RECORD replaces the previously RECORDed transaction identifier for the database file.

• Incompatiable with: -OFF and -OVERRIDE.

Examples for MUPIP FREEZE

Example:

$ mupip freeze -off DEFAULT

This command stops an ongoing MUPIP FREEZE operation on the region DEFAULT.

General Database Management

88

Example:

$ mupip freeze -on "*"

This command prevents updates to all regions in the current Global Directory.

Example:

$ set +e
$ mupip freeze -on -record "*"
$ tar cvf /dev/tape /prod/appl/*.dat
$ mupip freeze -off
$ set -e

The set +e command instructs the shell to attempt all commands in the sequence , regardless of errors encountered by any
command. This ensures that the freeze -off is processed even if the tar command fails. FREEZE prevents updates to all database
files identified by the current Global Directory. The -record qualifier specifies that the current transaction in each database
be stored in the RECORD portion of the database file header. The tar command creates a tape archive file on the device /
dev/tape, containing all the files from /prod/app that have an extension of .dat. Presumably all database files in the current
Global Directory are stored in that directory, with that extension. The second FREEZE command re-enables updates that were
suspended by the first FREEZE. The set -e command re-enables normal error handling by the shell.

Example:

$ mupip freeze -override -off DEFAULT

This command unfreezes the DEFAULT region even if the freeze was set by a process with a different userid.

FTOK

Produces the "public" (system generated) IPC Keys (essentially hash values) of a given file.

The format of the MUPIP FTOK command is:

FT[OK] [-DB] [-JNLPOOL] [-RECVPOOL] file-name

-DB

Specifies that the file-name is a database file. By default, MUPIP FTOK uses -DB.

-JNLPOOL

Specifies that the reported key is for the Journal Pool of the instance created by the current Global Directory.

-RECVPOOL

Specifies that the reported key is for the Receive Pool of the instance created by the current Global Directory.

INTEG

Performs an integrity check on a GT.M database file. You can perform structural integrity checks on one or more regions in the
current Global Directory without bringing down (suspending database updates) your application. However, a MUPIP INTEG on

General Database Management

89

a single file database requires standalone access but does not need a Global Directory. The order in which the MUPIP INTEG
command selects database regions is a function of file system layout and may vary as files are moved or created. Execute a
MUPIP INTEG operations one database file at a time to generate an report where the output always lists database files in a
predictable sequence. For example, to compare output with a reference file, run INTEG on one file at a time.

Always use MUPIP INTEG in the following conditions:

• Periodically - to ensure ongoing integrity of the database(s); regular INTEGs help detect any integrity problems before they
spread and extensively damage the database file.

• After a crash - to ensure the database was not corrupted. (Note: When using before-image journaling, when the database is
recovered from the journal file after a crash, an integ is not required).

• When database errors are reported - to troubleshoot the problem.

Improving the logical and physical adjacency of global nodes may result in faster disk I/O. A global node is logically adjacent
when it is stored within a span of contiguous serial block numbers. A global node is physically adjacent when it resides on
adjacent hard disk sectors in a way that a single seek operation can access it. Database updates (SETs/KILLs) over time affect
the logical adjacency of global nodes. A MUPIP INTEG reports the logical adjacency of your global nodes which may indicate
whether a MUPIP REORG could improve the database performance. A native file system defragmentation improves physical
adjacency.

Note

Most modern SAN and I/O devices often mask the performance impact of the adjustments in logical and
physical adjacency. If achieving a particular performance benchmark is your goal, increasing the logical
and physical adjacency should be only one of many steps that you might undertake. While designing the
database, try to ensure that the logical adjacency is close to the number of blocks that can physically reside
on your hard disk's cylinder. You can also choose two or three cylinders, with the assumption that short
seeks are fast.

The format of the INTEG command is:

I[NTEG]
[
 -A[DJACENCY]=integer
 -BL[OCK]=hexa;block-number
 -BR[IEF]
 -FA[ST]
 -FU[LL]
 -[NO]K[EYRANGES]
 -[NO]MAP[=integer]
 -[NO]MAXK[EYSIZE][=integer]
 -S[UBSCRIPT]=subscript]
 -TN[_RESET]
 -[NO]TR[ANSACTION][=integer]
 -[NO]O[NLINE]
]
{[-FILE] file-name|-REG[ION] region-name}

• MUPIP INTEG requires specification of either file(s) or region(s).

• Press <CTRL-C> to stop MUPIP INTEG before the process completes.

General Database Management

90

• The file-name identifies the database file for a MUPIP INTEG operation.The region-list identifies one or more regions that, in
turn, identify database files through the current Global Directory.

• MUPIP INTEG operation keeps track of the number of blocks that do not have the current block version during a non-fast
integ (default or full) and matches this value against the blocks to upgrade counter in the file-header. It issues an error if the
values are unmatched and corrects the count in the file header if there are no other integrity errors.

Important

Promptly analyze and fix all errors that MUPIP INTEG reports. Some errors may be benign while others may
be a signs of corruption or compromised database integrity. If operations continue without fixes to serious
errors, the following problems may occur:

• Invalid application operation due to missing or incorrect data.

• Process errors, including inappropriate indefinite looping, when a database access encounters an error.

• Degrading application level consistency as a result of incomplete update sequences caused by the prior
symptoms.

FIS strongly recommends fixing the following errors as soon as they are discovered:

• Blocks incorrectly marked free - these may cause accelerating damage when processes make updates to any part of the
database region.

• Integrity errors in an index block - these may cause accelerating damage when processes make updates to that area of the
database region using the faulty index. For more information, refer to Chapter 11: “Maintaining Database Integrity” (page
324).

MUPIP INTEG -FAST and the "regular" INTEG both report these errors (These qualifiers are described later in this section).
Other database errors do not pose the threat of rapidly spreading problems in GDS files. After the GT.M database repair,
assess the type of damage, the risk of continued operations, and the disruption in normal operation caused by the time spent
repairing the database. For information on analyzing and correcting database errors, refer to Chapter 11: “Maintaining Database
Integrity” (page 324). Contact your GT.M support channel for help assessing INTEG errors.

The following sections describe the qualifiers of the INTEG command.

-ADjacency

Specifies the logical adjacency of data blocks that MUPIP INTEG should assume while diagnosing the database. By default,
MUPIP INTEG operates with -ADJACENCY=10 and reports the logical adjacency in the "Adjacent" column of the MUPIP
INTEG report.

• The complexity of contemporary disk controllers and the native file system may render this report superfluous. But when it
is meaningful, this report measures the logical adjacency of data.

• A MUPIP REORG improves logical adjacency and a native file system defragmentation improves physical adjacency.

The format of the ADJACENCY qualifier is:

-AD[JACENCY]=integer

General Database Management

91

-BLock

Specifies the block for MUPIP INTEG command to start checking a sub-tree of the database. MUPIP INTEG -BLOCK cannot
detect "incorrectly marked busy errors"

The format of the BLOCK qualifier is:

-BL[OCK]=block-number

• Block numbers are displayed in an INTEG error report or by using DSE.

• Incompatible with: -SUBSCRIPT and -TN_RESET

-BRief

Displays a single summary report by database file of the total number of directory, index and data blocks. The format of the
BRIEF qualifier is:

-BR[IEF]

• By default, MUPIP INTEG uses the BRIEF qualifier.

• Incompatible with: -FULL

-FAst

Checks only index blocks. FAST does not check data blocks.

The format of the FAST qualifier is:

-FA[ST]

• -FAST produces results significantly faster than a full INTEG because the majority of blocks in a typical database are data
blocks.

• While INTEG -FAST is not a replacement for a full INTEG, it very quickly detects those errors that must be repaired
immediately to prevent accelerated database damage.

• By default, INTEG checks all active index and data blocks in the database.

• Incompatible with: -TN_RESET.

-FIle

Specifies the name of the database file for the MUPIP INTEG operation. FILE requires exclusive (stand-alone) access to a
database file and does not require a Global Directory. The format of the FILE qualifier is:

-FI[LE]

• With stand-alone access to the file, MUPIP INTEG -FILE is able to check whether the reference count is zero. A non-zero
reference count indicates prior abnormal termination of the database.

• The -FILE qualifier is incompatible with the -REGION qualifier.

• By default, INTEG operates on -FILE.

General Database Management

92

-FUll

Displays an expanded report for a MUPIP INTEG operation. With -FULL specified, MUPIP INTEG displays the number of index
and data blocks in the directory tree and in each global variable tree as well as the total number of directory, index and data
blocks. The format of the FULL qualifier is:

-FU[LL]

• The -FULL qualifier is incompatible with the -BRIEF qualifier.

• By default, INTEG reports are -BRIEF.

• Use -FULL to have INTEG report all global names in a region or list of regions.

-Keyranges

Specify whether the MUPIP INTEG report includes key ranges that identify the data suspected of problems it detects. The
format of the KEYRANGES qualifier is:

-[NO]K[EYRANGES]

By default, INTEG displays -KEYRANGES.

-MAP

Specifies the maximum number of "incorrectly marked busy errors" that MUPIP INTEG reports. The format of the MAP
qualifier is:

-[NO]MAP[=max_imb_errors]

• <max_imb_errors> specifies the threshold limit for the number of incorrectly marked busy errors.

• -NOMAP automatically sets a high threshold limit of 1000000 (1 million) incorrectly marked busy errors (-MAP=1000000).

• By default, INTEG reports a maximum of 10 map errors (-MAP=10).

Note

MUPIP INTEG reports "incorrectly marked free" errors as they require prompt action. MAP does not restrict
them.

An error in an index block prevents INTEG from processing potentially large areas of the database. A single "primary"
error may cause large numbers of "secondary" incorrectly marked busy errors, which are actually useful in identifying valid
blocks that have no valid index pointer. Because "real" or primary incorrectly marked busy errors only make "empty" blocks
unavailable to the system, they are low impact and do not require immediate repair.

Note

After a database recovery with -RECOVER (for example, using -BEFORE_TIME) or -ROLLBACK (for
example, using -FETCHRESYNC), the database may contain incorrectly marked busy errors. Although these
errors are benign, they consume available space. Schedule repairs on the next opportunity.

General Database Management

93

-MAXkeysize

Specifies the maximum number of "key size too large" errors that a MUPIP INTEG operation reports. The format of the
MAXKEYSIZE qualifier is:

-[NO]MAX[KEYSIZE][=integer]

• By default, INTEG reports a maximum of 10 key size errors (-MAXKEYSIZE=10).

• -NOMAXKEYSIZE removes limits on key size reporting so that INTEG reports all key size too large errors.

• -NOMAXKEYSIZE does not accept assignment of an argument.

• "Key size too large" errors normally occur only if a DSE CHANGE -FILEHEADER -KEY_MAX_SIZE command reduces the
maximum key size.

-Online

Specifies that while a MUPIP INTEG operation is active, other processes can update the database without affecting the result
of the backup. Allows checking database structural integrity to run concurrently with database updates. The format of the
ONLINE qualifier is:

-[NO]O[NLINE]

• -NOONLINE specifies that the database should be frozen during MUPIP INTEG.

• By default, MUPIP INTEG is online except for databases containing V4 blocks for which the default is -NOONLINE. Note that
databases containing V4 blocks should exist only in databases that are in the process of being migrated from V4 to V5; please
complete your migration to the V5 format before using MUPIP INTEG -ONLINE.

• Since MUPIP INTEG -ONLINE does not freeze database updates, it cannot safely correct errors in the "blocks to upgrade" and
"free blocks" fields in the file header, while MUPIP INTEG -NOONLINE can correct these fields.

• As it checks each database file, MUPIP INTEG -ONLINE creates a sparse file of the same size as the database. As each
GT.M process updates the database, it places a copy of the old block in the sparse file before updating the database. For any
database blocks with a newer transaction number than the start of the INTEG, MUPIP uses the copy in the sparse file. Thus,
analogous with MUPIP BACKUP -ONLINE, INTEG reports on the state of the database as of when it starts, not as of when it
completes. Note: a command such as ls -l command shows sparse files at their full size, but does not show actual disk usage.
Use a command such as du -sh to see actual disk usage.

• The environment variable GTM_BAKTMPDIR (unlike most GT.M environment variables, this is upper case; it is the same
directory used for MUPIP BACKUP -ONLINE) can be used to indicate a directory where MUPIP should place the snapshot
files (used by MUPIP INTEG -ONLINE). If GTM_BAKTMPDIR does not exist, MUPIP places the snapshot files in the current
directory at the time you issue the INTEG command. MUPIP and GT.M processes automatically cleans up these temporary
snapshot files under a wider variety of conditions.

• Temporary directory security settings must allow write access by the MUPIP process and read access by all processes
updating the database. MUPIP creates the temporary file with the same access as the database file so processes updating
the database can write to the temporary file. If the database is encrypted, the updating processes write encrypted blocks
to the snapshot file and the MUPIP INTEG process must start with access to appropriate key information as it does even -
NOONLINE.

General Database Management

94

• MUPIP INTEG -NOONLINE [-FAST] {-REGION|-FILE} clears the KILLs in progress and Abandoned Kills flags if the run
includes the entire database and there are no incorrectly marked busy blocks.

• Only one online integ can be active per database region. If an online integ is already active, a subsequent one issues an error
and immediately terminates. If an online integ does not successfully complete, GT.M cleans it up in one of the following
ways:

1. A subsequent online integ detects that an earlier one did not successfully complete and releases the resources held by the
prior online integ before proceeding.

2. If a MUPIP STOP was issued to the online integ process, the process cleans up any resources it held. Note: since the
process was stopped the results of the integ may not be valid.

3. subsequent MUPIP RUNDOWN ensures the release of resources held by prior unsuccessful online integs for the specified
regions.

4. For every 64K transactions after the online integ initiation, online integ checks GT.M health for improperly abandoned
online integs and releases resources held by any it finds.

• Incompatible with: -FILE, -TN_RESET (there should be no need to use -TN_RESET on a GT.M V5 database).

-Region

Specifies that the INTEG parameter identifies one or more regions rather than a database file. The format of the REGION
qualifier is:

-R[EGION]

• MUPIP INTEG -REGION does not require stand alone access to databases. Instead, it freezes updates (but not reads) to the
database during the check. The region-list argument may specify more than one region of the current Global Directory
in a list separated with commas. INTEG -REGION requires the environment variable gtmgbldir to specify a valid Global
Directory. For more information on defining gtmgbldir, refer to the "Global Directory Editor" chapter.

• Because a KILL may briefly defer marking the blocks it releases "free" in the bit maps, INTEG -REGION may report spurious
block incorrectly marked busy errors. These errors are benign. If these errors occur in conjunction with a "Kill in progress"
error, resolve the errors after the "Kill in progress" error is no longer present.

• By default, INTEG operates -FILE.

• Incompatible with: -FILE, -TN_RESET

-Subscript

Specifies a global or a range of keys to INTEG. The global key may be enclosed in quotation marks (" "). Identify a range
by separating two subscripts with a colon (:). -SUBSCRIPT cannot detect incorrectly marked busy errors. The format of the
SUBSCRIPT qualifier is:

-S[UBSCRIPT]=subscript

Specify SUBSCRIPT only if the path to the keys in the subscript is not damaged. If the path is questionable or known to be
damaged, use DSE to find the block(s) and INTEG -BLOCK.

Incompatible with: -BLOCK, -TN_RESET

General Database Management

95

-TN_reset

Resets block transaction numbers and backup event recorded transaction numbers to (one) 1, and the current transaction
number to two (2) which makes the backup event recorded transaction numbers more meaningful and useful. It also issues an
advisory message to perform a backup.

The format of the TN_RESET qualifier is:

-TN[_RESET]

• Transaction numbers can go up to 18,446,744,073,709,551,615. This means that a transaction processing application that runs
flat out at a non-stop rate of 1,000,000 updates per second would need a TN reset approximately every 584,554 years.

• The -TN_RESET qualifier rewrites all blocks holding data. If the transaction overflow resets to zero (0) database operation is
disrupted.

• The -TN_RESET qualifier is a protective mechanism that prevents the transaction overflow from resetting to 0.

• By default, INTEG does not modify the block transaction numbers.

Important

There should never be a need for a -TN_RESET on a database with only V5 blocks, even when cleaning up
after a runaway process.

• The -TN_RESET qualifier is incompatible with the -FAST, -BLOCK, -REGION, and -SUBSCRIPT qualifiers.

Note

Any time a GT.M update opens a database file that was not properly closed, GT.M increments the transaction
number by 1000. This automatic increment prevents problems induced by abnormal database closes, but
users must always consider this factor in their operational procedures. The rate at which GT.M "uses up"
transaction numbers is a function of operational procedures and real database updates.

-TRansaction

Specifies the maximum number of block transaction- number-too-large errors that MUPIP INTEG reports. The format of the
TRANSACTION qualifier is:

-[NO]TR[ANSACTION][=integer]

• -NOTRANSACTION removes limits on transaction reporting so MUPIP INTEG reports all transaction number errors.

• -NOTRANSACTION does not accept assignment of an argument.

• A system crash may generate many "block transaction number too large" errors. These errors can cause problems for
BACKUP -INCREMENTAL and for transaction processing. Normally, the automatic increment of 1000 blocks that GT.M adds
when a database is reopened averts these errors. If a problem still exists after the database is reopened, users can use a value
in the DSE CHANGE -FILEHEADER -CURRENT_TN= command to quickly fix "block transaction number too large number"
errors.

General Database Management

96

• By default, INTEG reports a maximum of 10 block transaction errors (-TRANSACTION=10).

Examples for MUPIP INTEG

Example:

$ mupip integ -block=4 mumps.dat

This command performs a MUPIP INTEG operation on the BLOCK 4 of mumps.dat.

Example:

$ mupip integ -adjacency=20

A sample output from the above command follows:

Type Blocks Records % Used Adjacent

Directory 2 5 4.150 NA
Index 18 1151 77.018 1
Data 1137 94189 97.894 1030
Free 43 NA NA NA
Total 1200 95345 NA 1031

This example performs a MUPIP INTEG operation assuming that logically related data occupies 20 data blocks in the current
database. The sample output shows that out of 1137 data blocks, 1030 data blocks are adjacent to each other. One can improve
the performance of a database if the all blocks are as adjacent as possible.

Example:

$ mupip integ -brief mumps.dat

This command performs a MUPIP INTEG operation on the database mumps.dat. A sample output from the above command
follows:

No errors detected by integ.

Type Blocks Records % Used Adjacent

Directory 2 2 2.490 NA
Index 1 1 2.343 1
Data 1 3 6.738 1
Free 96 NA NA NA
Total 100 6 NA 2

Example:

$ mupip integ -fast mumps.dat

This command performs a MUPIP INTEG operation only on the index block of the database file mumps.dat. A sample output
from the above command follows:

No errors detected by fast integ.

Type Blocks Records % Used Adjacent

General Database Management

97

Directory 2 2 2.490 NA
Index 1 1 2.343 1
Data 1 NA NA NA
Free 96 NA NA NA
Total 100 NA NA 1

Note the NA entries (highlighted in bold) for Data type. It means that the MUPIP INTEG -FAST operation checked only index
blocks.

$ mupip integ -full mumps.dat

The sample output from the above command follows:

Directory tree
Level Blocks Records % Used Adjacent
 1 1 1 2.343 NA
 0 1 1 2.636 NA

Global variable ^Dinosaur
Level Blocks Records % Used Adjacent
 1 1 6 8.398 1
 0 6 500 83.902 6

No errors detected by integ.

Type Blocks Records % Used Adjacent

Directory 2 2 2.490 NA
Index 1 6 8.398 1
Data 6 500 83.902 6
Free 91 NA NA NA
Total 100 508 NA 7

Example:

$ mupip integ -map=20 -maxkeysize=20 -transaction=2 mumps.dat

This command performs a MUPIP INTEG operation and restricts the maximum number of "key size too large" errors to 20.

Example:

$ mupip integ -map=20 -transaction=2 mumps.dat

This command performs a MUPIP INTEG operation and restricts the maximum number of "block transaction- number-too-large
errors" to 2.

$ mupip integ -file mumps.dat -tn_reset

This command resets the transaction number to one in every database block.

Example:

$ mupip integ -subscript="^Parrots" mumps.dat

This example performs a MUPIP INTEG operation on the global variable ^Parrots in the database file mumps.dat.

General Database Management

98

Example:

$ mupip integ -subscript="^Amsterdam(100)":"^Bolivia(""Chimes"")" -region DEFAULT

This example performs a MUPIP INTEG operation all global variables greater than or equal to ^Amsterdam (100) and less than
or equal to ^Bolivia("Chimes") in the default region(s).

Note

To specify a literal in the command string, use two double quotation marks for example, ^b(""c"").

INTRPT

Sends an interrupt signal to the specified process. The signal used is [POSIX] SIGUSR1. The format of the MUPIP INTRPT
command is:

INTRPT process-id

Important

Ensure that signal SIGUSR1 is not be used by any C external function calls or any (initially non-GT.M)
processes that use call-in support, as it is interpreted by GT.M as a signal to trigger the $ZINTERRUPT
mechanism.

• To INTRPT a process belonging to its own account, a process requires no UNIX privilege.

• To INTRPT a process belonging to its own GROUP, a process requires UNIX membership in the user group of the target
process privilege. To INTRPT a process belonging to an account outside its own GROUP, a process requires UNIX superuser
privilege.

JOURNAL

Analyzes, extracts, reports, and recovers data using journal files. For a description of the JOURNAL command, refer to
Chapter 6: “GT.M Journaling” (page 130).

LOAD

Puts the global variable names and their corresponding data values into a GT.M database from a sequential file.

The format of the LOAD command is:

L[OAD]
[
 -BE[GIN]=integer
 -E[ND]=integer
 -FI[LLFACTOR]=integer
 -FO[RMAT]={GO|B[INARY]|Z[WR]]}
 -S[TDIN]
]

General Database Management

99

 file-name

Caution

From an application perspective, performing a MUPIP LOAD operation while an application is running may
result in an inconsistent application state for the database.

• MUPIP LOAD uses the Global Directory to determine which database files to use.

• LOAD supports user collation routines.

• LOAD takes its input from the file defined by the file-name

• LOAD may take its input from a UNIX file on any device that supports such files.

• MUPIP LOAD command considers a sequential file as encoded in UTF-8 if the environment variable gtm_chset is set to
UTF-8. Ensure that MUPIP EXTRACT commands and corresponding MUPIP LOAD commands execute with the same setting
for the environment variable gtm_chset.

• For information on loading with an M "percent utility," refer to the %GI section of the "M Utility Routines" chapter in GT.M
Programmer's Guide. LOAD is typically faster, but the %GI utility can be customized.

• Press <CTRL-C> to produce a status message from LOAD. Entering <CTRL-C> twice in quick succession stops LOAD. A
LOAD that is manually stopped or stops because of an internal error is incomplete and may lack application level integrity,
but will not adversely affect the database structure unless terminated with a kill -9.

Note

The MUPIP EXTRACT or MUPIP LOAD procedure for large databases are time consuming due to the volume
of data that has to be converted from binary to ZWR format (on source) and vice versa (on target). One must
also consider the fact that the extract file can be very large for a large database. Users must ensure adequate
storage support the size of the extract file and the space occupied by the source and target databases. In order
to reduce the total time and space it takes to transfer database content from one endian platform to another,
it is efficient to convert the endian format in-place for a database and transfer the converted database. See
MUPIP ENDIANCVT for more information on converting the endian format of a database file.

The following sections describe the optional qualifiers of the MUPIP LOAD command.

-FOrmat

Specifies the format of the input file. The format must match the actual format of the input file for LOAD to operate.

The format codes are:

GO - Global Output format
B[INARY] - Binary format
Z[WR] - ZWRITE format

• By default, LOAD uses FORMAT=ZWR.

• -FORMAT=GO expects the data in record pairs. Each global node requires one record for the key and one for the data.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

100

• -FORMAT=ZWR expects the data for each global node in a single record.

• -FORMAT=BINARY only applies to Greystone Database Structure (GDS) files. A BINARY format file loads significantly faster
than a GO or ZWR format file. -FORMAT=BINARY works with data in a proprietary format. -FORMAT=BINARY has one
header record, therefore LOAD -FORMAT=BINARY starts active work with record number two (2).

-BEgin

Specifies the record number of the input file with which LOAD should begin. Directing LOAD to begin at a point other than the
beginning of a valid key causes an error. The format of the BEGIN qualifier is:

-BE[GIN]=integer

Important

Always consider the number of header records for choosing a -BEGIN point. See FORMAT qualifier for more
information.

• For -FORMAT=GO input, the value is usually an odd number. As -FORMAT=BINARY requires important information from
the header, this type of load requires an intact file header regardless of the -BEGIN value.

• For -FORMAT = ZWR input, each record contains a complete set of reference and data information. The beginning values are
not restricted, except to allow two records for the header.

• By default, LOAD starts at the beginning of the input file.

-End

Specifies the record number of the input file at which LOAD should stop. -END=integer must be greater than the -
BEGIN=integer for LOAD to operate. LOAD terminates after processing the record of the number specified by -END or
reaching the end of the input file. The format of the END qualifier is:

-E[ND]=integer

The value of -FORMAT=GO input should normally be an even number. By default, LOAD continues to the end of the input file.

-FIll_factor

Specifies the quantity of data stored in a database block. Subsequent run-time updates to the block fill the remaining available
space reserved by the FILL_FACTOR. Blocks that avoid block splits operate more efficiently. The format of the FILL_FACTOR
qualifier is:

-FI[LL_FACTOR]=integer

• Reserves room and avoid unnecessary block split to accommodate the forecasted growth in a global variable that may
experience significant rate of additions over a period.

• Users having database performance issues or a high rate of database updates must examine the defined FILL_FACTORs.
Unless the application only uses uniform records, which is not typical for most applications, FILL_FACTORs do not work
precisely.

General Database Management

101

• By default, LOAD uses -FILL_FACTOR=100 for maximum data density.

Note

FILL_FACTOR is useful when updates add or grow records reasonably uniformly across a broad key range. If
updates are at ever ascending or descending keys, or if the record set and record sizes are relatively static in
the face of updates, FILL_FACTOR won't provide much benefit.

-Stdin

Specifies that MUPIP LOAD takes input from standard input (stdin). The format of the STDIN qualifier is:

-S[TDIN]

Examples for MUPIP LOAD

Example:

$ mupip load ex_file.go

This command loads the content of the extract file ex_file.go to the current database.

Example:

$ mupip load -format=go big.glo

This command loads an extract file big.glo in the current database.

Example:

$ mupip load -begin=5 -end=10 rs.glo

This command begins MUPIP LOAD operation from record number 5 and ends at record number 10. Note that the value for
BEGIN is an odd number. A sample output from the above command follows:

GT.M MUPIP EXTRACT
02-MAR-2011 18:25:47 ZWR
Beginning LOAD at record number: 5

LOAD TOTAL Key Cnt: 6 Max Subsc Len: 7 Max Data Len: 1
Last LOAD record number: 10

Example:

$ mupip load -fill_factor=5 reobs.glo

This command set the FILL_FACTOR to 5 for loading an extract file in the current database.

Example:

$cat big.glo | mupip load -stdin
$mupip load -stdin < big.glo

General Database Management

102

These commands loads the extract file big.glo using -stdin.

REORG

Improves database performance by defragmenting and reorganizing database files and attempts to reduce the size of the
database file. MUPIP REORG runs concurrently with other database activity, including updates. Competing activity generally
increases the time required to perform a REORG, as well as that of the competing operations.

The format of the REORG command is:

REO[RG]
[
 -D[OWNGRADE]
 -E[XCLUDE]=global-name-list
 -FI[LL_FACTOR]=integer
 -I[NDEX_FILL_FACTOR]=integer
 -R[ESUME]
 -S[ELECT]=global-name-list
 -T[RUNCATE][=percentage]
 -UP[GRADE]
 -REG[ION]=region-list
]

Note

While REORG optimizes the GDS structure of database files, it does not handle native file system file
fragmentation. In most cases, fragmentation at the native file system level is more likely than fragmentation
at the GDS structure level. Therefore, FIS recommends users create files with appropriate allocations and
extensions, on disks with large amounts of contiguous free space. Use native utilities and MUPIP utilities
(depending on operational procedures) to eliminate file fragmentation when database files have been
extended more than a dozen times.

• Using REORG concurrently with normal database access affects the performance of normal operation. To reduce this impact,
lower the priority of the process performing the REORG.

• MUPIP REORG does not change the logical contents of the database, and can run on either the originating instance or
replicating instance of an LMS application. In such cases, resuming REORGs in process should be part of the batch restart.
See "GT.M Database Replication" chapter for more information about running REORG on a dual site application.

• If you run MUPIP STOP for an ongoing MUPIP REORG process, it may leave the database blocks in an inconsistent state. In
this situation, GT.M converts the ongoing KILLs flag to abandoned KILLs flag. If a subsequent MUPIP REORG encounters
these abandoned KILLs flags, it gives a message and then starts its REORG actions.

• <CTRL-C> terminates REORG. A REORG terminated abnormally by operator action or error is incomplete but does not
adversely affect the database structure, unless terminated with a kill -9.

Caution

REORG focuses on optimum adjacency and a change to even a single block can cause it to perform a large
number of updates with only marginal benefit. Therefore, FIS recommends not running successive REORGs
close together in time as that can provide minimal benefit for a significant increase in database and journal

General Database Management

103

activity. For the same reason, FIS recommends careful research and planning before using the -RESUME
qualifier or complex uses of -EXCLUDE and -SELECT.

Assume two scenarios of putting values of ^x(1) to ^x(10000). In the first scenarios, fill values in a sequential manner. In the
second scenario, enter values for odd subscripts and then enter values for the even subscripts.

Scenario 1:

At the GT.M prompt, execute the following command sequence:

GTM>for i=1:1:10000 set ^x(i)=$justify(i,200)

Then, execute the following MUPIP INTEG command.

$ mupip integ -region "*"

This command produces an output like the following:

Integ of region DEFAULT

No errors detected by integ.

Type Blocks Records % Used Adjacent

Directory 2 2 2.490 NA
Index 29 2528 95.999 1
Data 2500 10000 82.811 2499
Free 69 NA NA NA
Total 2600 12530 NA 2500

Note the high density (percent used) for index and data blocks from the report.

Scenario 2:

At the GT.M prompt, execute the following command sequence:

GTM>for i=1:2:10000 s ^x(i)=$justify(i,200)

GTM>for i=2:2:10000 set ^x(i)=$justify(i,200)

Then, execute the following command:

$ mupip integ -region "*"

This command produces an output like the following:

Integ of region DEFAULT

No errors detected by integ.

Type Blocks Records % Used Adjacent

Directory 2 2 2.490 NA
Index 153 3902 29.211 57
Data 3750 10000 55.856 1250
Free 95 NA NA NA

General Database Management

104

Total 4000 13904 NA 1307

Note that there are more and less dense index and data blocks used than in scenario 1. MUPIP REORG addresses such issues and
makes the database (depending on the FILL_FACTOR) more compact.

The optional qualifiers for MUPIP REORG are:

-Exclude

Specifies that REORG not handle blocks that contain information about the globals in the associated list–this means they are
neither reorganized nor swapped in the course of reorganizing other globals; -EXCLUDE can reduce the efficiency of REORG
because it complicates and interferes with the block swapping actions that try to improve adjacency.

The format of the EXCLUDE qualifier is:

-E[XCLUDE]=global-name-list

• Assume that a single MUPIP command organizes a subset of the globals in a database or region. If a second MUPIP REORG
command selects the remaining globals, it may tend to disrupt the results of the first REORG by de-optimizing the previously
organized blocks. This is because there is no information passed from the previous MUPIP REORG command to the next
command. The EXCLUDE qualifier allows users to list the name of the previously REORGed globals, so that the MUPIP
REORG bypasses the GDS blocks containing these globals.

• If global-name-list contains globals that do not exist, REORG issues a message to the terminal and continues to process any
specified globals that exist. If REORG is unable to process any globals, it terminates with an error.

• Global-name-list can be an individual global name, a range of global names, or a list of names and prefixes followed by the
wildcard symbol. For example:

1. A global name, such as ACN.

2. A range of global names, such as A7:B7.

3. A list, such as A,B,C.

4. Global names with the same prefix such as TMP*.

In the first case, REORG only excludes global ^ACN. In the second case, REORG excludes all global names in the collating
sequence A7 to B7. For the third case, REORG excludes A, B, and C. In the last case, REORG excludes all globals prefixed with
TMP.

• Enclose wildcards in double-quotes ("") to prevent inappropriate expansion by the shell. The caret symbol (^) in the
specification of the global is optional.

• By default, REORG does not EXCLUDE any globals.

• In case any global appears in the argument lists of both -SELECT and -EXCLUDE, REORG terminates with an error.

-Fill_factor

Specifies how full you want each database block to be. This is a target number. Individual blocks may be more or less full than
the fill factor. The format of the FILL_FACTOR qualifier is:

F[ILL_FACTOR]=integer

General Database Management

105

• The arguments for the FILL_FACTOR qualifier must be integers from 30 to 100. These integers represent the percentage of
the data block that REORG can fill. By default, the FILL_FACTOR value is 100 for maximum data density.

• Users who come upon database performance issues or a high rate of database updates must examine the defined
FILL_FACTORs. Unless the application uses entirely uniform records, which is not typical for most applications,
FILL_FACTORs do not work precisely.

• The FILL_FACTOR for data that is relatively static, or grows by the addition of new nodes that collate before or after pre-
existing nodes, should be 100 percent. The FILL_FACTOR for data that is growing by additions to existing nodes may be
chosen to leave room in the typical node for the forecast growth for some period. Generally, this is the time between the
LOAD and first REORG, or between two REORGs. This is also true for additions of nodes that are internal to the existing
collating sequence.

-Index_fill_factor

Directs REORG to leave free space within index blocks for future updates. Arguments to this qualifier must be integers
from 30 to 100 that represent the percentage of the index block that REORG can fill. REORG uses this number to decide
whether to place more information in an index block, or create space by moving data to another block. The format of the
INDEX_FILL_FACTOR qualifier is:

-I[NDEX_FILL_FACTOR]=integer

Under certain conditions, especially with large database block sizes, it may be possible to achieve faster throughput by using
a smaller fill factor for index blocks than for data blocks. By default, the INDEX_FILL_FACTOR is the value of FILL_FACTOR
regardless of whether that value is explicitly specified or implicitly obtained by default.

-Resume

For an interrupted REORG operation, -RESUME allows the user to resume the REORG operation from the point where the
operation stopped. REORG stores the last key value in the database file header. The format of the RESUME qualifier is:

-R[ESUME]

• With RESUME specified, the program retrieves the last key value, from the database file header, and restarts operations from
that key.

-Region

Specifies that REORG operate in the regions in the associated list and restricts REORG to the globals in those regions that are
mapped by the current global directory; it does not have the same interactions as -EXCLUDE and -SELECT, but it does not
mitigate those interactions when combined with them.

The format of the REGION qualifier is:

-R[EGION]=region-list

-Select

Specifies that REORG reorganizes only the globals in the associated list; globals not on the list may be modified by block swaps
with selected globals unless they are named with -EXCLUDE; -SELECT can be difficult to use efficiently because it tends to
deoptimize unselected globals unless they are name in an -EXCLUDE list (which introduces inefficiency).

General Database Management

106

The format of the SELECT qualifier is:

-S[ELECT]=global-name-list

• By default, REORG operates on all globals in all database files identified by the current Global Directory for the process
executing the MUPIP command.

• One of the functions performed by REORG is to logically order the globals on which it operates within the file. Unless the
EXCLUDE and SELECT qualifiers are properly used in tandem, repeating the command with different selections in the same
file wastes work and leaves only the last selection well organized.

• If you enter the REORG -SELECT=global-name-list command and the specified globals do not exist, REORG issues a
message to the screen and continues to process any specified globals that exist. If REORG is unable to process any globals, it
terminates with an error.

• Arguments for this qualifier may be an individual global name, a range of global names, or a list of names and prefixes
followed by the wildcard symbol. The caret symbol (^) in the specification of the global is optional.

• The global name can be:

1. A global name, such as ACN

2. A range of global names, such as A7:B7

3. A list, such as A,B,C.

4. Global names with the same prefix such as TMP*.

• In the first case, REORG only includes global ^ACN. In the second case, REORG includes all global names in the collating
sequence A7 to B7. For the third case, REORG includes A, B, and C. In the last case, REORG includes all globals prefixed with
TMP.

• By default, REORG selects all globals.

-Truncate

Specifies that REORG, after it has rearranged some or all of a region's contents, should attempt to reduce the size of the
database file and return free space to the file system. The format of the TRUNCATE qualifier is:

-T[RUNCATE][=percentage]

The optional percentage (0-99) provides a minimum amount for the reclamation; in other words, REORG won't bother
performing a file truncate unless it can give back at least this percentage of the file; the default (0) has it give back anything it
can. TRUNCATE always returns space aligned with bit map boundaries, which fall at 512 database block intervals. TRUNCATE
analyses the bit maps, and if appropriate, produces before image journal records as needed for recycled (formerly used) blocks;
The journal extract of a truncated database file may contain INCTN records having the inctn opcode value 9 indicating that the
specific block was marked from recycled to free by truncate.

Note

TRUNCATE does not complete if there is a concurrent online BACKUP or use of the snapshot mechanism,
for example by INTEG.

General Database Management

107

Examples for MUPIP REORG

Example:

$ mupip reorg -exclude="^b2a,^A4gsEQ2e:^A93"

This example performs a MUPIP REORG operation on all globals excluding ^b2a and all globals ranging from ^A4gsEQ2e to
^A93.

Example:

If the forecasted growth of a global is 5% per month from relatively uniformly distributed updates, and REORGs are scheduled
every quarter, the FILL_FACTOR for both the original LOAD and subsequent REORGs might be 80 percent 100 - ((3 months + 1
month "safety" margin) * five percent per month). The REORG command based on the above assumptions is as follows:

$ mupip reorg -fill_factor=80

REPLICATE

Control the logical multi-site operation of GT.M. For more information on the qualifiers of the MUPIP REPLICATE command,
refer to Chapter 7: “Database Replication” (page 173) .

RESTORE

Integrates one or more BACKUP -INCREMENTAL files into a corresponding database. The transaction number in the first
incremental backup must be one more than the current transaction number of the database. Otherwise, MUPIP RESTORE
terminates with an error.

The format of the RESTORE command is:

RE[STORE] [-[NO]E[XTEND]] file-name file-list

• file-name identifies the name of the database file that RESTORE uses as a starting point.

• file-list specifies one or more files produced by BACKUP -INCREMENTAL to RESTORE into the database. The file-name are
separated by commas (,) and must be in sequential order, from the oldest transaction number to the most recent transaction
number. RESTORE may take its input from a UNIX file on any device that supports such files.

• The current transaction number in the database must match the starting transaction number of each successive input to the
RESTORE.

• If the BACKUP -INCREMENTAL was created using -TRANSACTION=1, create a new database with MUPIP CREATE and do
not access it, except the standalone MUPIP commands INTEG -FILE, EXTEND, and SET before initiating the RESTORE.

-Extend

Specifies whether a MUPIP RESTORE operation should extend the database file automatically if it is smaller than the size
required to load the data.

The format of the EXTEND qualifier is:

-[NO]E[XTEND]

General Database Management

108

M activity between backups may automatically extend a database file. Therefore, the database file specified as the starting point
for a RESTORE may require an extension before the RESTORE. If the database needs an extension and the command specifies -
NOEXTEND, MUPIP displays a message and terminates. The message provides the sizes of the input and output database files
and the number of blocks by which to extend the database. If the RESTORE specifies more than one incremental backup with a
file list, the database file may require more than one extension.

By default, RESTORE automatically extends the database file.

Examples for MUPIP RESTORE

$ mupip restore backup.dat $backup_dir/backup.bk1, $backup_dir/backup.bk2, $backup_dir/backup.bk3

This command restores backup.dat from incremental backups stored in directory specified by the environment variable
backup_dir.

$ mupip restore gtm.dat '"gzip -d -c online5pipe.inc.gz |"'

This command uses a pipe to restore gtm.dat since its last DATABASE backup from the bytestream backup stored in
online5pipe.inc.gz.

RUNDOWN

When database access has not been properly terminated, RUNDOWN properly closes currently inactive databases, removes
abandoned GT.M database semaphores, and releases any IPC resources used. Under normal operations, the last process to
close a database file performs the RUNDOWN actions, and a MUPIP RUNDOWN is not required. If a database file is already
properly rundown, a MUPIP RUNDOWN has no effect. If in doubt, it is always to safe to perform a rundown. FIS recommends
the following method to shutdown a GT.M application or the system:

• Terminate all GT.M processes, and

• Rundown any and all database files that may be active.

MUPIP RUNDOWN checks for version mismatch. If there is a mismatch, it skips the region and continues with the next region.
This makes it easier for multiple (non-interacting) GT.M versions to co-exist on the same machine. Note that GT.M does not
support concurrent access to the same database file by multiple versions of the software.

The format of the RUNDOWN command is:

RU[NDOWN] {-FILE file-name|-REGION region-list]}

MUPIP RUNDOWN clears certain fields in a file that is already closed. This facilitates recovery from a system crash or other
operational anomaly.

Use RUNDOWN after a system crash or after the last process accessing a database terminates abnormally. RUNDOWN ensures
that open databases are properly closed and ready for subsequent use. RUNDOWN has no effect on any database that is actively
being accessed at the time the RUNDOWN is issued.

To ensure database integrity, all system shutdown algorithms should include scripts that stop at GT.M processes and perform
RUNDOWN on all database files.

The RUNDOWN command may include one of the following qualifiers:

General Database Management

109

-F[ile]
-R[egion]

If the RUNDOWN command does not specify either -File or -Region, it checks all the IPC resources (shared memory) on the
system and if they are associated with a GT.M database, attempts to rundown that file.

-File

Specifies that the argument is a file-name for a single database file. The -FILE qualifier is incompatible with the REGION
qualifier. If the rundown parameter consists of a list of files, the command only operates on the first item in the list.

Incompatible with: -REGION

-Region

Specifies that the argument contains one or more region-names that identify database files mapped by the current Global
Directory. Use the wild card "*" to rundown all inactive regions in a global directory.

Incompatible with: -FILE

When MUPIP RUNDOWN has no qualifier, it performs rundown on all inactive database memory sections on the node.
Because this form has no explicit list of databases, it does not perform any clean up on regions that have no abandoned memory
segments but may not have been shutdown in a crash.

-Override

Overrides the protection that prevents MUPIP RUNDOWN from performing a rundown of a replication-enabled (with
BEFORE_IMAGE) database or a non-replicated NOBEFORE-journaled database that was abnormally shutdown. The protection
involves issuing the MUUSERLBK error for a previously crashed replication-enabled (with BEFORE IMAGE journaling)
database and the MUUSERECOV error for a non-replicated or NOBEFORE-journaled database. Both these errors prevent
complications related to data recovery from a journal file or a replication-enabled database.

SET

Modifies certain database characteristics. MUPIP SET operates on either regions or files.

Note

In regions that have journaling enabled and on, users can switch journal files without either requiring
standalone access or freezing updates.

The format of the SET command is:

SE[T] {-FI[LE] file-name|-REG[ION] region-list}
 -A[CCESS_METHOD]={BG|MM}
 -B[YPASS]
 -DE[FER_TIME]=seconds
 -E[XTENSION_COUNT]=integer(no of blocks)
 -F[LUSH_TIME]=integer
 -G[LOBAL_BUFFERS]=<integer>

General Database Management

110

 -JN[LFILE]
 -JO[URNAL]=journal-option-list
 -L[OCK_SPACE]=integer
 -M[UTEX_SLOTS]=integer
 -[NO]INST[_FREEZE_ON_ERROR]
 -PA[RTIAL_RECOV_BYPASS]
 -REP[LICATION]={ON|OFF}
 -RES[ERVED_BYTES]=integer]
 -S[TANDALONENOT]
 -V[ERSION]={V4|V6}
 -W[AIT_DISK]=integer

• The file-name (or region-list) identifies the target of the SET.

• The SET command must include one of the following qualifiers which determine whether the argument to the SET is a file-
name or a region-list.

• Exclusive access to the database is required if the MUPIP SET command specifies -ACCESS_METHOD, -GLOBAL_BUFFERS,
-LOCK_SPACE or -NOJOURNAL, or if any of the -JOURNAL options ENABLE, DISABLE, or BUFFER_SIZE are specified.

The following section describe the qualifiers of the MUPIP SET command.

-Access_method

Specifies the access method (GT.M buffering strategy) for storing and retrieving data from the global database file. The format
of the ACCESS_METHOD qualifier is:

-A[CCESS_METHOD]=code

-PArtial_recov_bypass

Sets the CORRUPT_FILE flag in the database fileheader to FALSE. The CORRUPT_FILE flag indicates whether a region
completed a successful recovery. For more information, refer to the CORRUPT_FILE qualifier in Chapter 10, Database Structure
Editor [279].

-File

Specifies that the argument is a file-name for a single database file. The format of the FILE qualifier is:

-F[ILE]

Incompatible with: -REGION

-Region

Specifies that the argument is a region-list which identifies database file(s) mapped by the current Global Directory. The format
of the REGION qualifier is:

-R[EGION]

SET -REGION changes multiple files when the parameter contains a list and/or wildcards.

General Database Management

111

Incompatible with: -FILE

-Extension_count

Specifies the number of GDS blocks by which an existing database file extends. A file or region name is required. This qualifier
requires standalone access.

The format of the EXTENSION_COUNT qualifier is:

-E[XTENSION_COUNT]=integer

-Flush_time

Specifies the amount of time between deferred writes of stale cache buffers. The default value is 1 second and the maximum
value is 1 hour. -FLUSH_TIME requires standalone access. The format of the FLUSH_TIME qualifier is:

-F[LUSH_TIME]=[[[HOURS:]MINUTES:]SECONDS:]CENTISECONDS

-Global_buffers

Specifies the number of cache buffers for a BG database. This qualifier requires standalone access.The format of the
GLOBAL_BUFFERS qualifier is:

-G[LOBAL_BUFFERS]=integer

For more information on ways to determine good working sizes for GLOBAL_BUFFERS, refer to Chapter 4: “Global Directory
Editor” (page 32).

In general, increasing the number of global buffers improves performance by smoothing the peaks of I/O load on the system.
However, increasing the number of global buffers also increases the memory requirements of the system, and a larger number
of global buffers can increase the probability of the buffers getting swapped out. If global buffers are swapped out, any
performance gain from increasing the number of global buffers will be more than offset by the performance impact of swapping
global buffers. Most applications use from 1,000 to 4,000 global buffers for database regions that are heavily used. FIS does not
recommend using fewer than 256 buffers except under special circumstances.

The minimum is 64 buffers and the maximum is 65536 buffers. By default, MUPIP CREATE establishes GLOBAL_BUFFERS
using information entered in the Global Directory.

On many UNIX systems, default kernel parameters may be inadequate for GT.M global buffers, and may need to be adjusted by
a system administrator.

-Lock_space

Specifies the number of pages allocated to the management of M locks associated with the database. The size of a page is always
512 bytes.

The format of the LOCK_SPACE qualifier is:

-L[OCK]_SPACE=integer

• The maximum LOCK_SPACE is 65,536 pages.

General Database Management

112

• The minimum LOCK_SPACE is 10 pages.

• The default LOCK_SPACE is 40 pages.

• A file or region name is required to assign lock space.

• For more information on LOCK_SPACE, refer to Chapter 4: “Global Directory Editor” (page 32).

• This qualifier requires standalone access.

-INST_freeze_on_error

Enables or disables custom errors in a region to automatically cause an Instance Freeze. This flag modifies the "Inst Freeze on
Error" file header flag.

For more information on creating a list of custom errors that automatically causae an Instance Freeze, refer to “Instance
Freeze” (page 193).

For more information on promptly setting or clearing an Instance Freeze on an instance irrespective of whether any region is
enabled for Instance, refer to the “Starting the Source Server” (page 230) section of the Database Replication chapter.

-Mutex_slots

Sets the size of a structure that GT.M uses to manage contention for the principal critical section for a database. Performance
issues may occur when there are many processes contending for database access and if this structure cannot accommodate all
waiting processes. Therefore, FIS recommends setting this value to a minimum of slightly more than the maximum number of
concurrent processes you expect to access the database.

The minimum value is 64 and the maximum value is 32768. The default value is 1024.

-Journal

Specifies whether the database allows journaling and, if it does, characteristics for the journal file. The format of the JOURNAL
qualifier is:

-[NO]J[OURNAL][=journal-option-list]

• -NOJOURNAL specifies that the database does not allow journaling. And also it does not accept an argument assignment.

• -JOURNAL specifies journaling is allowed. It takes one or more arguments in a journal-option-list.

• For detailed description of the all JOURNAL qualifiers and its keywords, refer to Chapter 6: “GT.M Journaling” (page 130).

-Qdbrundown

Quickens normal process shutdown where a large number of processes accessing a database file are required to shutdown
almost simultaneously, for example, in benchmarking scenarios. When a terminating GT.M process observes that a large
number of processes are attached to a database file and QDBRUNDOWN is enabled, it bypasses checking whether it is the last
process accessing the database. Such a check occurs in a critical section and bypassing it also bypasses the usual RUNDOWN
actions which accelerates process shutdown removing a possible impediment to process startup. By default, QDBRUNDOWN is
disabled.

General Database Management

113

Note that with QDBRUNDOWN there is a possibility of race condition that might leave the database fileheader and IPC
resources in need of cleanup. Although QDBRUNDOWN minimizes the probability of such a race condition, it cannot eliminate
it. When using QDBRUNDOWN, FIS recommends an explicit MUPIP RUNDOWN of the database file after the last process exits,
to ensure the cleanup of database fileheader and IPC resources.

-REServed_bytes

Specifies the size to be reserved in each database block. RESERVED_BYTES is generally used to reserve room for compatibility
with other implementations of M or to observe communications protocol restrictions. The format of the RESERVED_BYTES
qualifier is:

-RES[ERVED_BYTES]=size

• RESERVED_BYTES may also be used as a user-managed fill factor.

• The minimum RESERVED_BYTES is 0 bytes. The maximum RESERVED_BYTES is the block size minus the size of the block
header which is 7 or 8 depending on your platform. Realistic determinations of this amount should leave room for at least
one record of maximum size.

-Version

Sets the block format version (Desired DB Format field in the file header) for all subsequent new blocks. The format of the
VERSION qualifier is:

-V[ERSION]={V4|V6}

• MUPIP UPGRADE and MUPIP REORG -UPGRADE set the Desired DB Format field in the database file header to V6 while
MUPIP REORG -DOWNGRADE sets it to V4.

• To set the version to V4, the current transaction number (CTN) of the database must be within the range of a 32-bit
maximum.

• V6 block format is compatible with the V5 block format. The longer key and longer records (spanning nodes) features of V6
format are automatically disabled when used with GT.M V5.* versions.

• For more information on the upgrading or downgrading your database, refer to the release notes document of your current
GT.M version.

Examples for MUPIP SET

Example:

$ mupip set -journal=on,nobefore -region "*"

This example enables NOBEFORE image journaling and turns on journaling for all regions.

$ mupip set -version=V4 -file mumps.dat

Database file mumps.dat now has desired DB format V4

This example sets the block format to V4 for all subsequent new blocks in V6 database file mumps.dat.

General Database Management

114

Example:

$ mupip set -version=v6 -file mumps.dat

Database file mumps.dat now has desired DB format V5

This example sets the block format to V6 for all subsequent new blocks in V4 database file mumps.dat.

Example:

mupip set -flush_time=01:00:00:00 -region DEFAULT

This example sets flush time to 1 hour. You can also specify flush time in any combination of
[[[HOURS:]MINUTES:]SECONDS:]CENTISECONDS. MUPIP interprets -FLUSH_TIME=360000 or -FLUSH_TIME=00:60:00:00 as
-FLUSH_TIME=01:00:00:00.

Example:

$ mupip set -region REPTILES -inst_freeze_on_error

This example enables custom errors in region REPTILES to cause an Instance Freeze.

SIZE

Estimates and reports the size of global variables using a format that is similar to the one that appears at the end of the MUPIP
INTEG -FULL report. In comparison with MUPIP INTEG -FAST -FULL, MUPIP SIZE provides the option of choosing any one of
the three estimation techniques to estimate the size of global variables in a database file. These techniques vary in measurement
speed and estimate accuracy. The format of the MUPIP SIZE command is:

MUPIP SI[ZE] [-h[euristic]=estimation_technique] [-s[elect]=global-name-list]
 [-r[egion]=region-list]

The optional qualifiers of MUPIP SIZE are:

-Heuristic=estimation_technique

Specifies the estimation technique that MUPIP SIZE should use to estimate the size of global variables. The format of the -
HEURISTIC qualifier is:

-h[euristic]={sc[an][,level=<lvl>] | a[rsample][,samples=<smpls>] |
 i[mpsample][,samples=<smpls>]}

• smpls is the number of samples and must be greater than zero (0)

• lvl is a positive or negative tree level designation and -(level of the root block) <= lvl <= (level of the root block)

estimation-technique is one of the following:

• scan,level=<lvl>

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX293.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX294.txt

General Database Management

115

Traverses the global variable tree and counts the actual number of records and blocks at levels from the root down to the
level specified by lvl (default is 0, the data blocks). If the given level is non-negative, it is the lowest block level of the global
for which the count is requested. So, 0 means all blocks, 1 means all index blocks, 2 means all index blocks of level 2 and
above, and so on. SCAN counts a negative level from the root of the global tree where -1 means children of the root.

• arsample,samples=<smpls>

Uses acceptance/rejection sampling of random tree traversals to estimate the number of blocks at each level. It continues
until the specified number of samples (default is 1,000) is accepted.

• impsample,samples=<smpls>

Uses importance sampling of random tree traversals to weight each sample of the specified number of samples (default is
1,000) in order to estimate size of the tree at each level.

• If -HEURISTIC is not specified, MUPIP SIZE uses the ARSAMPLE,SAMPLE=1000 estimation technique.

Important

For large databases, MUPIP SIZE is faster than MUPIP INTEG -FAST -FULL. IMPSAMPLE is expected to be
the fastest estimation technique, followed by ARSAMPLE and then SCAN.

In terms of accuracy, MUPIP INTEG -FAST -FULL is the most accurate.

-Select

Specifies the global variables on which MUPIP SIZE runs. If -SELECT is not specified, MUPIP SIZE selects all global variables.

The format of the SELECT qualifier is:

-s[elect]=global-name-list

global-name-list can be:

• A comma separated list of global variables.

• A range of global variables denoted by start:end syntax. For example, -select="g1:g4".

• A global variable with wildcards, for example, "g*" (the name must be escaped to avoid shell filename expansion)

• "*" to select all global variables.

-Region

Specifies the region on which MUPIP SIZE runs. If REGION is not specified, MUPIP SIZE selects all regions. The format of the
REGION qualifier is:

-R[EGION]=region-list

Examples:

$ mupip size -heuristic="impsample,samples=2000" -select="y*" -region="AREG"

General Database Management

116

This example estimates the size of all global variable starting with "y". It uses importance sampling with 2000 samples on the
region AREG.

$ mupip size -heuristic="scan,level=-1"

This example counts the number of blocks and records at 1 level below the root of the database tree.

$ mupip size -heuristic="arsample" -select="g1:g3"

This example estimates the size of global variables g1, g2 and g3 using accept/reject sampling with the default number of
samples regardless of the region in which they reside.

Note

Apart from randomness caused by sampling heuristics, MUPIP SIZE also has randomness from concurrent
updates because it does not use the snapshot technique that MUPIP INTEG uses.

STOP

Terminates a GT.M image. The image executes an orderly disengagement from all databases that are currently open by the
process, and then exits. A MUPIP STOP performs a kill -15 and therefore may also be used to stop non-GT.M images.

The format of the STOP command is:

MUPIP ST[OP] process-id

• Use the shell command ps to display a list of active process names and process identifiers (PIDs).

• To STOP a process belonging to its own account, a process requires no privileges. To STOP a process belonging to another
account, MUPIP STOP must execute as root.

TRIGGER

Examines or loads trigger definitions. The format of the MUPIP TRIGGER command is:

TRIGGER {-TRIG[GERFILE]=<trigger_definitions_file> [-NOPR[OMPT]]|
[-SELE[CT][=name-list|*][<select-output-file>]}

Before you run the MUPIP TRIGGER command:

1. Set the value of the environment variable gtmgbldir: to specify the value of a current global directory.

2. Ensure that the key size, record size, block size of your database is sufficient for storing trigger definition. You may have to
set the key and record sizes larger than the database content would otherwise require.

The qualifiers of the MUPIP TRIGGER command are as follows:
TRIGgerfile=<trigger_definitions_file>

Loads a trigger definition file to the database. The format of the TRIGGERFILE qualifier is:

-TRIG[GERFILE]=<trigger_definitions_file> [-NOPR[OMPT]]

General Database Management

117

• For information on the syntax and usage of a trigger definition file, refer to GT.M Programmer's Guide.

• A MUPIP TRIGGER -TRIGGERFILE operation occurs within a transaction boundary, therefore, if even one trigger from
the trigger definition file fails to parse correctly, MUPIP TRIGGER rolls back the entire trigger definition file load. MUPIP
TRIGGER operations have an implicit timeout of zero (0), meaning the read must succeed on the first try or the command
will act as if it received no input.

• MUPIP TRIGGER -TRIGGERFILE ignores blank lines and extra whitespace within lines. It treats lines with a semi-colon in
the first position as comments and ignores their content.

• MUPIP TRIGGER compiles the XECUTE action string and rejects the load if the compilation has errors.

• Always specify the same value for the environment variable gtm_chset during loading and executing triggers. If you
specify different values of gtm_chset during loading and executing triggers, MUPIP TRIGGER generates a run-time
error (TRIGINVCHSET). GT.M does not prevent a process from updating different nodes with triggers using a different
character set, however, GT.M prevents a process from updating the same triggering node with different character sets. Your
coding practice, for all database updates, should be to ensure that you provide the same value for gtm_chset during load
compilation and run-time compilation.

• Incompatible with: -SELECT

Note

The trigger update summary reports count not only names and option changes as "modified" but also cases
where a -COMMANDS list changed, even though those are functionally additions or deletions of separate
trigger definitions.

SELECT=name-list

Provides a facility to examine the current trigger definition. SELECT produces a list of the current triggers for a comma-
separate list of global variables or trigger names. The format of the SELECT qualifier is:

-SELE[CT][=name-list[*]|*][<select-output-file>]

1. Name-list can include global names, delimited with a leading caret (^), and/or trigger names (user-defined or auto-
generated) with no leading caret. You can specify a trailing asterisk(*) with either.

2. With no arguments specified, GT.M treats -SELECT as -SELECT="*" and extracts a list of all current triggers.

3. Optionally, you can specify a file name to redirect the output of the command. If you do not specify a file name, MUPIP
TRIGGER prompts for a file name. If you respond with an empty string (RETURN), MUPIP TRIGGER directs the output to
STDOUT.

Note

The output from the MUPIP TRIGGER -SELECT command may not be identical to your trigger definition file.
This is because GT.M converts some semantically identical syntax into a single internal representation; while
-SELECT output may not be identical to the -TRIGGERFILE input, it has the same meaning. Additionally,
MUPIP TRIGGER -SELECT displays a field called "Cycle" as part of a comment. Cycle is the number of trigger
definition updates (addition, modification, or deletion) performed on a global.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

General Database Management

118

Examples for MUPIP TRIGGER

This section provides step-by-step instructions for creating, modifying, and deleting triggers. Triggers affect all processes
updating a database unlike, for example, environment variables such as $gtmroutines which work on a per process basis.
Therefore, FIS recommends that you should always have carefully planned procedures for changing triggers in your production
environment.

To create a new trigger for global node ^Acct("ID"):

1. Using your editor, create a trigger definition file called triggers.trg with the following entry:

+^Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

2. Execute a command like the following:

$ mupip trigger -triggerfile=triggers.trg

This command adds a trigger for ^Acct("ID"). On successful trigger load, this command displays an output like the
following:

File triggers.trg, Line 1: ^Acct trigger added with index 1
===
1 triggers added
0 triggers deleted
0 trigger file entries not changed
0 triggers modified
===

Now, every S[et] operation on the global node ^Acct("ID") executes the trigger.

3. Execute a command like the following:

$ mupip trigger -select="^Acct*"

This command displays the triggers. A sample output looks like the following:

;trigger name: ValidateAccount# cycle: 1
+^Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

To modify an existing trigger for global node ^Acct("ID"):

You cannot directly replace an existing trigger definition with a new one. With the exception of -NAME and -OPTIONS, to
change an existing trigger, you have to delete the existing trigger definition and then add the modified trigger definition as a
new trigger. Note that GT.M performs two different trigger comparisons to match trigger definitions depending on whether
or not S[ET] is the trigger invocation command. If there is a S[ET], then the comparison is based on the global name and
subscripts, PIECES, [Z]DELIM, and XECUTE. If there is no SET, GT.M compares only the global node with subscripts and the -
XECUTE code value.

1. Begin by executing the following command:

$ mupip trigger -select="^Acct*"
Output file:

2. Specify trigger_mod.trg as the output file. This file contains entries like the following:

;trigger name: ValidateAccount# cycle: 1
+^Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Earth!"""

General Database Management

119

3. Using your editor, open trigger_mod.trg and change + (plus) to - (minus) for the trigger definition entry for ValidateAccount
and add a new trigger definition for ^Acct("ID"). To avoid inconsistent application behavior, it is important to replace an old
trigger with a new one in the same transaction (Atomic). The trigger_mod.trg file should have entries like:

;trigger name: ValidateAccount# cycle: 1-^Acct("ID") -name=ValidateAccount -commands=Set -xecute="Write
 ""Hello
 Earth!"""
;trigger name: ValidateAccount#+^Acct("ID") -name=ValidateAccount -commands=Set -xecute="Write ""Hello Mars!"""

4. Execute a command like the following:

$ mupip trigger -triggerfile=trigger_mod.trg

5. This command displays an output like the following:

File trigger_mod.trg, Line 1: ^Acct trigger deleted
File trigger_mod.trg, Line 3: ^Acct trigger added with index 1
===
1 triggers added
1 triggers deleted
0 trigger file entries not changed
0 triggers modified
===

Congratulations! You have successfully modified the xecute string of ValidateAccount with the new one.

 To delete an existing trigger for global node ^Acct("ID"):

1. Begin by executing the following command:

$ mupip trigger -select="^Acct*"
Output file:

2. Specify trigger_delete.trg as the output file. This file contains entries like the following:

;trigger name: ValidateAccount# cycle: 3
+^Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Mars!"""

3. Using your editor, change + (plus) to - (minus) for the trigger definition entry for ValidateAccount. Alternatively, you can
create a file with an entry like -ValidateAccount.

4. Now, execute a command like the following:

$ mupip trigger -triggerfile=trigger_delete.trg

This command displays an output like the following:

 File trigger_delete.trg, Line 2: ^Acct trigger deleted
===
0 triggers added
1 triggers deleted
0 trigger file entries not changed
0 triggers modified
===

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX340.txt

General Database Management

120

You have successfully deleted trigger "ValidateAccount".

To change a trigger name for global node ^Acct("ID"):

1. Using your editor, create a new file called trigger_rename.trg and add a trigger definition entry for ValidateAcct with the
same trigger signature as ValidateAccount. Your trigger definition would look something like:

+^Acct("ID") -name=ValidateAcct -commands=S -xecute="Write ""Hello Mars!"""

2. Verify that the ValidateAccount trigger exists by executing the following command:

$ mupip trigger -select="^Acct*"
Output file:

3. Respond with an empty string (Press Enter). Confirm that the trigger summary report contains an entry like the following:

;trigger name: ValidateAccount# cycle: 3
+^Acct("ID") -name=ValidateAccount -commands=S -xecute="Write ""Hello Mars!"""

4. Now, execute a command like the following:

$ mupip trigger -triggerfile=trigger_rename.trg

This command displays an output like the following:

===
0 triggers added
0 triggers deleted
0 trigger file entries not changed
1 triggers modified
===

You have successfully changed the trigger name ValidateAccount to ValidateAcct.

UPGRADE

Upgrades the file-header of a database. The format of the MUPIP UPGRADE command is:

UP[GRADE]

• It increases the size from 4 bytes to 8 bytes of file-header fields such as current transaction number (CTN), maximum TN and
others that contain transaction numbers.

• It resets the various trace counters and changes the database format to V5. This change does not upgrade the individual
database blocks but sets the database format flag to V5.

• It also initializes a counter of the current blocks that are still in V4 format. It decrements this counter each time an existing
V4 format block is converted to V5 format. When the counter is 0, the entire database gets converted.

Example for MUPIP UPGRADE

Example:

$ mupip upgrade mumps.dat

This example upgrades the file-header of mumps.dat to V5 format.

General Database Management

121

MUPIP CommandSummary

COMMAND OBJECTS MAIN QUALIFIER

B[ACKUP] region-name

file-name

-BK[UPDBJNL]=DISABLE | OFF

-B[YTESTREAM] -NET[TIMEOUT]=seconds

-C[OMPREHENSIVE]

-DA[TABASE] -REPLA[CE]

-DBG

-I[NCREMENTAL]

-[NO]J[OURNAL][=journal-options-list]

-NETTIMEOUT

-[NO]NEWJNLFILES[=[NO]PREVLINK],
[NO]S[YNC_IO]

-O[NLINE]

-RECORD

-REPLI[NSTANCE]=OFF | ON

-S[INCE]={DATABASE|BYTESTREAM|RECORD}

-T[RANSACTION=hexa;transaction_number]

CR[EATE] - -R[EGION]=region-name

EN[DIANCVT] file-name -OUTDB=<outdb-file>

-OV[ERRIDE]

EXI[T] - -

EXTE[ND] region-name -B[LOCKS]=blocks

EXTR[ACT] - -FO[RMAT]=GO|B[INARY]|Z[WR]

-FR[EEZE]

-LA[BEL]=text

-[NO]L[OG]

-S[ELECT]=global-name-list

-O[CHSET]=character-set

F[REEZE] region-list -DBG

-OF[F]

-OV[ERRIDE]

General Database Management

122

COMMAND OBJECTS MAIN QUALIFIER

-ON[-R[ECORD]]

FT[OK] File-name -D[B]

-J[NLPOOL]

-R[ECVPOOL]

H[ELP] command-option -

I[NTEG] File-name or region-list -A[DJACENCY]=integer]

-BL[OCK]=hexa;block-number]

-BR[IEF]

-FA[ST]

-FI[LE]

-FU[LL]

-NO]K[EYRANGES

-[NO][MAP]=integer

-[NO]MAXK[EYSIZE]=integer

-R[EGION]

-S[UBSCRIPT]=subscript

-TN[_RESET]

-[NO]TR[ANSACTION][=integer]

J[OURNAL] file-name -EX[TRACT][=file-specification|-stdout]

-REC[OVER] | -RO[LLBACK]

-SH[OW][=show-option-list]

-[NO]V[ERIFY]

-BA[CKWARD] | -FO[RWARD]

L[OAD] file-name -BE[GIN]=integer

-BLOCK_DENSITY

-E[ND]=integer

-FI[LLFACTOR]=integer

-FO[RMAT]=GO|B[INARY]|Z[WR]

-S[TDIN]

REO[RG] -DOWNGRADE

General Database Management

123

COMMAND OBJECTS MAIN QUALIFIER

-E[XCLUDE]=global-name-list

-FI[LL_FACTOR]=integer

-I[NDEX_FILL_FACTOR]=integer

-REG[ION]

-RES[UME]

-SA[FEJNL]

-S[ELECT]=global-name-list

-STA[RTBLK]=hexa

-STO[PBLK]=hexa

-T[RUNCATE][=percentage]

-UP[GRADE]

-USER_DEFINED_REORG=reorg_list

REP[LICATE] file-name -E[DITINSTANCE]

-I[NSTANCE_CREATE]

-R[ECEIVER

-S[OURCE]

-UPDA[TEPROC]

-UPDH[ELPER]

RE[STORE] file-name or file-list -[NO]E[XTEND]

RU[NDOWN] file-name or region-name -F[ILE]

-R[EGION]

SE[T] file-name or region-name -A[CCESS_METHOD=BG|MM]

-B[YPASS]

-DB[FILENAME]=database_file

-DE[FER_TIME]=seconds

-E[XTENSION_COUNT]=integer(no of blocks)

-FILE

-F[LUSH_TIME]= integer

-G[LOBAL_BUFFERS]=integer

-JN[LFILE]

General Database Management

124

COMMAND OBJECTS MAIN QUALIFIER

-JO[URNAL]=journal-option-list

-L[OCK_SPACE]=integer

-PA[RTIAL_RECOV_BYPASS]

-PR[EVJNLFILE]=jnl_file_name

-RE[GION]

-REPLI[CATION]=ON|OFF

-REPL_[STATE]=ON|OFF

-RES[ERVED_BYTES]=integer

-S[TANDALONENOT]

-V[ERSION]=V4|V5

-W[AIT_DISK]=integer

ST[OP] process-id process-id

UP[GRADE] - -

Main Qualifier MUPIP Command Options/Qualifiers

-EDITINSTANCE REPLICATE -CHANGE

-DETAIL

-OFFSET=hexa

-VALUE=hexa

-SIZE=hexa

-VALUE=hexa

-FENCES=<fence-options-list> JOURNAL-RECOVER-
ROLLBACK

ALWAYS

NONE

PROCESS

-JOURNAL=<journal-options-list> BACKUP

SET

ALIGNSIZE=integer

ALLOCATION=integer

AUTOSWITCHLIMIT=integer

BEFORE_IMAGES

BUFFER_SIZE=integer

DISABLE

General Database Management

125

Main Qualifier MUPIP Command Options/Qualifiers

ENABLE

EPOCH_INTERVAL=integer

EXTENSION=integer

FILENAME=file_name

OFF

ON

SYNC_IO

YIELD_LIMIT=integer

-LOOKBACK_LIMIT=lookback-option-list -RECOVER

-ROLLBACK

TIME="time"

OPERATIONS=integer

-RECEIVER REPLICATE -BUFFSIZE=integer

-CHANGELOG

-CHECKHEALTH

-CMPLVL=integer

-FILTER=filter_name

-he[lpers]=[m[,n]]

-LISTENPORT=integer

-LOG=logfile

-LOG_INTERVAL=integer

-SHOWBACKLOG

-SHUTDOWN

-START

-STATSLOG=[ON|OFF]

-STOPSOURCEFILTER

TIMEOUT=seconds

-UPDATEONLY

-UPDATERESYNC

-RECOVER JOURNAL -AFTER=time

-APPLY_AFTER_IMAGE

-BACKWARD

General Database Management

126

Main Qualifier MUPIP Command Options/Qualifiers

-BEFORE=time

-BROKENTRANS=file

-CHAIN

-CHECKTN

-[NO]ER[ROR_LIMIT][=integer]

-FENCES=fence-option-list

-FORWARD

-FULL

-GLOBAL=<global_list>

-ID=<pid_list>

-INTERACTIVE

-LOOKBACK_LIMIT=<lookback_limit_options>

-LOSTTRANS[=file]

-RED[IRECT]=file-pair-list

-SINCE=time

-VERBOSE

-VERIFY

-EXTRACT JOURNAL -AFTER=time

-BEFORE=time

-BROKENTRANS=file

-CHAIN

-CHECKTN

-[NO]ER[ROR_LIMIT]=integer]

-FENCES=fence-option-list

-FULL

-GLOBAL=<global_list>

-ID=<pid_list>

-INTERACTIVE

-LOOKBACK_LIMIT=<lookback_limit_options>

General Database Management

127

Main Qualifier MUPIP Command Options/Qualifiers

-LOSTTRANS[=file]

-SINCE=time

-VERBOSE

-VERIFY

-ROLLBACK JOURNAL -APPLY_AFTER_IMAGE

-BACKWARD

-BEFORE=time

-BROKENTRANS=file

-[NO]ER[ROR_LIMIT][=integer]

-FENCES=fence-option-list

-FETCHRESYNC

-LOOKBACK_LIMIT=<lookback_limit_options>

-LOSTTRANS[=file]

-RES[YNC]=hexa;journal_sequence_number

-VERBOSE

-VERIFY

-SHOW=<show-option-list> JOURNAL -ACTIVE_PROCESSES

-ALL

-BROKEN_TRANSACTIONS

-HEADER

-PROCESSES

-STATISTICS

-AFTER=time

-USER=user-list

-TRANSACTION=[KILL|SET]

-INTERACTIVE

-GLOBAL=<global_list>

-ID=<pid_list>

-INTERACTIVE

General Database Management

128

Main Qualifier MUPIP Command Options/Qualifiers

-SINCE BACKUP -BYTESTREAM

-COMPREHENSIVE

-DATABASE

-INCREMENTAL

-RECORD

-SO[URCE] REPLICATE -ACTIVATE

-BUFFSIZE=Buffer_size

-CHANGELOG

-CHECKHEALTH

-CMPLVL=integer

-CONNECTPARAMS=connection_options

-DEACTIVATE

-DETAIL

-FILTER=filter_name

-INSTSECONDARY=secondary_instance name

-JNLPOOL-LOG=log_file

-LOG_INTERVAL=integer

-LOSTTNCOMPLETE

-NEEDRESTART

-PASSIVE

-PROPAGATEPRIMARY

-ROOTPRIMARY

-SECONDARY=secondary_instance_name

-SHOWBACKLOG

-SHUTDOWN

-START

-STATSLOG

-STOPSOURCEFILTER

General Database Management

129

Main Qualifier MUPIP Command Options/Qualifiers

-TIMEOUT=seconds

130

Chapter 6. GT.M Journaling

Revision History

Revision V6.0-001/1 22 March 1013 • Improved the formatting of all command
syntaxes.

• In “SET Object Identifying Qualifiers ” (page
141), added information about the -
repl_state and -dbfilename qualifiers.

Revision V6.0-001 27 February 2013 In “-EXtract[=<file-name>|-stdout]” (page
153), added information about the
gtm_extract_nocol environment variable.

Revision V6.0-000/1 21 November 2012 Updated “SET -JOURNAL Options ” (page
143) and the journaling limits for V6.0-000.

Revision V5.5-000/4 6 June 2012 • In “-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]
” [155], added the description of the new -
ONLINE qualifier for -ROLLBACK.

• In “Journal Extract Formats” [168], added
the definitions of unam, clntnam, and ALIGN
records.

Revision V5.5-000/3 2 May 2012 Added the definition of tid.

Revision V5.5-000/2 19 March 2012 Updated the Journal Extract Formats section for
V5.5-000.

Revision 3 26 December 2011 Added the Journal Extract format for ZTRIG.

Revision 2 2 December 2011 Improved the description of -EXTRACT and
corrected the heading levels of some sections
under MUPIP JOURNAL.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

The four key properties of transaction processing systems, the so-called "ACID" properties are: Atomicity, Consistency,
Isolation, and Durability. GT.M transaction processing provides the first three by means of the TStart and TCommit commands
and Durability through journaling.

GT.M, like virtually all high performance databases, uses journaling (called “logging” by some databases) to restore data
integrity and provide continuity of business after an unplanned event such as a system crash.

Note that, journaling is not a substitute for good system configuration and design. For example, if a database and its journal
files are on the same disk controller, a hardware failure on that controller can damage both files, and prevent recoverability.
Journaling complements other techniques to build a robust system.

GT.M Journaling

131

Journaling requires no M programming. However, the GT.M commands described later in this chapter may enhance the value
of journaling.

Journal Files

GT.M journaling uses journal files to record information pertaining to database updates. A journal file has a default
extension of mjl. If the new journal filename (the one specified in the FILENAME option or the default) already exists, GT.M
renames the existing journal file by appending a string that denotes the time of creation of the journal file in the form of
"_YYYYJJJHHMMSS" where:

YYYY 4-digit-year such as 2010
JJJ 3-digit-Julian-day (between 1 and 366) such as 199
HH 2-digit-hour in 24 hr format such as 14
MM 2-digit minute such as 40
SS 2-digit seconds such as 30

 The following animation describes how GT.M uses journal files to record information pertaining to database updates on
gtm.dat (the default database file created by gtmprofile).

At any given time the database file (gtm.dat) has a single active journal file (gtm.mjl) with links to predecessor ("previous
generation") journal files. The black arrow between the journal files demonstrate how a journal file is back-linked to its
predecessor with file name in the form of gtm.mjl_YYYYJJJHHMMSS to form a chain of journal files. When a switch of journal
files occurs, either implicitly (for example, when AUTOSWITCHLIMIT is reached) or explicitly (for example, on a backup
event or MUPIP SET -JOURNAL=ON), GT.M renames the existing journal file with the timestamp of its last modification.GT.M
creates a new journal file with the name of the journal file for that database, and specifies the previous generation journal
file name (after the rename), in the newly created journal file’s header.GT.M journaling provides mechanisms for durable
recovery/extract from the journal files, replaying database updates to an active database, reverting the database state to a
previous consistent state for when replication is in use, and so on. GT.M automatically turns off journaling on encountering
run-time conditions such as no available disk space or no authorization for a process attempting to auto-switch a journal file.
In such a case, GT.M also logs an appropriate message to the operator log to alert the operational staff. If GT.M detects that the
rename-logic yields a filename that already exists (a condition when journal files are switched in the same second), the string
"_N[N[N[N...]]]" is appended to the renamed filename where "N[N[N...]]" denotes a sequence of numbers as follows:

0,1,2,3,4,5,6,7,8,9,90,91,92,93,94,95,96,97,98,99,990,991,...

GT.M Journaling

132

GT.M tries all numbers from the order in the above sequence until it finds a non-existing rename-filename. In the above
illustration, if gtm.mjl_2010227 082618 is switched in the same second and gtm.mjl_2010227 082618_0 already exists, the
renamed journal file would be gtm.mjl_2010227 082618_1. If the existing file renaming scheme or the default journal file
naming scheme discussed above results in a filename longer than 255 characters (due to the suffix creation rules), GT.M
produces an error and turns off journaling.

Note

In a very short time window just before switching a journal file, GT.M create a temporary file with
an .mjl_new extension and attempts to write a few initialization journal records. After performing an initial
verification, GT.M renames the .mjl_new file to the current .mjl file. In rare cases, you might see an .mjl_new
file if the journal file creation process was interrupted midway (possibly due to permission or disk space
issues). If a subsequent MUPIP process detects an .mjl_new file and no .mjl file, it automatically deleted it and
creates a new .mjl file.

There are two switches to turn on journaling - ENable / DISable and ON/OFF. Enabling or disabling journaling requires stand
alone access to the database. Turning journaling on and off can be done when the database is in use. Note: Whenever GT.M
implicitly turns off journaling due to run-time conditions such as no available disk space or no authorization for a process
attempting to auto-switch a journal file (and so on) , it produces an error with accompanying messages to alert operation
staff.GT.M on selected platforms can encrypt data in database and journal files. Encryption protects against unauthorized access
to data by an unauthorized process which is able to access disk files, that is, encryption protects data at rest (DAR). Rather than
build encryption into GT.M, a plug-in architecture facilitates use of your preferred encryption software. For more information,
refer to Chapter 12: “Database Encryption” (page 363).

Recovery from a Journal File

The following two procedures enable recovery of a database from a journal file:

1. Forward Recovery (roll forward by applying)

2. Backward Recovery (roll back to a checkpoint, optionally followed by a subsequent roll forward)

Note

In a multi-site database replication configuration, you might use these recovery procedures to refresh a
replicating instance from the backup of an originating instance. However, the steps for both these recovery
procedures are different.

Forward Recovery

Forward recovery "replays" all database updates in forward direction till the specified point in the journal file. Forward recovery
on a backup database starts from when the backup was taken and continues till the specified point in the journal files. Forward
recovery on an empty database starts from the beginning of the journal files.

Suppose a system crash occurred at 08:50 hrs and a backup of the database was taken at 08:26 hrs. Using forward recovery,
you can replay the database updates between 08:26 hrs to 8:50 hrs (in blue) on the backup copy of the database and restore the
database to a state prior to the crash. In the process you can also identify unfinished or broken transactions that might have
occurred at the time of the crash. In the following illustration, X denotes the crash time and the blue updates denote forward
processing.

GT.M Journaling

133

A command like mupip journal -recover -forward -before="--8:50" gtm.mjl performs this operation. From the current
journal file, forward recovery moves back to the point where the begin transaction number of a journal file matches the
current transaction number of the active database (the point when the backup was taken) and begins forward processing.
Since a journal file is back-linked to its predecessor, GT.M facilitates forward processing by activating temporary forward
links between journal files that appear only during recovery. These forward links are temporary because they are expensive
to maintain as new journal files are created. Note: Forward recovery, by design, begins from a journal file whose "Begin
Transaction" matches the "Current Transaction" of the active database. This condition occurs only when a new journal file is
created (switched) immediately after a backup. If a database is backed up with MUPIP BACKUP -NONEWJNLFILES (a backup
option where journal files are not switched), forward recovery cannot find a journal file whose Begin Transaction matches the
Current Transaction and therefore cannot proceed with forward recovery. Always use a backup option that switches a journal
file or switch journal files explicitly after a backup. Also, once a database has been recovered using forward recovery, you can
no longer use it for a future recovery unless you restore the database again from the backup.

Backward Recovery

Backward recovery restores a journaled database to a prior state. Backward processing starts by rolling back updates to a
checkpoint (specified by -SINCE or -AFTER) prior to the desired state and replaying database updates forward till the desired
state.

Backward Recovery uses "BEFORE_IMAGE" journaling. With BEFORE_IMAGE journaling, GT.M captures the database
updates, as well as "snapshots" of portions of the database immediately prior to the change caused by the update. Unlike
forward recovery which works on a backup database, backward recovery works only on production (current) database
provided it is usable and BEFORE_IMAGE journaling is enabled.

Suppose a system crash occurred at 10:35 hrs, a command like mupip journal recover backward -lookback_limit="TIME=0
10:10" -since="-- 10:20" -before="-- 10:30" performs backward recovery. The following illustration demonstrates how GT.M
performs a recovery after a system crash at 10:35. Backward recovery "un-does" the database updates backward to 10:20, then
applies updates forward until the crash. By adding -BEFORE="- - 10:30" to the command, the recovery stops when forward
processing encounters updates that originally occurred after 10:30. If the application includes ZTSTART and ZTCOMMIT
commands to fence a group of transactions, backward processing may continue back prior to 10:10 searching to resolve fenced
transactions that were incomplete at 10:20.

GT.M Journaling

134

-LOOKBACK_LIMIT controls the maximum amount of additional backward processing, in this case, 10 minutes. Note that the
-SINCE time in this example is slightly exaggerated for the sake of the graphical representation. If the application includes
TSTART and TCOMMIT commands to fence transactions, backward processing does not require LOOKBACK_LIMIT because
TSTART/TCOMMIT transactions automatically resolve open transaction fences. So, in the above example if the transactions are
fenced with TSTART/TCOMMIT, backward recovery automatically increases the backward processing by 10 minutes.

Important

ZTSTART and ZTCOMMIT are deprecated in favor of TSTART and COMMIT. FIS no longer validates
ZTSTART/ZTCOMMIT and -LOOPBACK_LIMIT (since it applies to ZTSTART/ZTCOMMIT).

rolled_bak* files

GT.M adds a prefix rolled_bak_ to the journal file whose entire contents are eliminated (rolled back) by a backward recovery.
GT.M does not use these files after a successful recovery therefore you might want to consider moving or deleting them. You
should never use rolled_bak* files for any future database recovery. If there is a need to process rolled_bak* files, you should
extract the journal records and process them using an M program. FIS recommends that you rename the roll back journal file
immediately after a rollback if you want to save it, to prevent a subsequent rollback from overwriting it.

Journal Files Access Authorization

GT.M propagates access restrictions to the journal files, backup, and snapshot temporary files. Therefore, generally journal files
should have the same access authorization characteristics as their corresponding database files. In the rare case where database
access is restricted but the owner is not a member of either the database group nor the group associated with the $gtm_dist
directory, you should provide world read-write access to the journal files. As long as the operating system permits the access,
GT.M allows access to database files and journals in cases where the system has no user or group information available for the
file. Such an unusual situation can arise, for example, when the user and group are provided via NIS, but if NIS is not currently
operational the owner and group cannot be determined; or perhaps a user id is deleted while the GT.M process is active.

Triggers in Journal Files

GT.M manages "trigger definitions" and "triggered updates" differently during journaling and replication. Trigger definitions
appear in both journal files and replication streams so the definitions propagate to recovered and replicated databases.
Triggered updates appear in the journal file, since MUPIP JOURNAL -RECOVER/-ROLLBACK does not invoke triggers.

GT.M Journaling

135

However, they do not appear in the replication stream since the Update Process on a replicating instance apply triggers and
process their logic.

GT.M implicitly wraps a trigger as an M transaction. Therefore, a journal extract file for a database that uses triggers always
has Type 8 and 9 (TSTART/TCOMMIT) records even if the triggers perform no updates (that is, are effectively No-ops).

When journaling is ON, GT.M generates journal records for database updates performed by trigger logic. For an explicit
database update, a journal record specifies whether any triggers were invoked as part of that update. GT.M triggers have no
effect on the generation and use of before image journal records, and the backward phase of rollback / recovery.A trigger
associated with a global in a region that is journaled can perform updates in a region that is not journaled. However, if triggers
in multiple regions update the same node in an unjournaled region concurrently, the replay order for recovery or rollback
might differ from that of the original update and therefore produce a different result; therefore this practice requires careful
analysis and implementation. Except when using triggers for debugging, FIS recommends journaling any region that uses
triggers.If you database uses triggers, always ensure that unjournaled globals do not perform triggered updates in journaled
globals and create procedures to handle trigger updates in the broken/lost transaction files. In broken/lost transaction files, you
can identify these entries as + or - and appropriately deal with them using MUPIP TRIGGER and $ZTRIGGER().

BEFORE_IMAGE Journaling

BEFORE_IMAGE is a form of Journaling that creates "mini-backups" preceding each database update. Backward Recovery
uses these mini-backups to restore the database as far back in time then it replays the database updates."BEFORE_IMAGE"
journaling requires more disk I/O and storage space than M-level (or NOBEFORE) journaling but delivers faster recovery times
from system failures .

Note

As stated in the GDE chapter, the MM database access method bypasses the BG buffer pool and relies entirely
on the operating/file system to manage traffic between memory and disk. Because with MM, GT.M has no
control over the timing of disk updates, BEFORE_IMAGE journaling is not an option with MM; attempts to
use these two facilities together produce an error.

NOBEFORE_IMAGE Journaling

"NOBEFORE_IMAGE" is a form of M-level Journaling that sequentially stores each database update in a journal file. A
forward recovery operation restore the database by replaying these database updates."NOBEFORE_IMAGE" consumes less I/O
bandwidth in normal use and helps obtain more throughput from the available servers.

Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE

The choice between BEFORE_IMAGE journaling and NOBEFORE_IMAGE journaling is important especially in a logical
multi-site database replication deployment. If an application pushes the I/O bandwidth of the servers on which it runs,
NOBEFORE_IMAGE journaling may help obtain more throughput from available servers. BEFORE_IMAGE journaling could be
the likely choice if an application requires quicker recovery in the unlikely event of a crash. For a comprehensive discussion on
the choosing the type of Journaling, refer to “Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE journaling” (page
200).

GT.M Journaling

136

Broken Transaction File

In the case of a catastrophic event, it is unlikely that GT.M can properly complete writing all journal records to the file. GT.M
reports the unfinished records or incomplete fenced transactions as "broken transactions". GT.M extracts broken transactions
into a file called the broken transaction file.

Lost Transaction File

Any complete transaction that occurs after a broken transaction is a lost transaction. GT.M does not play it into the database
but extracts it as a lost transaction into a file called the lost transaction file.

All broken and lost transactions are made available as the result of a database recovery.

The operational procedures and the application tools should provide a means of recovering and reprocessing the information in
the broken and lost transaction files after a recovery or rollback that places content in these files.

If there are no fences, repair any application-level integrity problems. In either case, MUPIP INTEG -FAST provides an excellent
quick test of whether the database can support new updates with relative safety.

Journaling Benefits

It is important to understand the benefits of Journaling before you enable Journaling on your database. M database
management ensures that multiple concurrent updates and retrievals of the same information (or information "close together"
in ordered sequence) occur in a predictable and logical fashion. Sometimes a database manager may have to change multiple
records, usually indices, as a result of a single update. Interrupting a process that is performing such a "multi-point" update
violates a design assumption of the M implementation and also results in a malformed database. Under normal operation, the
database logic handles interruptions by deferring their recognition until the update is complete. However, occurrences such
as power failures or a KILL-9 can cause such interruptions. GT.M Journaling helps maintain data integrity and continuity of
business in the event of such interruptions.

Other benefits include (but not limited to):

• Automatic replay of work to the last committed update recorded in a journal file. Note that with the use of transaction
processing and journaling, GT.M provides full ACID properties.

• Quick recovery options, such as processing only the information recorded immediately prior to failure. For example, you can
recover just the last minute of work instead of replaying the entire journal file.

• Recorded database updates formatted appropriately for processing by an M program. For example, MUPIP JOURNAL -
EXTRACT produces records specified by time, user, the process identification number, global variable, process name, and
transaction type.

• Identification of processes active when the system failed. -SHOW identifies these processes, as well as what transactions
were not completed, and other information about the database updates and processes contained in the journal file.

Backup Journal Files

FIS recommends separate backup schemes for database files and journal files. MUPIP BACKUP creates a backup copy of the
database. You should backup journal files separately.

GT.M Journaling

137

MUPIP BACKUP uses the -BKUPDBJNL and -NEWJNLFILES to interact with journal files. As stated in the General
Database Management chapter, BKUPDBJNL enables or turns off the journaling characteristics of the backup database and
NEWJNLFILES sets the journaling characteristics of the database being backed up. The following illustration describes how
MUPIP BACKUP -NEWJNLFILES=NOPREVLINK cuts the back link between the newly created journal file and the prior
generation journal files.

Since -NEWJNLFILES=NOPREVLINK cuts back link of the newly created journal file, any subsequent recovery or rollback will
not be able to go back past this discontinuity.

Note

When MUPIP SET changes the journal state from DISABLED or OFF to ON, GT.M creates new journal files
with no back-links which, like the above example, indicates a fresh start of journaling for the database.

Select database files for Journaling

You should journal any databases whose integrity you care about. Conversely, you need not journal any database that you are
prepared to delete in the event of an untoward event like a system crash.

FIS recommends considering the following aspects before you select database files for Journaling.

• Always journal data that is worth preserving: You can journal some or all database files. A quickly understood method
of selecting database files for Journaling is as follows:

• Do not journal any database that you are prepared to delete in the event of an untoward event like a system crash. Never
journal temporary data.

• Truly static does not require journaling but produces no journal impact when held in journaled regions.

• Move temporary information to separate database files that do not require journaling. If the globals contains process-
local(temporary) information or possibly static information, move them to one or more separate database files and use
other means (for example, MUPIP CREATE or MUPIP BACKUP) to manage the information in their region(s).

• Weigh the deltas associated with manual re-entry and automatic re-play of transactions: Most of the overhead costs
associated with recovering from a failure usually derive from maintaining a state of preparedness for the manual recovery
and the potential risk to the organization from damage to the information during the relatively infrequent and "abnormal"

GT.M Journaling

138

handling of a recovery. Therefore, always weigh the cost of reduced computer throughput or alternatively the additional
hardware to support journaling with the same level of performance, against the reduced likelihood of a prolonged manual re-
entry with its associated drawbacks.

• Journal both frequently updated globals and infrequently updated globals: You might journal only heavily updated
globals. However, infrequently changed globals generate little additional load and may present significant control problems if
not journaled, you might decide that these globals should also be journaled to maintain application integrity.

• Separate the point of failure: Always use different disks and different disk controllers (where possible) for the journal and
the associated database files.

Fencing Transactions

The programming practice of fencing logical transactions protects database integrity during a system interruption. A logical
transaction is a logical unit that is not complete unless all parts of the transaction are captured. For instance, the logical
transaction "transfer funds between accounts" consists of a debit update to one account and a credit update to another account.

Establishing fences around a logical transaction assures that the transaction is committed as a unit, thereby avoiding logical
inconsistencies. These logical inconsistencies, sometimes referred to as application-level database integrity problems, manifest
themselves as run-time errors, inappropriate branching, and incorrect reports.

The four ACID properties are Atomicity, Consistency, Isolation and Durability. GT.M provides Durability with Journaling and
Atomicity, Consistency, and Isolation with TSTART and TCOMMIT commands. The TSTART and TCOMMIT commands are
replacements for the ZTSTART and ZTCOMMIT commands. The following table shows the benefits and drawbacks of each set
of TSTART/TCOMMIT versus ZTSTART/ZTCOMMIT commands with their application transaction-fencing requirement.

TSTART/TCOMMIT ZTSTART/ZTCOMMIT

Provide a transaction management facility that is fully ACID-
compliant.

Provide journal enhancement to improve the quality of recoveries.
With ZTSTART/ZTCOMMIT, programming logic, usually LOCK
protocols, must ensure Consistency and Isolation.

All updates stay private until the time of TCOMMIT. This ensures
Atomicity.

Atomicity is only ensured (within operationally set parameters)
during journal recovery

No cascading rollbacks A long-running transaction can trigger cascading rollbacks.

TS[TART][:tvexpr] [([lvn...])|lvn|*|]|[:keyword|(keyword...)]

TSTART can manage local variable state on restarts.

ZTS[TART][:tvexpr]

Depth of "nested" transactions for TSTART and TCOMMIT is 127. Depth of "nested" transactions for ZTSTART and ZTCOMMIT is 25.

Important

The term cascading roll-back describes the situation that occurs when dropping one transaction causes
previous transactions to be sequentially dropped, until potentially all transactions are dropped. If an
application violates this assumption, a JOURNAL -RECOVER may create a database with application-level
integrity problems. M LOCKs ensure the isolation of a sequence of updates from interaction with any other
updates. TSTART and TCOMMIT transaction fences implicitly exhibit the required isolation whether fences
are used with or without associated LOCKs.

GT.M Journaling

139

For more information on TSTART/TCOMMIT, refer to the "Commands" chapter of the GT.M Programmer's Guide for more
information.

Note

As stated in the beginning of this chapter, ZTSTART and TZTCOMMIT are deprecated in favor of TSTART
and TCOMMIT. FIS no longer validate the ZTSTART and ZTCOMMIT functionality so you should always
use TSTART and TCOMMIT to fence your transactions.

Deciding Whether to Use Fencing

You might fence some, all, or no application programs. When you program with fences, it is possible to force a recovery
to ignore the fences by using additional qualifiers to MUPIP JOURNAL -RECOVER. The following lists advantages and
disadvantages for fencing transactions.

Fencing Advantages

• Faster recovery

• Minimum risk recovery

• Databases recovered from journals that include fences do not require post-recovery checks and repairs for logical consistency

Note that TSTART/TCOMMIT pairs are the preferred method of fencing; see the sections on Transaction Processing in the
GT.M Programmer's Guide for addition benefits of this approach.

Fencing Disadvantages

• Must be programmed into the M code

• If the application is already structured to minimize logical transaction breakage problems, inserting the fencing commands
may be a largely mechanical task. In less structured applications, inserting fences immediately "inside" the M LOCKs
associated with transactions may provide an excellent first approximation of proper fencing.

• Fencing adds some entries to the journal file(s)

• Fencing may duplicate methods of recovery already established to address these issues

• An application structured so that all information for each logical transaction is stored in a single global node (while other
nodes hold only redundant information), permits rebuild programs to completely correct logical inconsistencies. With less
restrictive designs, logical inconsistencies may be corrected manually or by using semi-automated techniques.

VIEW Keywords

GT.M provides the JNLFLUSH and JNLWAIT keywords as arguments to the VIEW command. Normal operation does not
require VIEW commands to control journaling. However, under special circumstances, such as debugging, VIEW commands
with journal keywords allow an M program to ensure that GT.M has transferred all its updates to the journal file(s).

VIEW "JNLFLUSH":region initiates a complete transfer of all buffered journal records for a given region from memory to the
disk. Normally, the transfer of journal buffers to disk happens automatically. The transfer is triggered by room requirements

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Journaling

140

to hold new journal records and/or the passage of time since the last update. VIEW "JNLFLUSH" (without a specified region)
flushes all regions in the current Global Directory.

VIEW "JNLWAIT" causes GT.M to suspend process execution until all updates initiated by the process in all regions have been
transferred to the journal file (on disk). Updates within M TRANSACTIONS typically behave as if they included an implicit
VIEW "JNLWAIT" with their final TCOMMIT. TRANSACTIONS with a TRANSACTION ID="BATCH" or "BA" are exempted
from the implicit "JNLWAIT". Normally, process execution for updates outside of M transactions continues asynchronously
with the transfer of journal records to disk.

For more information on the VIEW command, refer to the "Commands" chapter in the GT.M Programmer's Guide.

$VIEW() Keywords

GT.M provides the JNLACTIVE, JNLFILE, REGION and JNLTRANSACTION keywords as arguments to the $VIEW function.
Normal operation does not require $VIEW() to examine journaling status. However, under certain circumstances, such as
during debugging of logical transaction design and implementation, $VIEW() may provide a useful tool.

$VIEW("JNLACTIVE", region) returns a zero (0) indicating journaling is disabled for the region, one (1) indicating journaling is
enabled but OFF, or two (2) indicating journaling is enabled and ON for the named region.

$VIEW("JNLFILE", region) returns the journal file name. If no journal filename has been established it returns a null string.
Otherwise it is a fully translated filename.

$VIEW("REGION", expr) where expr evaluates to a gvn, returns the name of the region associated with the named gvn. This
parameter may be used in conjuction with the above two parameters (JNLACTIVE & JNLFILE), to get journaling status in a
configuration-independent manner.

$VIEW("JNLTRANSACTION") returns the difference between the number of ZTSTARTs that have been issued and the number
of ZTCOMMITs. If no fenced transaction is in progress, then a zero (0) is returned. This serves an analogous function to
$TLEVEL for transactions that use TSTART and TCOMMIT.

For more information on $VIEW(), refer to the "Functions" chapter in the GT.M Programmer's Guide.

SET

MUPIP SET is the primary utility used to establish and activate journaling (using the -JOURNAL) and replication (using the -
REPLICATION).

When GDE creates a Global Directory, it stores either the explicitly specified journaling information, or the GDE default value
(refer to “SET -JOURNAL Options ” (page 143)) for any unspecified characteristics.

MUPIP CREATE copies existing journaling information from the Global Directory to the database file, establishing journaling
characteristics for all GDE supported journal-options.

Important

GT.M applies journaling information in the Global Directory to a database file only when it is created.
Thereafter use MUPIP, or possibly DSE, to change journaling characteristics in database files. Be sure to use

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Journaling

141

GDE to reflect current journaling needs so that the next time you use MUPIP CREATE you get the desired
journaling characteristics.

DSE DUMP -FILEHEADER displays the current values for all established journaling characteristics.

This section provides a description of the MUPIP SET command with specific reference to the journaling related qualifiers. For
information on the other MUPIP SET qualifiers, refer to Chapter 5: “General Database Management” (page 67).

MUPIP SET -JOURNAL can change some database characteristics when journaling is active for a specific file or region(s). The
first run of MUPIP SET -JOURNAL on an older database automatically changes the maximum/minimum journal settings to
match those required by the current GT.M version. MUPIP SET operates on either regions or files.

The format for the MUPIP SET command is:

MUPIP SE[T] -qualifier... {-F[ILE] file-name|-REG[ION] region-list}

The file-specification or region-list identifies the target of the SET. Region-names separated by commas (,) make up a region-
list.

To establish journaling characteristics, use the MUPIP SET command with the -[NO]JOURNAL[=journal-option-list] qualifier
and one of the following SET object identifying qualifiers:

-F[ILE]
-R[EGION]

Together with one or more of the SET action qualifiers:

-[NO]JOURNAL[=journal-option-list] -REPLICATION=<replication-option>'

SETObject Identifying Qualifiers

The following qualifiers identify the journaling targets:

-F[ILE]

Specify that the argument to the SET is a file-specification for a single database file. A Journal file's name can now include
characters in Unicode.

Old journal files stay open for about 10 seconds after a switch to a new journal file.

-R[EGION]

Specify that the argument to the SET is a list of one or more region-names, possibly including wildcards, which, through the
mapping of the current Global Directory, identifies a set of database files. SET -REGION modifies multiple files when the
parameter contains more than one name.

The -REGION qualifier is incompatible with the -FILE qualifier.

-J[NLFILE]

Specifies that the target for SET is a journal file. The format of the JNLFILE qualifier is:

-jnlfile jnl_file [-[no]prevjnlfile=jnlfilename] [-bypass] [-repl_state={on|off}] [-dbfilename=file_name]

GT.M Journaling

142

jnl_file specifies the name of the target journal file.

-prevjnlfile=jnlfilename

Changes the name of the previous generation of the journal file in the header of jnl_file to jnlfilename (for example, when
moving the previous generation journal file to a different location). The file name can be a full path-name or a relative path
name; however, before the file-name is stored in the header, it is expanded to its full path-name.

-noprevjnlfile

Cuts the generation link of the journal file jnl_file.The name of the previous generation journal file is nullified in the header
of jnl_file. Such an operation is appropriate when it is assured that there will never be a reason for a rollback to the previous
generation journal file.

-bypass

Override the requirement that database files (or their corresponding journal files) affected by the set command be available
standalone.

Caution

Changing the previous generation file link when a rollback operation is in progress or when the Source
Server is actively replicating, can damage the journal file and hamper recoverability.

-repl_state={on|off}

Change the replication state of a journal file; this command is intended for use only under instructions from your GT.M support
provider.

-dbfilename=file_name

Associates a journal file with a different database file; this command may be useful in arranging unusual RECOVER or
ROLLBACK scenarios.

SETAction Qualifiers

The -JOURNAL and -REPLICATION qualifiers are the only SET qualifiers relevant for journaling. For information on the other
MUPIP SET qualifiers, refer to Chapter 5: “General Database Management” (page 67).

-[NO]J[OURNAL][=journal-option-list]

Enables or disables journaling for the specified database file or region(s). MUPIP SET commands with this qualifier also
establish the characteristics for journal files. FIS believes the defaults and minimum for journal file characteristics are in line
with current hardware capabilities and suitable for a production environment.

The journal-option-list contains keywords separated with commas (,) enclosed in double quotes "". These double quotes are
optional when the list contains only one keyword. This option list is a super set of the journal-option-list available through
GDE.

• -NOJOURNAL specifies that the database does not allow journaling, or disables journaling for a database that currently has it
enabled. It is equivalent to -JOURNAL=DISABLE.

GT.M Journaling

143

• -NOJOURNAL does not accept an argument assignment. It does not create new journal files. When a database has been SET -
NOJOURNAL, it appears to have no journaling file name or other characteristics.

• -JOURNAL= enables journaling for a database file. -JOURNAL= takes one or more arguments in a journal-option-list. As long
as journaling is ENABLED and turned ON at the end of the command, SET -JOURNAL= always creates a new version of the
specified journal file(s).

• -NOJOURNAL specifies that the database does not allow journaling, or disable journaling for a database where journaling is
active.

• Enable BEFORE_IMAGE or NOBEFORE_IMAGE journaling for a database file.

• As long as journaling is ENABLED and turned ON at the end of the command, SET -JOURNAL= always creates a new
version of the specified journal file(s).

• Every MUPIP SET -JOURNAL command on a database file that specifies an ON or OFF journal-activation option causes
the values of all explicitly specified journal-file-options to be stored in the database overriding any previously established
characteristics for those options.

• If you specify both -JOURNAL and -NOJOURNAL in the same command line, the latter takes effect.

• Whenever MUPIP SET creates a new journal file, it uses all values for journal-file-options that the user explicitly specifies in
the command line for the new journal file. If you do not specify a journal-file-option, MUPIP SET takes the characteristics of
the existing journal file.

• MUPIP SET supports qualifiers (like -ACCESS_METHOD, and so on) to change non-journaling characteristics of database
file(s). If you specify these qualifiers -JOURNAL , MUPIP SET modifies the non-journaling characteristics first and then
moves on to modify the journaling characteristics. Command execution stops when it encounters an error. If MUPIP SET
encounters an error in processing the command line or the non-journaling characteristics, it makes no changes to any
characteristics. However, if MUPIP SET encounters an error in processing the journaling characteristics, the non-journaling
characteristics have already been successfully changed.

• -NOJOURNAL is equivalent to -JOURNAL=DISABLE.

• -NOJOURNAL does not accept an argument assignment. It does not create new journal files. When a database has been SET -
NOJOURNAL, it appears to have no journaling file name or other characteristics.

For details on the journal-option-list refer to “SET -JOURNAL Options ” (page 143).

 -REPLI[CATION]=replication-option

-REPLICATION sets journal characteristics and changes the replication state simultaneously. It can also be used with the -
JOURNAL qualifier. If journaling is ENABLED and turned ON, SET -REPLICATION=ON creates new set of journal files, cuts
the back-link to the prior generation journal files, and turns replication ON.

SET -JOURNAL Options

 ALI[GNSIZE]=blocks

• Specifies the number of 512-byte-blocks in the ALIGNSIZE of the journal file.

• If the ALIGNSIZE is not a perfect power of 2, GT.M rounds it up to the nearest power of 2.

GT.M Journaling

144

• The default and minimum ALIGNSIZE value is 4096 blocks. The maximum value is 4194304 (=2 GigaBytes).

• A journal file consists of a sequential stream of journal records each of varying size. It is typically not easy to detect the
beginning of the last valid journal record in an abnormally terminated journal file (for example, system crash). To facilitate
journal recovery in the event of a system crash, the GT.M run-time system ensures that offsets in the journal file which are
multiple of ALIGNSIZE (excepting offset 0 which houses the journal file header) is always the beginning of a valid journal
record. In order to ensure this, GT.M run-time system writes padding data (if necessary) in the form of ALIGN journal
records just before the ALIGNSIZE boundary. These ALIGN records also help in skipping past invalid records in the middle
of a journal file allowing MUPIP JOURNAL -EXTRACT -FORWARD -FULL to extract as much data of a corrupt journal file as
possible.

• While a larger align size trade off crash recovery time in favor of increased journaling throughput, especially when before
image journaling is in use, there is marginal value in using an align size larger than a few MB.

• The minimum ALIGNSIZE supported is always be greater than or equal to the maximum journal record size, which in turn
depends on the maximum database block size.

• Note that a large value of ALIGNSIZE implies less aligned boundaries for recovery to use and hence slows backward recovery
down so drastically that, for example, the maximum value of 4194304 causes backward recovery (in case of a crash) to take as
much time as forward recovery on that journal file.

ALL[OCATION]=blocks

Sets the allocation size of the journal file. GT.M uses this information to determine when it should first review the disk space
available for the journal file. The size of the journal file at creation time is a constant (depending on the GT.M version) but once
the journal file reaches the size specified by ALLOCATION, every extension produces a check of free space available on the
device used for the journal file.

GT.M issues informational messages to the system log whenever the free space available is not much more than the extension
size. GT.M provides these extension checks as an operational aid for identifying, before space runs out, that a file system
holding the journal file is low on space. When there is no more free space available on the file system holding a journal file,
GT.M shuts off journaling for the corresponding database file.

The default ALLOCATION value is 2048 blocks. The minimum value allowed is 2048. The maximum value is 8,388,607 (4GB-512
bytes, the maximum journal file size).

AU[TOSWITCHLIMIT]=blocks

Specifies the limit on the size of a journal file. When the journal file size reaches the limit, GT.M automatically performs an
implicit online switch to a new journal file.

Note

It is possible to set the AUTOSWITCHLIMIT to a value higher than the maximum file size (in blocks) for
the file system. Currently GT.M does not attempt to check for this condition at specification time. GT.M
produces a run-time error when a journal file reaches the maximum size for the file system. Therefore,
ensure that the AUTOSWITCHLIMIT never exceeds the file-system limit.

The default value for AUTOSWITCHLIMIT is 8386560 & the maximum value is 8388607 blocks (4GB-512 bytes). The minimum
value for AUTOSWITCHLIMIT is 16384. If the difference between the AUTOSWITCHLIMIT and the allocation value is not
a multiple of the extension value, GT.M rounds-down the value to make it a multiple of the extension value and displays an

GT.M Journaling

145

informational message. GT.M produces an error when the rounded value of AUTOSWITCHLIMIT is less that the minimum
value.

If you specify values for ALLOCATION, EXTENSION, and AUTOSWITCHLIMIT for a region such that (ALLOCATION
+EXTENSION>AUTOSWITCHLIMIT), either using GDE or MUPIP SET -JOURNAL, GT.M sets ALLOCATION to match the
AUTOSWITCHLIMIT, and produces a JNLALLOCGROW message.

At journal extension time, including journal autoswitch time, if (ALLOCATION+EXTENSION>AUTOSWITCHLIMIT) for a
region, GT.M uses the larger of EXTENSION and AUTOSWITCHLIMIT as the increment to warn of low available journal disk
space. Otherwise, it uses EXTENSION.

[NO]BEFORE_IMAGES

Controls whether the journal should capture BEFORE_IMAGES of GDS blocks that an update is about to modify. A SET -
JOURNAL=ON must include either BEFORE_IMAGES or NOBEFORE_IMAGES in the accompanying journal-option-list.

If you specify both NOBEFORE_IMAGES and BEFORE_IMAGES in the same journal-option-list, the last specification overrides
any previous one(s).

As GT.M creates new journal files only with the ON option and every ON specification must include either BEFORE_IMAGES
or NOBEFORE_IMAGES. If the user specifies [NO]BEFORE_IMAGES along with the OFF option serve no purpose.

Although it is possible to perform an online switch of a database from (or to) NOBEFORE-IMAGE journaling to (or from)
BEFORE-IMAGE journaling, it is important to understand that backward recovery can never succeed if it encounters even one
in a set of journal files for a database without BEFORE-IMAGES.

BU[FFER_SIZE]=blocks

Specifies the amount of memory used to buffer journal file output.

MUPIP requires standalone access to the database to modify BUFFER_SIZE. Therefore, GT.M restricts the use of the
BUFFER_SIZE option to change the current journal-buffer-size as part of an online switch of the journal files.

The default value is 2308 blocks. The minimum BUFFER_SIZE is 2307 blocks. The maximum BUFFER_SIZE is 32K blocks which
means that the maximum buffer you can set for your journal file output is 16MB.

DISABLE

Equivalent to the -NOJOURNAL qualifier of MUPIP SET. It specifies that journaling is not an option for the region or file
named. If the user specifies DISABLE, then MUPIP SET ignores all other options in the journal-option-list.

ENABLE

Makes the database file or region available for journaling. By default, ENABLE turns journaling ON unless OFF is specified in
the same option list. A command that includes ENABLE must also specify BEFORE_IMAGES or NOBEFORE_IMAGES.

EP[OCH_INTERVAL]=seconds

seconds specifies the elapsed time interval between two successive EPOCHs. An EPOCH is a checkpoint, at which all updates
to a database file are committed to disk. All journal files contain epoch records.

A smaller EPOCH_INTERVAL reduces the time to recover after a crash at the cost of increased I/O load on the run-time system
(due to more frequent checkpoints). A larger EPOCH_INTERVAL has the opposite effect. Therefore, set EPOCH=interval for a
more efficient run-time with larger values of interval and more efficient ROLLBACK processing with smaller values of interval.

GT.M Journaling

146

The default EPOCH_INTERVAL value is 300 seconds (5 minutes). The minimum value is 1 second. The maximum value
is 32,767 (one less than 32K) seconds, or approximately 9.1 hours. If you enable journaling and do not specify a value for
EPOCH_INTERVAL, GT.M inherits the value of EPOCH_INTERVAL of the last journal file in that region. EPOCH_INTERVAL
only makes takes effect when the user turns journaling ON and there is no earlier journal file.

EX[TENSION]=blocks

blocks specifies the size of the journal file extension by which file expands and becomes full.

EXTENSION=blocks specifies when GT.M should review disk space available for the journal file after the ALLOCATION has
been used up. It also specifies how much space should be available at each review.

As UNIX file systems use lazy allocation schemes, allocation and extension values do not result in physical disk block allocation
for the journal file.

The values determine when GT.M checks the file systems to see if it has enough space to hold an extension worth of journal
data. When a journal file reaches the size of ALLOCATION and any multiple of EXTENSION, GT.M checks the file system for
room, and if the available space is less than three times the EXTENSION, it writes warnings to the operator log. GT.M provides
these extension checks as an operational aid for identifying, before space runs out, that a file system holding the journal file is
low on space. When there is no more free space available) on the file system holding a journal file or there is no authorization
of a process attempting to autoswitch a journal file, GT.M shuts off journaling for the corresponding database file.

The default EXTENSION value is 2048 blocks. The minimum EXTENSION is zero (0) blocks and the maximum is 1073741823
(one less than 1 giga) blocks.

F[ILENAME]=journal_filename

journal_filename specifies the name of the journal file. FILENAME is incompatible with SET -REGION, if you specify more
than one region.

GT.M treats the filename as having two components - basename and extension. The format of the journal filename is
basename.extension, where extension does not contain any periods (.), but if the filename contains more than one period (.),
basename contains all but the last period (.). Also note that "extension" is the empty string ("") if the filename does not contain
any periods (.).

The convention of the default value for the FILENAME is as follows:

• GT.M takes the basename of the database filename as the basename for the journal file with an extension of mjl if the
database has a dat extension. For example, database name mumps.dat results in a default name mumps.mjl. If the database
filename does not have a dat extension, GT.M replaces all occurrences of periods (.) with underscores (_) with an extension of
mjl and takes the full database filename. For example, database name mumps.acn results in a default name mumps_acn.mjl.
Therefore, by default, a journal file has an extension of mjl unless you explicitly specify a different extension with the
FILENAME journal option. If the new journal filename (the one specified in the FILENAME option or the default) already
exists, GT.M renames the existing file with the string "_YYYYJJJHHMMSS" appended to the existing file extension where the
string denotes the time of creation of the existing journal file in the following format:

YYYY 4-digit-year such as 2011
JJ 3-digit-Julian-day (between 1 and 366) such as 199
HH 2-digit-hour in 24 hr format such as 14
MM 2-digit minute such as 40
SS 2-digit seconds such as 30

Assuming the above example for the string value, GT.M renames a journal file mumps.mjl to mumps.mjl_2010199144030
when it switches to a new journal file.

GT.M Journaling

147

• If GT.M detects that the rename-logic yields a filename that already exists, the string "_N[N[N[N...]]]"
is appended to the renamed filename where "N[N[N...]]" denotes the sequence of numbers
0,1,2,3,4,5,6,7,8,9,90,91,92,93,94,95,96,97,98,99,990,991,...

GT.M tries all numbers from the order in the above sequence until it finds a non-existing rename-filename.

Taking the same example as above, in case mumps.mjl_2010199144030 and mumps.mjl_2010119144030_0 already exists, the
rename string would be mumps.mjl_2010199144030_1.

• If the existing file renaming scheme or the default journal file naming scheme discussed above results in a filename longer
than 255 characters (due to the suffix creation rules), GT.M produces an error and turns off journaling.

A journal file name can include characters in Unicode.

Note

Whenever GT.M implicitly turns off journaling due to run-time conditions such as no available disk space or
no authorization for a process attempting to auto-switch a journal file (and so on) , it produces an error and
accompanying messages identify the reason for that condition.

For journal recovery, GT.M maintains a field in every journal file's header that stores the name of the previous generation
journal file for the same database file. When a MUPIP SET changes the journal state from DISABLED or OFF to ON, GT.M
creates new journal files with no previous generation journal file name. This indicates that this is a fresh start of journaling for
the particular database. When journaling is already ON, and GT.M is implicitly (due to AUTOSWITCHLIMIT being reached) or
explicitly (due to MUPIP SET JOURNAL) required to create new journal files, GT.M maintains the previous generation journal
filename (after any appropriate rename), in the new journal file's header.

In all cases where journaling is ON both before and after a journal file switch, GT.M maintains the previous generation journal
file name in the new journal file's header except when GT.M creates a new journal file due to an implicit switch because it
detects an abnormal termination of the current journal file or if the current journal file was not properly closed due to a system
crash and the database was the subject of a MUPIP RUNDOWN afterwards.

Note

In the event of a crash, FIS strongly recommends performing a MUPIP JOURNAL ROLLBACK on a database
with replication, MUPIP JOURNAL RECOVER on a journaled database, and MUPIP RUNDOWN only if using
neither journaling nor replication. GT.M error messages provide context-specific instructions to promote this
decision-making model which helps protect and recover data after a crash.

The previous generation journal filename is a back link from the current generation journal.

GT.M produces an error and makes no change to the journaling state of the database when the FILENAME is an existing file
and is not the active journal file for that database. In this way, GT.M prevents possible cycles in the back-links (such as, a3.mjl
has a back-link to a2.mjl which in turn has a back-link to a1.mjl which in turn has a back-link to a3.mjl thereby creating a
cycle). Cycles could prevent journal recovery. Also, note that cycles in back-links are possible only due to explicit FILENAME
specifications and never due to an existing FILENAME characteristics from the database or by using the default FILENAME.

NOPREVJNLFILE

Eliminates the back link of a journal file.

[NO]S[YNC_IO]

GT.M Journaling

148

Directs GT.M to open the journal file with certain additional IO flags (the exact set of flags varies by the platform where
SYNC_IO is supported, for example on Linux you might utilize the O_DIRECT flag). Under normal operation, data is written
to but not read from the journal files. Therefore, depending on your actual workload and your computer system, you may see
better throughput by using the SYNC_IO journal option.

You should empirically determine the effect of this option, because there is no way to predict the performance gain or impact
in advance. There is no functional difference in GT.M behavior with the use of SYNC_IO. If you determine that different
workloads perform best with a different setting of SYNC_IO, you can change it with MUPIP SET at any time.

The default is NOSYNC_IO. If you specify both NOSYNC_IO and SYNC_IO in the same journal-option-list, GT.M uses the last
occurrence.

OFF

Stops recording subsequent database updates in the journal file. Specify OFF to establish journaling characteristics without
creating a journal file or starting journaling.

The default for SET -JOURNAL= is ON.

ON

Records subsequent database updates in that journal file. MUPIP SET -JOURNAL=ON must include either BEFORE_IMAGES or
NOBEFORE_IMAGES in the accompanying journal-option-list. By default GT.M sets journal operation to BEFORE_IMAGE if
this command changes the database replication state (refer to Chapter 7: “Database Replication” [173] for more information)
from OFF to ON and JOURNAL=NOBEFORE_IMAGE is not specified.

Important

ON keyword works only on previously ENABLEd regions. GT.M ignores ON if Journaling is DISABLEd. In
other words, an ENable / DISable is like the power switch on the back of many television sets and ON/OFF
is like the ON/OFF on the remote control. The ON/OFF on the remote control works only when the power
switch on the back of the television set is enabled.

If the current generation journal file is damaged/missing, MUPIP SET -JOURNAL=ON implicitly turns off journaling for the
specified region, creates a new journal file with no back pointers to the prior generation journal file, and turns journaling back
on. Further, if replication is enabled, MUPIP SET -JOURNAL=ON temporarily switches the replication WAS_ON state in the
time window when MUPIP SET command turns off journaling and returns normal as long as it operates out of the journal
pool buffer and doesn't need to reference the damaged journal file(s). During this operation, MUPIP SET -JOURNAL=ON also
sends the PREJNLLINKCUT message for the region to the application and the operator log. While this operation ensures that
journaling continues even if the current generation journal file is damaged/missing, creating a new journal file with no back
pointers creates a discontinuity with the previous journal files. Therefore, FIS recommends taking a database backup at the
earliest convenience because a MUPIP RECOVER/ROLLBACK will not be able to go back past this discontinuity. Also, consider
switching the journal files on all regions in the instance (with REGION "*") to ensure the RECOVER/ROLLBACK for other
regions remains unaffected.

The default for SET -JOURNAL= is ON.

Y[IELD_LIMIT]=yieldcount

yieldcount specifies the number of times a process that tries to flush journal buffer contents to disk yields its timeslice and
waits for additional journal buffer content to be filled-in by concurrently active processes, before initiating a less than optimal I/
O operation.

GT.M Journaling

149

A smaller YIELD_LIMIT is appropriate for light load conditions while larger values are appropriate as the load increases.

Note

A small YIELD_LIMIT may cause performance loss due to partial page writes while a large YIELD_LIMIT
may cause performance loss due to significant idle times (due to a lot of yields).

The minimum YIELD_LIMIT is zero (0), the maximum YIELD_LIMIT is 2048 and the default YIELD_LIMIT is 8.

As the disk can only write entire blocks of data, many I/O subsystems perform a READ-MODIFY-WRITE operation when data
to be written is a partial block as opposed to simple writes for an entire block. The YIELD_LIMIT qualifier tries to reduce the
frequency of sub-optimal partial block writes by deferring such writes as much as possible in the hope that in the meantime the
journal buffer accumulates more content and qualifies for an optimal entire block write.

Examples for MUPIP SET

$ mupip set -journal="enable,nobefore" -file mumps.dat

This example enables NOBEFORE_IMAGE journaling on mumps.dat. If journaling is already enabled, this command switches
the current journal file.

Example:

$ mupip set -journal=on,enable,before -region "*"

This example turn on journaling with BEFORE_IMAGE journaling. If journaling is already enabled, this command switches the
current journal file for all regions.

$ mupip set -file -journal="nobefore,buff=2307" gtm.dat

This example initiates NOBEFORE_IMAGE journaling for the database file gtm.dat with a journal buffer size of 2307 blocks.
It also switches to new journal file. This command assumes that some prior MUPIP SET -JOURNAL specified ENABLE for
gtm.dat.

Example:

$ mupip set -region -journal=enable,before_images,allocation=50000,ext=5000 "*"

This example enables journaling with BEFORE_IMAGES on all regions of the current Global Directory and gives each journal
file an ALLOCATION of 50000 blocks and an EXTENSION of 5000 blocks. If the regions have significantly different levels of
update, use several MUPIP SET -FILE or -REGION commands.

Example:

$ mupip set -region -journal="enable,before" areg,breg

This example declares journaling active with BEFORE_IMAGES for the regions areg and breg of the current Global Directory.

Example:

$ mupip set -file -nojournal mumps.dat

GT.M Journaling

150

This example disables journaling on the database file mumps.dat.

Example:

$ mupip set -journal="ENABLE,BEFORE_IMAGES" -region "AREG"
$ mupip set -journal="ON,BEFORE_IMAGES" -region "*"

This example turns on journaling only for the region AREG. Note that AGREG is the only region that is "available" for
journaling.

Example:

$ mupip set -access_method=MM -file gtm.dat

This example sets MM (Memory Mapped) as the access method or GT.M buffering strategy for storing and retrieving data from
the database file gtm.dat. Since MM is not supported with BEFORE_IMAGE journaling, this example produces an error on a
database with BEFORE_IMAGE journaling enabled. You can also use -access_method=BG to set BG (Buffered Global) as your
buffering strategy. For more information on the implications of these access methods, refer to “Segment Qualifiers” (page 58).

Example:

$ mupip set -journal=before,noprevjnlfile,file=newmumps.mjl -file mumps.dat

The above command cuts the back link of the newly created journal file newmumps.mjl.

JOURNAL

MUPIP JOURNAL command analyzes, extracts from, reports on, and recovers journal files. The format for the MUPIP JOURNAL
command is:

MUPIP J[OURNAL] -qualifier[...] file-selection-argument

file-selection-argument is a comma-separated list of journal files.

-qualifier [...] is a combination of Action, Direction, Time, Sequence Number, Control, and Selection qualifiers that perform
various MUPIP JOURNAL operations. To create any MUPIP JOURNAL command, select an appropriate combination of
qualifiers by moving horizontally from the Action column extending to the Selection column:

GT.M Journaling

151

A
ct

io
n

D
ir

ec
ti

on
T

im
e

(o
pt

io
na

l)
Se

qu
en

ce
 N

um
be

r
(o

pt
io

na
l)

C
on

tr
ol

 (o
pt

io
na

l)
Se

le
ct

io
n

(o
pt

io
na

l)

O
ne

 o
r

m
or

e
O

nl
y

on
e

O
ne

 o
r

m
or

e
O

nl
y

on
e

O
ne

 o
r

m
or

e
O

ne
 o

r
m

or
e

-E
X

[T
R

A
C

T
]

[=
fi

le
sp

ec
if

ic
at

io
n]

-R
EC

[O
V

ER
]

-R
O

[L
LB

A
C

K
]

-S
H

[O
W

]
[=

sh
ow

op
ti

on
 li

st
]

-[
N

O
]V

[E
R

IF
Y]

-B
A

[C
K

W
A

R
D

] -
FO

[R
W

A
R

D
]

-A
[F

T
ER

]=
ti

m
e

-B
E[

FO
R

E]
=t

im
e

-[
N

O
]

LO
O

[K
B

A
C

K
_L

IM
IT

]
[=

lo
ok

ba
ck

 o
pt

io
n

lis
t]

-S
I[

N
C

E]
=t

im
e

-F
ET

[C
H

R
ES

YN
C

] =
po

rt
 n

um
be

r

-R
ES

[Y
N

C
]

=
jn

l
se

qu
en

ce
 n

um
be

r

-[
N

O
]A

P[
PL

Y_
A

FT
ER

_I
M

A
G

ES
]

-B
R

[O
K

EN
T

R
A

N
S]

 =
ex

tr
ac

t f
il

e
na

m
e

-[
N

O
] C

H
A

[I
N

]

-[
N

O
] C

H
E[

C
K

T
N

]

-[
N

O
]

ER
[R

O
R

_L
IM

IT
]

[=
in

te
ge

r]

-F
E[

N
C

ES
] =

 fe
nc

e
op

ti
on

-F
U

[L
L]

-[
N

O
]

IN
[T

ER
A

C
T

IV
E]

-L
O

ST
[T

R
A

N
S]

 =
ex

tr
ac

t f
il

e
na

m
e

-R
ED

[I
R

EC
T

]
=

fi
le

pa
ir

 li
st

-V
ER

B
[O

SE
]

-D
E[

T
A

IL
]

-G
[L

O
B

A
L]

=
gl

ob
al

lis
t

-I
D

=
pi

d
li

st

-T
[R

A
N

SA
C

T
IO

N
] =

tr
an

sa
ct

io
n

ty
pe

-U
[S

ER
]=

 u
se

r
lis

t

GT.M Journaling

152

Also ensure that you adhere to the following rules:

1. -BEFORE is compatible with all other JOURNAL qualifiers except -ROLLBACK.

2. -AFTER is incompatible with -BACKWARD and all action qualifiers, except -EXTRACT, -SHOW, and -VERIFY.

3. -APPLY_AFTER_IMAGE is compatible only with -RECOVER, or -ROLLBACK.

4. -BACKWARD is incompatible with -FORWARD, -AFTER, -CHECKTN, -NOCHAIN, and -REDIRECT.

5. -BROKENTRANS is compatible only with -RECOVER, -ROLLBACK, or -EXTRACT.

6. -CHAIN is only compatible with -FORWARD.

7. -DETAIL is compatible only with -EXTRACT.

8. -FETCHRESYNC or -RESYNC are compatible only with -ROLLBACK.

9. -FORWARD is incompatible with -BACKWARD, -ROLLBACK, -SINCE, and -LOOKBACK_LIMIT.

10. -FULL is compatible only with -EXTRACT, -SHOW, or -VERIFY.

11. -LOSTTRANS is compatible only with -RECOVER, -ROLLBACK, or -EXTRACT.

12. -REDIRECT is compatible only with -RECOVER.

13. -ROLLBACK is incompatible with -RECOVER, FORWARD, -CHAIN, -CHECKTN, -REDIRECT, time qualifiers of -SHOW.

14. -SINCE is incompatible with -FORWARD.

15. -TRANSACTION is compatible only with -EXTRACT and -SHOW.

16. -USER is compatible only with -EXTRACT and -SHOW.

17. file list must not be asterisk (*) for -REDIRECT.

18. file list must be asterisk (*) for -ROLLBACK.

19. Journal selection qualifiers are incompatible with -RECOVER, -ROLLBACK, and -VERIFY.

20. Journal time qualifiers are incompatible with -ROLLBACK.

For example, MUPIP JOURNAL -EXTRACT=gtm.mjf -FORWARD -DETAIL is a valid command which performs
forward processing to extract detailed the journal records to gtm.mjf. However, MUPIP JOURNAL -EXTRACT -
REDIRECT=gtm.dat=test/gtm.dat -FORWARD is an invalid command because -REDIRECT is not compatible with -EXTRACT.

MUPIP JOURNAL manipulates an inactive journal file that is available for exclusive (standalone) use. You can transcribe Journal
files to tape. However, you must always restore them to disk for processing by MUPIP JOURNAL.

Press CTRL+C to stop JOURNAL processing. A JOURNAL command that terminates abnormally by operator action or error
produces an incomplete result. In this case, the resulting database may be corrupt. If you stop a JOURNAL operation by mistake,
reissue the command to produce the proper result for -RECOVER (or -ROLLBACK) -BACKWARD. For -RECOVER -FORWARD,
restore the database from backup and reissue the command.

GT.M Journaling

153

Journal Action Qualifiers

This section describes the journaling action qualifiers.

-EXtract[=<file-name>|-stdout]

Transfers information from journal files into files formatted for processing by M routines. It reports the journal time stamps
using the $H format, as controlled by the time zone setting from the OS and the process environment for the process running
the EXTRACT.

-EXTRACT takes <file-name> or -stdout as an optional argument.

<file-name> specifies the name of the output file. -stdout specifies that -EXTRACT write to standard output (stdout) instead of
writing to a file.

With no arguments, MUPIP JOURNAL derives the output file specification of the extract file using the name of the first journal
file that is processed in the forward processing phase and a file type of .mjf. Note that, if multiple journal names are specified
in the command line the first journal specified might be different from the first journal processed in the forward phase. When
-EXTRACT is specified with -RECOVER (or -ROLLBACK), the -JOURNAL command extracts all the journal records processed
during a -RECOVER -FORWARD command or the forward phase of (-RECOVER or -ROLLBACK) -BACKWARD command.

-EXTRACT applies to forward processing of the journal file; if the combined state of the journal file and the Journal Time
qualifiers does not cause forward processing, -EXTRACT does not create an output file.

When used independent of -RECOVER (or -ROLLBACK), -EXTRACT option can produce a result even though the database file
does not exist, although it does try to access the database if it is available.

If a database having custom collation is inaccessible or the replication instance is frozen with a critical section required for the
access held by another process and the environment variable gtm_extract_nocol is defined and evaluates to a non-zero integer
or any case-independent string or leading substrings of "TRUE" or "YES", MUPIP JOURNAL -EXTRACT issues the DBCOLLREQ
warning and proceeds with the extract using the default collation. If gtm_extract_nocol is not set or evaluates to a value other
than a positive integer or any case-independent string or leading substrings of "FALSE" or "NO", MUPIP JOURNAL -EXTRACT
exits with the SETEXTRENV error if it encounters such a situation. Note that if default collation is used for a database with
custom collation, the subscripts reported by MUPIP JOURNAL -EXTRACT are those stored in the database, which may differ
from those read and written by application programs.

Note that, a broken transaction, if found, is extracted to a broken transaction file (refer to “Journal Control Qualifiers” (page
163) for details), and all future complete transactions are considered as lost transactions, and are extracted to a lost
transaction file (refer to “Journal Control Qualifiers” (page 163) for details).

To avoid broken transaction or lost transaction processing and instead extract all journal records into one file, use the control
qualifier -FENCES=NONE. FIS strongly recommended against using -FENCES=NONE if -RECOVER/-ROLLBACK is also
specified.

-RECover

Instructs MUPIP JOURNAL to initiate database recovery. -RECOVER initiates the central JOURNAL operation for non-
replicated database. From the list of JOURNAL action qualifiers, select RECOVER alone or with any other action qualifiers
except -ROLLBACK.

-RECOVER -FORWARD with time qualifiers initiates forward recovery. Forward recovery ignores the current journaling
state of the target database file. It disables journaling of the target database file, (if currently ENABLE and ON), while playing

GT.M Journaling

154

forward the database updates. However, it restores the journaling state of the database at the end of a successful recovery (if
necessary), except when journaling is ENABLE'd and ON before the recovery. In the latter case, the journaling state at the end
of a successful recovery, is switched to ENABLE and OFF. No journaling is performed for the logical updates to the database for
JOURNAL -RECOVER -FORWARD. If the target database's current transaction number is less than first transaction number to
be processed in the specified journal file for that region, -RECOVER attempts to include previous generation journal file(s) in
its processing, unless the -NOCHAIN qualifier is specified. Following the successive previous links of journal files -RECOVER
tries to include previous generations of journal files until the transaction number when the journal file was created is less
than, or equal to that of the target database. -RECOVER issues one or more informational messages when it includes previous
generation journal files. If target database's current transaction number is not equal to the first transaction number of the
earliest journal file to be processed for a region, -RECOVER exits with an error. If multiple journal files for a single region are
specified with -RECOVER -FORWARD, it behaves as if -NOCHAIN was specified. If the journal files are not a complete set (for
example mumps1.mjl and mumps3.mjl were specified, with mumps2.mjl missing from the command line), MUPIP JOURNAL
produces an error because the journal files specified are discontinuous in terms of database transaction numbers. On the other
hand, specifying just mumps3.mjl automatically includes mumps2.mjl and mumps1.mjl in the recovery.

-RECOVER -BACKWARD with time qualifiers initiates backward recovery. For backward recovery, the target database
file should be the same as when GT.M wrote the last complete transaction to the journal. Because the database may be in
an indeterminate state due to a failure, exact checks for this match are not possible. If the target database has journaling
DISABLE'd (or ENABLE, OFF), -RECOVER -BACKWARD exits with an error message.

If the target database has journaling ENABLE, ON, but the journal file name in database file header does not match the latest
generation journal file name specified for that region, -RECOVER exits with an error.

During forward processing phase of JOURNAL -RECOVER -BACKWARD, MUPIP journals the logical updates to the database.
It also creates before images. It is always required to have journaling ENABLE'd and ON for -RECOVER -BACKWARD or -
ROLLBACK.

If a transaction is found with incomplete fence, it is considered broken. During forward phase of recovery, if a complete
transaction (fenced or unfenced) is found after a broken transaction. -RECOVER increments the error count. If -ERRORLIMIT is
reached, the complete transaction goes to lost transaction file, otherwise, it is applied to the database.

All broken and lost transactions are made available as the result of the -RECOVERY. They are written as journal extract
format in two different text files. They are the broken transaction file and the lost transaction file. Refer to the sections on
BROKENTRANS and LOSTTRANS in “Journal Control Qualifiers” (page 163).

When performing JOURNAL -RECOVER with fences (FENCES="PROCESS" or FENCES="ALWAYS"), it is essential for the
command to include all the journal files corresponding to the complete set of database files that make up the logical database.
If the specified set of journals is incomplete, the recovery reports all transactions that included any missing region as broken.
Typically, this means that the results of the recovery are unsatisfactory or even unusable.

MUPIP JOURNAL -RECOVER requires exclusive access to database files before recovery can occur. It keeps the exclusive access
to the database files, which means that the database files become inaccessible during the time of recovery.

If time qualifiers are not specified, -BACKWARD -RECOVER/-ROLLBACK performs optimal recovery. An optimal recovery
checks whether the datatabase is in a wholesome state and attempts to perform an automatic recovery if there is a crash. If
needed, optimal recovery goes back to include some previous generation files in order to get a consistent starting point and
then comes forward as far as the available journal record allow it to while preserving consistent application state. At the end,
the journaling state of the database stays ENABLE, ON. Note that the gtm script performs an optimal recovery on every run.

When a database file is rolled back by -RECOVER -BACKWARD, the corresponding journal file is also rolled back so that
the two are synchronized. -RECOVER -BACKWARD then creates a new journal file. If no forward play of journal records is
neccessary, the newly created journal file stays empty and the database points to the new journal file. The values for journal

GT.M Journaling

155

allocation and extension in the new journal file, are copied over from the database. The autoswitchlimit value in the new
journal file is the maximum of the autoswitchlimit values of all journal files from the latest generation journal file until the
turnaround point journal file generation (turnaround point is the point in the journal file where backward processing stops
and forward processing begins). The journal allocation/extension values in the new journal file are picked up from the earliest
generation of the set of those journal files sharing the maximum autoswitchlimit value.

GT.M adds a prefix rolled_bak_ to the journal file whose entire contents are eliminated (rolled back) by -RECOVER -
BACKWARD. GT.M does not use these files after a successful recovery therefore you might want to consider moving or
deleting them. You should never use rolled_bak* files for any future database recovery. If there is a need to process rolled_bak*
files, you should extract the journal records from rolled_back* files and process them using a M program.

-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]

-ROLLBACK initiates the central JOURNAL operation for a replicated database. MUPIP JOURNAL commands may specify -
ROLLBACK with other action qualifiers but not with -RECOVER. If you do not use -FETCHRESYNC, the database rolls back to
the last consistent state. Only asterisk (*) qualifier is allowed for the journal file selection, that is, -ROLLBACK selects journal
files by itself.

-NOO[NLINE]

Specifies that ROLLBACK requires exclusive access to the database and the replication instance file. This means that the
database and the replication instance files are inaccessible during a -ROLLBACK -NOONLINE.

By default, MUPIP JOURNAL -ROLLBACK is -NOONLINE.

-ON[LINE]

Specifies that ROLLBACK should run without requiring exclusive access to the database and the replication instance file.

GT.M increments ISV $ZONLNRLBK every time a process detects a concurrent MUPIP JOURNAL -ONLINE -ROLLBACK.

If the logical state of the database after the completion of MUPIP JOURNAL -ONLINE -ROLLBACK matches the logical state
of the database at the start of MUPIP JOURNAL -ONLINE -ROLLBACK, that is, only removes or commits an uncommitted TP
transaction or non-TP mini-transaction, any transaction (TP or Non-TP) incurs a restart.

If MUPIP JOURNAL -ONLINE -ROLLBACK changes the logical state of the database, the behavior is as follows:

• -ONLINE -ROLLBACK increments ISV $ZONLNRLBK

• In a TP transaction including trigger code within a transaction, -ONLINE -ROLLBACK restarts the transaction.

• In a non-TP mini-transaction, including within an implicit transaction caused by a trigger, -ONLINE -ROLLBACK produces a
DBROLLEDBACK error, which, in turn, invokes the error trap if $ETRAP or $ZTRAP are in effect.

Any utility/command attempted while MUPIP JOURNAL -ONLINE -ROLLBACK operates waits for ROLLBACK to
complete; the $gtm_db_startup_max_wait environment variable configures the wait period. For more information on
$gtm_db_startup_max_wait, refer to “Environment Variables” (page 17).

Note

Because MUPIP ROLLBACK -ONLINE can take a database backwards in state space, please make sure that
you understand what it is that you intend it to do when you invoke it. FIS developed it as a step towards a
much larger project and anticipates that it will not be broadly useful as is.

GT.M Journaling

156

-ROLLBACK -BACKWARD exits with an error message for following conditions:

1. Any database region corresponding to a journal file processed has replication state turned OFF. Note that, a configuration
where there are replicated regions and at least one non-replicated-but-journaled region is not permitted by the replication
source server. The source server errors out at startup on such a configuration without having set up the journal pool. Since
all GT.M updates to replicated regions need the source server to have set up a journal pool, no updates are possible until the
configuration is changed to have only replicated regions or non-replicated-and-non-journaled regions.

2. Any database region corresponding to a journal file identified by the command argument has journaling state DISABLE'd or
ENABLE'd and OFF.

3. Any database region corresponding to a journal file has journal state ENABLE'd and ON, but the journal file name specified
in the database file header is different than one identified by the command argument.

If a transaction is found with incomplete fence, it is considered broken. For the duration of the rollback, replication is turned
OFF on all regions and turned back ON at the end of the rollback.

During the forward phase of rollback, if a complete transaction (fenced or unfenced) is found after a broken transaction, it
is considered as a lost transaction. During forward phase of rollback, MUPIP journals the logical updates to the database. All
broken and lost transactions are made available as a result of the rollback. These are written as journal extract format in two
different text files.

When a database file is rolled back by -ROLLBACK, the corresponding journal file is also rolled back so that the two are
synchronized. -ROLLBACK then creates a new journal file. If no forward play of journal records is necessary, the newly created
journal file is empty and the database points to the new journal file. The journal allocation/extension/autoswitchlimit values in
the new journal file is set in the way as described for -RECOVER -BACKWARD in the previous section under -RECOVER.

A prefix rolled_bak_ is added to the journal file, whose entire contents are eliminated by a -ROLLBACK. These files are not
used by GT.M after the MUPIP JOURNAL -RECOVER, and can be moved/deleted as needed.

For -ROLLBACK the target database file should be the same as when GT.M wrote the last complete transaction to the journal.

If the -FETCHRESYNC or -RESYNC qualifiers are not specified, MUPIP does an optimal rollback (that is, check whether the
database is in a wholesome state and attempt to automatically recover a database if there is a crash).

Note

If ROLLBACK (either -NOONLINE or -ONLINE) terminates abnormally (say because of a kill -9), it leaves
the database in a potentially inconsistent state indicated by the FILE corrupt field in the database file header.
When a ROLLBACK terminates leaving this field set, all other processes receive DBFLCORRP errors any time
they attempt to interact with the database. You can clear this condition as following in descending order of
risk:

• Rerun ROLLBACK to completion

• MUPIP SET -FILE -PARTIAL_RECOV_BYPASS

• DSE CHANGE -FILEHEADER -CORRUPT=FALSE -NOCRIT

However, the MUPIP and DSE actions do not ensure that the database has consistent state; check for database
integrity with MUPIP INTEG.

GT.M Journaling

157

-SHow=show-option-list

Specifies which information for the JOURNAL command to display about a journal file.

Use -FORWARD with -SHOW together (but without -RECOVER) to process the entire journal file. Specify -SHOW with -
RECOVER (or -ROLLBACK) to consider all the journal files/records processed during a -RECOVER -FORWARD command or
forward phase of a -RECOVER (or -ROLLBACK) -BACKWARD command. Without -RECOVER (or -ROLLBACK), -SHOW does
not require database access.

The show-option-list includes (these are not case-sensitive):

1. AL[L]

Displays all the available type of information about the journal file. ALL is the default if you omits the show-option-list.

2. AC[TIVE_PROCESSES]

Displays all processes active at the end of the period specified implicitly or explicitly by the JOURNAL command time
qualifiers.

3. B[ROKEN_TRANSACTIONS]

Display all processes that had incomplete fenced transactions at the end of the period covered by the JOURNAL command.

4. H[EADER]

Displays the journal file header information. If the MUPIP JOURNAL command includes only the -SHOW=HEADER action
qualifier, GT.M processes only the journal file header (not the contents) even if you specify -BACKWARD or -FORWARD
with it. The size of a journal file header is 64K.

HEADER displays almost all the fields in the journal file header. The NODE field is printed up to a maximum of the first 12
characters. The following is an example of SHOW=HEADER output:

SHOW output for journal file /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl

Journal file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl
Journal file label GDSJNL23
Database file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.dat
 Prev journal file name /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl_2012310190106
 Next journal file name

 Before-image journal ENABLED
 Journal file header size 65536 [0x00010000]
 Virtual file size 2048 [0x00000800] blocks
 Journal file checksum seed 2272485152 [0x87735F20]
 Crash FALSE
 Recover interrupted FALSE
 Journal file encrypted FALSE
 Journal file hash 00000000000000000000000000000000000
 Blocks to Upgrade Adjustment 0 [0x00000000]
 End of Data 65960 [0x000101A8]
 Prev Recovery End of Data 0 [0x00000000]
 Endian Format LITTLE

GT.M Journaling

158

 Journal Creation Time 2012/11/06 17:30:33
 Time of last update 2012/11/06 17:30:33
 Begin Transaction 1 [0x0000000000000001]
 End Transaction 1 [0x0000000000000001]
 Align size 2097152 [0x00200000] bytes
 Epoch Interval 300
 Replication State CLOSED
 Jnlfile SwitchLimit 8386560 [0x007FF800] blocks
 Jnlfile Allocation 2048 [0x00000800] blocks
 Jnlfile Extension 2048 [0x00000800] blocks
 Maximum Journal Record Length 1048672 [0x00100060]
 Turn Around Point Offset 0 [0x00000000]
 Turn Around Point Time 0
 Start Region Sequence Number 1 [0x0000000000000001]
 End Region Sequence Number 1 [0x0000000000000001]

Process That Created the Journal File:

PID NODE USER TERM JPV_TIME

0000006706 jdoe-laptop jdoe 0 2012/11/06 17:30:33

Process That First Opened the Journal File:

PID NODE USER TERM JPV_TIME

0000006706 jdoe-laptop jdoe 0 2012/11/06 17:30:33

5. P[ROCESSES]

Displays all processes active during the period specified implicitly or explicitly by the JOURNAL command time qualifiers.

6. S[TATISTICS]

Displays a count of all journal record types processed during the period specified implicitly or explicitly by the JOURNAL
command time qualifiers.The following is an example of SHOW=STATISTICS output:

SHOW output for journal file /home/jdoe/.fis-gtm/V6.0-000_x86/g/gtm.mjl

Record type Count

 BAD 0
 PINI 2
 PFIN 2
 ZTCOM 0
 KILL 1333533
 FKILL 0
 GKILL 0
 SET 0
 FSET 0
 GSET 0
 PBLK 4339
 EPOCH 2
 EOF 1

GT.M Journaling

159

 TKILL 0
 UKILL 0
 TSET 0
 USET 0
 TCOM 0
 ALIGN 49
 NULL 0
 ZKILL 0
 FZKIL 0
 GZKIL 0
 TZKIL 0
 UZKIL 0
 INCTN 4314
 AIMG 0
 TZTWO 0
 UZTWO 0
 TZTRI 0
 UZTRI 0
 TRUNC 0

%GTM-S-JNLSUCCESS, Show successful
%GTM-S-JNLSUCCESS, Verify successful
%GTM-I-MUJNLSTAT, End processing at Tue Nov 6 17:42:21 2012

The following example displays the cryptographic hash of the symmetric key stored in the journal file header (the output is one
long line).

$ mupip journal -show -backward mumps.mjl 2>&1 | grep hash

Journal file hash F226703EC502E975784
8EEC733E1C3CABE5AC146C60F922D0E7D7CB5E
2A37ABA005CE98D908B219249A0464F5BB622B72F5FDA
0FDF04C8ECE52A4261975B89A2

-[NO]Verify

Verifies a journal file for integrity. This qualifier cannot have a value. -VERIFY scans the files and checks if it is in legal form, if
not, it terminates without affecting the database files.

-VERIFY when specified along with -FORWARD verifies the entire journal file For -NOVERIFY -FORWARD, only the tail of a
journal file is verified for cross region integrity. In both cases, if -RECOVER is also specified, the forward play of journal records
is done in a separate pass only after the verification pass is complete and error-free.

-VERIFY along with -BACKWARD verifies all journal records from the end of the journal file till the turn around point. When
-VERIFY -BACKWARD is specified along with -RECOVER or -ROLLBACK, backward processing involves two passes, the first
pass to do the verification until the turn around point, and the second pass to apply before image (PBLK) records.

When -NOVERIFY -BACKWARD is specified along with -RECOVER or -ROLLBACK, PBLKs are applied to the database in
the same pass as the verification. This speeds up processing. But the disadvantage of this approach is that in the event of
verification terminating in the middle of backward processing, there is no protection of cross-region integrity. FIS recommends
the use of -VERIFY with -RECOVER or -ROLLBACK.

When used independent of -RECOVER (or -ROLLBACK), -[NO]VERIFY option does not need database access. The default is -
VERIFY.

GT.M Journaling

160

Journal Direction Qualifiers

The following two qualifiers control the journal processing direction:

-BACKWARD

Specifies that MUPIP JOURNAL processing should proceed from the end of the journal file. If the actions include -RECOVER,
JOURNAL -BACKWARD restores before-images from the end-of the file back to an explicitly or implicitly specified point (the
turn around point), before it reverses and processes database updates in the forward direction (the forward phase).

Note

-BACKWARD is incompatible with -FORWARD.

-FO[RWARD]

Specifies that MUPIP JOURNAL processing for the specified action qualifier should proceed from the beginning of the given
journal file. When processing a -RECOVER action qualifier, in certain cases, MUPIP JOURNAL may need to go before the first
record of the specified journal file, that is, it can start from a previous generation journal file(refer to “-RECover ” (page 153)
for details).

If multiple journal files are specified in the command line, -FORWARD sorts the journal files within each region based on
creation time and processes them starting from the earliest journal file. Unless the -NOCHECKTN qualifier is specified, -
FORWARD performs checks on journal files corresponding to each region to ensure they are contiguous, both in terms of time
span, as well as, transaction number span. -FORWARD errors out if it detects a discontinuity.

Note

-FORWARD is incompatible with -BACKWARD and -ROLLBACK.

Journal Time Qualifiers

Journal qualifiers specifying time accept arguments in absolute or delta time format. Enclose time arguments in quotation
marks (" ") . Include a back-slash (\) delimiter before both, the beginning and ending quotation marks to escape it from being
processed by the UNIX shell.

Absolute format is day-mon-yyyy hh:mm:ss , where day denotes the date of the month, mon indicates the abbreviated
3-letter month name (for example, Jan, Feb,..) and the year yyyy and hour hh are separated by a space. Absolute time may
indicate today's date with "-- " before the hours.

Delta format is day hh:mm:ss, indicating the number of days, hours, minutes, and seconds; where the day and the hours (hh) are
separated by a space. If delta time is less than a day, it must start with zero (0) followed by a space.

Delta time is always relative to the maximum time of the last record in all journal files specified by arguments to the MUPIP
JOURNAL command.

Note

All time qualifiers are incompatible with -ROLLBACK.

GT.M Journaling

161

The following section describes the time qualifiers in more detail:

-A[FTER]=time

Specifies reference time stamps in the journal and identifies the point after which JOURNAL starts processing in the journal
file(s). This time qualifier applies to -FORWARD only.

If -AFTER= provides a time following the last time recorded in the journal file or following any -BEFORE= time, JOURNAL
processing produces no result and a warning message is displayed. If -AFTER provides a time preceding the first time recorded
in the journal file specified in the command line, and, previous generation journal file(s) exists for that journal file, then
previous generation journal file(s) are not included for the processing. You must specify previous generation journal files
explicitly in the command line in order for them to be considered.

Using -BEFORE with -AFTER restricts processing to a particular period of time in the journal file.

-BE[FORE]=time

Specifies an ending time for any action -FORWARD or -BACKWARD. The time specified references time stamps in the journal
files. If -BEFORE= specifies a time preceding the first time recorded in the journal file, or preceding any -AFTER= or -SINCE=
time, JOURNAL processing produces no result, and a warning message is displayed.

If -BEFORE= time exceeds the last time recorded in journal files, JOURNAL processing effectively ignores the qualifier and
terminates at the end of the journal file. By default, JOURNAL processing terminates at the end of the journal file.

-[NO]LOO[KBACK_LIMIT][=lookback-option-list]

Specifies how far JOURNAL -BACKWARD processes past the turnaround point (the explicit or implicit point in journal file up
to which -RECOVER proceeds backward before it reverses and processes database in forward direction), while attempting to
resolve open transaction fences. This option is applicable only for transactions fenced with ZTSTART and ZTCOMMIT. For
transaction fenced with TSTART and TCOMMIT, -RECOVER always resolves open transaction fences.

-LOOKBACK_LIMIT=options, include time and transaction counts. -NOLOOKBACK_LIMIT specifies that JOURNAL -
BACKWARD can process all the way to the beginning of the journal file, if necessary, to resolve open transaction fences. -
LOOKBACK_LIMIT= is incompatible with -FORWARD.

When -FENCES=NONE, JOURNAL processing ignores -LOOKBACK_LIMIT.

The -LOOKBACK_LIMIT options are:

• TIME=time

This limits LOOKBACK by a specified amount of delta or absolute journal time.

• OPERATIONS=integer

This limits LOOKBACK to the specified number of database transactions.

The TIME LOOKBACK option name and its value must be enclosed in quotes ("").

For example:

-lookback=\"time=0 00:00:30\"

GT.M Journaling

162

When -LOOKBACK_LIMIT= specifies both options, they must be separated by a comma (,), for example:

-lookback=\"time=0 00:00:30,operations=35\"

When -LOOKBACK_LIMIT= specifies both options, the first limit reached terminates the LOOKBACK.

By default, MUPIP JOURNAL uses -LOOKBACK_LIMIT=\"TIME=0 00:05\" providing five minutes of journal time prior to -
SINCE= to resolve open fences. A -LOOKBACK_LIMIT that specifies a limit much before the beginning of the earliest journal
file acts as if -NOLOOKBACK_LIMIT was specified.

-SI[NCE]=time

Specifies a starting (or checkpoint) time for an action qualifier with -BACKWARD, that is, -SINCE specifies how far back in
time JOURNAL -BACKWARD should process (from the end of the journal file), before starting the forward processing.

The time specified references time stamps in the journal files. If there are open fenced transactions when JOURNAL -
BACKWARD locates the -SINCE= time, it continues processing backward to resolve them, unless the command also specifies -
FENCES=NONE. If -SINCE= time exceeds the last time recorded in the journal files or, follows any -BEFORE=time, JOURNAL
processing effectively ignores the qualifier, and displays a warning message.

By default, -SINCE= time is 0 00:00:00 which denotes the time at the end of the journal file (the time when the last journal
record was updated).

Journal Sequence Number Qualifiers

These qualifiers are compatible only with -ROLLBACK.

-FET[CHRESYNC]=<port number>

In an LMS configuration, rollbacks the replicating instance to a common synchronization point from which the originating
instance can transmit updates to allow it to catch up. This command rolls back a former originating instance to the journal
sequence number at which the current originating instance took over. The format of the fetchresync qualifier is:

-fetchresync=<port number> -losttrans=<extract file> file-list

The <port number> is the communication port number that the rollback command uses when fetching the reference point.
Always use the same <port number> on the originating instance for rollback as the one used by the Receiver Server.

Important

FIS recommends you to unconditionally script the mupip journal -rollback -fetchresync command prior to
starting any Source Server on the replicating instance to avoid a possible out-of-sync situation.

The reference point sent by the originating instance is the RESYNC_SEQNO (explained later) that the originating instance once
maintained. The database/journal files are rolled back to the earlier RESYNC_SEQNO (that is, the one received from originating
instance or the one maintained locally). If you do not use -fetchresync, the database rolls back to the last consistent replicating
instance state.

The system stores extracted lost transactions in the file <extract file> specified by this mandatory qualifier. The starting point
for the search for lost transactions is the JNL_SEQNO obtained from the originating instance in the -fetchresync operation.
If -fetchresync is not specified, <extract file> lists the post-consistent-state transactions that were undone by the rollback
procedure to reach a consistent state.

GT.M Journaling

163

Note

The extracted lost transactions list may contain broken transactions due to system failures that occurred
during processing. Do not resolve these transactions --they are not considered to be committed.

Caution

The database header may get corrupted if you suspend an ongoing ROLLBACK -FETECHRESYNC
operation or if the TCP connection between the two instances gets broken. The workaround is to restart the
ROLLBACK -FETCHRESYNC operation or wait 60 seconds for the FETCHRESYNC operation to timeout.

Example:

$ mupip journal -rollback -fetchresync=2299 -losttrans="glo.lost" -backward

This command performs a ROLLBACK -FETCHRESYNC operation on a replicating instance to bring it to a common
synchronization point from where the originating instance can begin to transmit updates to allow it to catch up. It also
generates a lost transaction file glo.lost of all those transactions that are present on the replicating instance but not on the
originating instance at port 2299.

-RES[YNC]=<journal sequence number>

Specifies the journal sequence number to which GT.M must rollback the database/journal files need to be rolled back to a
specific point. If you specify a journal sequence number that is greater than the last consistent state, GT.M rolls back the
database/journal files to the last consistent state. Under normal operating conditions, this qualifier is not needed.

Journal Control Qualifiers

The following qualifiers control journal processing:

-[NO]AP[PLY_AFTER_IMAGE]

Specifies that after image records (AIMG) be applied to the database as part of forward processing of backward recovery or
rollback. AIMG are "snapshots" of the database updates captured by GTM immediately after the change caused by a DSE
update. By default, during forward phase of backward recovery or rollback, AIMG records are applied to the database.

By default, -RECOVER -FORWARD does not apply AIMG record into the database. -APPLY_AFTER_IMAGE is compatible with
-RECOVER, or -ROLLBACK action qualifiers only.

-BR[OKENTRANS]=<extract file>

-BROKENTRANS is an optional qualifier for -ROLLBACK, -RECOVER and -EXTRACT. If this is not specified and a broken
transaction file creation is necessary, MUPIP JOURNAL creates one using the name of the current journal file being processed
with a .broken extension.

Note that, if selection qualifiers are specified, the broken transaction determination (and therefore lost transaction
determination as well) is done based on the journal file that is filtered by the selection qualifiers. This means that a transaction's
journal records may be considered complete or broken or lost, depending on the nature of the selection qualifiers. Using -
FENCES=NONE along with the selection qualifiers will result in every journal record to be considered complete and hence
prevent broken or lost transaction processing.

GT.M Journaling

164

-[NO]CHA[IN]

-CHAIN allows JOURNAL processing to include previous generations of journal files with -FORWARD. If JOURNAL -
RECOVER needs to process previous generation journal file(s) and -NOCHAIN is specified, MUPIP JOURNAL exits with an
error.

-CHAIN is the default.

-[NO]CHE[CKTN]

-CHECKTN specifies that JOURNAL -FORWARD must verify for each region that the begin transaction number of the earliest
journal file to be processed for that region is same as the current transaction in the database file and that the end transaction
number of every journal file is equal to the begin transaction number of the next generation journal file for a given region. By
default, -FORWARD uses -CHECKTN.

-NOCHECKTN forces forward recovery by overriding inbuilt mechanisms for checking transaction integrity. Use -
NOCHECKTN with caution because it may lead to integrity issues in the recovered database and journal files.

-CHECKTN is incompatible with -BACKWARD and -ROLLBACK.

-[NO]ER[ROR_LIMIT][=integer]

Specifies the number of errors that MUPIP JOURNAL processing accepts. When the number of errors exceeds the -
ERROR_LIMIT, the -INTERACTIVE qualifier determines whether JOURNAL processing halts or defers to the operator. -
NOERROR_LIMIT prevents MUPIP JOURNAL from stopping because of errors. Journal processing continues until it reaches the
end of the journal file, regardless of the number of errors.

Note that, -NOERROR_LIMIT is not the same as -ERROR_LIMIT=0.

By default, MUPIP JOURNAL uses -ERROR_LIMIT=0, causing the first error to initiate the appropriate error action. In case of a
crash there could be some incomplete journal records at the end of a journal file. MUPIP JOURNAL does not consider these as
errors. In addition, fenced transactions that are broken are not considered as errors.

During the forward phase of recovery, if a broken transaction is found, all the logical records processed afterwards are
considered suspect. If a complete transaction is found after any broken transactions, MUPIP JOURNAL -RECOVER increments
the error count and, if it is less than the error limit, it is applied to the database. Otherwise, it is treated as a lost transaction and
extracted. If a complete transaction is found after any broken transactions, MUPIP JOURNAL -ROLLBACK treats it as a lost
transaction and extracts it irrespective of the error limit.

If MUPIP JOURNAL needs to increment error count during its processing, a warning message is issued for every error
encountered except in the following cases when the error count is incremented but no warning message is displayed:

• When a complete transaction is found after a broken transaction

• When -EXTRACT -FULL encounters errors

If MUPIP JOURNAL completes successfully with a non-zero value of error count, the return status is not a success, but a
warning.

-FE[NCES][=fence-option]

Specifies how JOURNAL processes fenced transactions. Fenced transactions are logical transactions made up of database
updates preceded by a TSTART or ZTSTART command and followed, respectively, by a TCOMMIT or ZTCOMMIT command.

GT.M Journaling

165

All updates between a TSTART or ZTSTART and a TCOMMIT or ZTCOMMIT are designed to occur together so that after
journal recovery the database contains either all the updates corresponding to a fenced transaction, or none of them.

The argument values for -FENCES option for MUPIP -RECOVER are not case-sensitive.

The fence options are:

• NONE

This causes MUPIP JOURNAL to apply all individual updates as if transaction fences did not exist. Note that, this means a
SET/KILL within a TP or ZTP transaction would be played as if it was an unfenced SET/KILL. This may cause the database
and new journals created (if -BACKWARD is specified), to be different from the state before the recovery took place.

• ALWAYS

This causes MUPIP JOURNAL to treat any unfenced or improperly fenced updates as broken transactions.

• PROCESS

This causes MUPIP JOURNAL to accept unfenced database updates, and also to observe fences when they appear, generating
broken transaction files in the case of a TSTART with no corresponding TCOMMIT, or a ZTSTART with no corresponding
ZTCOMMIT. It also generates broken transactions if a multi-region transaction with TSTART and TCOMMIT expects N
regions to participate, but the number of TSTART/TCOMMIT pairs found is less than N. The same happens for multi-region
ZTSTART and ZTCOMMIT.

By default, MUPIP JOURNAL uses -FENCES=PROCESS.

-FU[LL]

-FULL when used with -EXTRACT, specifies that all journal records be extracted. A journal file's contents can be rolled back in
case of backward recovery or rollback(refer to “-RECover ” (page 153) or “-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}] ” (page
155) for more details) in order to keep the database and journal in sync. This is achieved not by truncating the contents
of the journal file but instead setting a field in the journal file header, which shows up as "Prev Recovery End of Data" in a
MUPIP JOURNAL -SHOW=HEADER output, to indicate the end of the journal file before rolling back and setting another
field in the file header to indicate the new end of the journal file (this field shows up as "End of Data" in a MUPIP JOURNAL -
SHOW=HEADER output). Once a journal file's contents are rolled back, all future MUPIP JOURNAL commands (including -
EXTRACT) operate on the rolled back journal file only. But if -FULL is specified along with -EXTRACT, the entire journal file
contents (including those records that were rolled back) are extracted. This qualifier is to be used only as a diagnostic tool and
not in normal operation.

-FULL qualifier is compatible with -EXTRACT only.

-[NO]IN[TERACTIVE]

Specifies whether, for each error over the -ERROR_LIMIT, JOURNAL processing prompts the invoking operator for a response
to control continuation of processing. If the operator responds that processing should not continue, the MUPIP JOURNAL
command terminates.

-NOINTERACTIVE terminates the journal processing as soon as the MUPIP JOURNAL command generates the number of
errors specified in -ERROR_LIMIT.

This qualifier is applicable only to interactive mode or terminal mode. The default is -INTERACTIVE.

GT.M Journaling

166

-LOST[TRANS]=<extract file>

-LOSTTRANS is an optional qualifier for -RECOVER, -ROLLBACK and -EXTRACT. If this is not specified and a lost transaction
file creation is necessary, MUPIP JOURNAL creates one using the name of the current journal file being processed with a .lost
extension.

Any complete transactions after a broken transaction is considered a lost transaction. They are written into the lost transaction
file. For -RECOVER it might be considered as good transaction and applied to the database, if -ERROR_LIMIT qualifier allows it
to do so.

Note that, if selection qualifiers are specified, the broken transaction determination (and therefore lost transaction
determination as well) is done based on the journal file that is filtered by the selection qualifiers. This means that a transaction's
journal records may be considered complete or broken or lost, depending on the nature of the selection qualifiers. Using -
FENCES=NONE along with the selection qualifiers will result in every journal record to be considered complete and hence
prevent broken or lost transaction processing.

In the case of a replicated database, lost transaction can have an additional cause. If failover occurs (that is, the originating
Source Server, A, fails and the replicating Source Server, B, assumes the originating instance's role), some transactions
committed to A's database may not be reflected in B's database. Before the former originating instance becomes the new
replicating instance, these transactions must be rolled back. These transactions are known as "lost transactions". Note that
these are complete transactions and different from a broken transaction. MUPIP JOURNAL -ROLLBACK stores extracted lost
transactions in the extract-file specified by this qualifier. The starting point for the search for lost transactions is the journal
sequence number obtained from the originating Source Server in the -FETCHRESYNC operation.

-RED[IRECT]=file-pair-list

Replays the journal file to a database different than the one for which it was created. Use -REDIRECT to create or maintain
databases for training or testing.

This qualifier applies to -RECOVER action and -FORWARD direction qualifier only. JOURNAL rejects -REDIRECT unless it
appears with -RECOVER.

The file-pair-list consists of one or more pairs of file-names enclosed in parentheses () and separated by commas (,). The pairs
are separated by an equal sign in the form:

old-file-name=new-file-name

where the old file-name identifies the original database file and the new file-specification file-name identifies the target of the -
RECOVER. The old-file-specification can always be determined using -SHOW.

By default, JOURNAL directs -RECOVER to the database file from which the journal was made. -REDIRECT is not compatible
with -ROLLBACK.

Example:

$ mupip journal -recover -forward -redirect="bgdbb.dat=test.dat" bgdbb.mjl

This JOURNAL command does a forward recovery that -REDIRECTs the updates in bgdbb.mjl from bgdbb.dat to test.dat.

-VERB[OSE]

GT.M Journaling

167

Prints verbose output in the course of processing. It is not negatable and it is set to OFF by default.

Journal Selection Qualifiers

Journal Selection Qualifiers are compatible with -EXTRACT and -SHOW operations only. This is because most applications are
not constructed to safely remove a subset of transactions based on criteria that is exterior to the application design. To exclude
transactions from a recovery based on some selection criteria, the methodology is to -EXTRACT the records, and then reapply
them through application logic rather than by journal recovery. This approach permits the application logic to appropriately
handle any interactions between the removed and the retained transactions. Note that, selection qualifiers might result in only
a subset of a fenced transaction's journal records to be extracted (for example, a TSTART record may not be extracted because
the first update in that transaction was filtered out by a selection qualifier, while the corresponding TCOMMIT record may get
extracted). This can cause a fenced transaction to seem broken when actually it is not.

The following qualifiers control the selection criteria for journal processing.

Except for -TRANSACTION, all qualifiers allow for specifying a comma (,) seperated list of values.

-G[LOBAL]=global-list

Specifies globals for MUPIP JOURNAL to include or exclude from processing. You might find this qualifier useful for extracting
and analyzing specific data.

The global-list contains one or more global-names (without subscripts) preceded by a caret symbol (^). To include more than
one global use one of the following syntaxes.

$ mupip journal -forward -extract -global="^A*,^C" mumps.mjl

or

$ mupip journal -forward -extract -global="(^A*,^C)" mumps.mjl

The names may include the asterisk (*) wildcard. That is, -GLOBAL="^A*" selects all global variables with names starting with
A. The entire list or each name may optionally be preceded by a tilda sign (~), requiring JOURNAL to exclude database updates
to the specified global(s). When the global-list with a MUPIP JOURNAL -GLOBAL does not start with a tilda sign (~), JOURNAL
processes only the explicitly named globals. By default, JOURNAL processes all globals.

To specify subscripts, using -GLOBAL="^A(1)" results in all keys under the ^A(1) tree to be included, that is, it is equivalent
to using -GLOBAL="^A(1,*)". An asterisk (*) or a percent (%) anywhere in the global specification is permitted. Percent
(%) matches any character, and asterisk (*) matches any string (possibly zero length too). The asterisk (*) or percent (%)
specification can be used for -USER qualifier too.

Example:

To extract all ^GBL* except for ^GBLTMP:

$ mupip journal -extract -global="^GBL*,~^GBLTMP" -forward mumps.mjl

To extract all ^GBL except for ^GBL(1,"TMP"):

$ mupip journal -extract -global=\"^GBL,~^GBL\(1,\"\"TMP\"\"\)\" -forward mumps.mjl

The backslash (\) delimiter characters are required in UNIX to pass MUPIP the double quotes (") of the string subscript.

GT.M Journaling

168

An INVGLOBALQUAL error is issued along with the error offset in the command line, whenever a parse error of the global
qualifier string is encountered.

-ID=pid-list

Specifies that JOURNAL processing include or exclude database updates generated by one or more processes, identified by
process identification numbers (PIDs). The entire list or each PID may optionally be preceded by a tilda sign (~), requiring
JOURNAL to exclude database updates initiated by the specified PID. You may use this qualifier for trouble shooting or
analyzing data.

By default, JOURNAL processes database updates regardless of the PID that initiated it.

-T[RANSACTION]=transaction-type

Specifies transaction-types for JOURNAL to include or exclude from processing. For example, you may use this qualifier to
report only on KILL operations to locate possible causes for missing data.

The transaction-types are SET and KILL and can be negated. These types correspond to the M commands of the same names.
When the transaction-type with a JOURNAL -TRANSACTION is not negated, JOURNAL processes only transactions of the
type named (for example, -TRANSACTION=KILL), whereas if it is negated, JOURNAL does not process transactions of the type
named (for exmaple, -TRANSACTION=NOKILL).

By default, JOURNAL processes transactions, regardless of its type.

-U[SER]=user-list

Specifies that MUPIP JOURNAL processing include or exclude database updates generated by one or more users. You can use
this qualifier to audit the actions of a particular user. The user-list contains names of one or more users. Indicate multiple
users by separating the names with commas (,). The names may include the wildcard asterisk (*). The entire list or each name
may optionally be preceded by a minus sign (-) tilda sign (~), requiring JOURNAL to exclude database updates initiated by the
specified user(s). When the user-list with a JOURNAL -USER does not start with a tilda sign (~), JOURNAL processes only those
database updates, which are generated by explicitly named users. The asterisk (*) or percent (%) specification can be used for -
USER qualifier. Percent (%) matches any character, and asterisk (*) matches any string (possibly zero length too).

By default, JOURNAL processes database updates regardless of the user who initiated them.

Journal Extract Formats

Journal EXTRACT files always start with a label. For the current release of GT.M, the label is GDSJEX06 for a simple journal
extract file. This label is necessary to identify the format of the file.

If the environment variable gtm_chset is set of UTF-8, then file format label is followed by another label called "UTF-8" to
indicate UTF-8 mode.

After this label, the journal record extracts follow. These journal record extracts include fields or pieces delimited by a back
slash (\).

The first piece of an -EXTRACT output record contains a two-digit decimal transaction record type (for example, 01 for a
process initialization record). The second piece contains the full date and time of the operation, represented in the $HOROLOG
format. The third piece contains a GT.M assigned number (database transaction number) which uniquely identifies the
transaction within the time covered by the journal file. The fourth piece contains the process ID (PID) of the process that
performed the operation, represented as a decimal number. The remainder of the record depends on the record type.

GT.M Journaling

169

Records of type SET, KILL, ZKILL, TSTART, and TCOMMIT include the token_seq as part of the output. It is the sixth field
in the output of the journal record extract. When replication is in use, token_seq is a journal sequence number (jsnum)
that uniquely identifies each transaction(for more information on journal sequence number refer to Chapter 7: “Database
Replication” (page 173)). When replication is not in use and the transaction is a TP or ZTP transaction, token_seq is an 8-
byte token that uniquely identifies the entire TP or ZTP transaction. For non-replicated, non-TP, and non-ZTP journal records,
token_seq has a zero (0) value.

The format of the plain journal extract is as follows:

NULL 00\time\tnum\pid\clntpid\jsnum\strm_num\strm_seq
PINI(U) 01\time\tnum\pid\nnam\unam\term\clntpid\clntnnam\clntunam\clntterm
PINI(V)
 01\time\tnum\pid\nnam\unam\term\mode\logintime\image_count\pname\clntpid\clntnnam\clntunam\clntterm\clntmode
\clntlogintime\clntimage_count\clntpname
PFIN 02\time\tnum\pid\clntpid
EOF 03\time\tnum\pid\clntpid\jsnum
KILL 04\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
SET 05\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
ZTSTART 06\time\tnum\pid\clntpid\token
ZTCOM 07\time\tnum\pid\clntpid\token\partners
TSTART 08\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq
TCOM 09\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\partners\tid
ZKILL 10\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
ZTWORM 11\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\ztwormhole
ZTRIG 12\time\tnum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node

where:

01 record indicates a process/image-initiated update (PINI) into the current journal file for the first time.

02 record indicates a process/image dropped interest (PFIN) in the current journal file.

03 record indicates all GT.M images dropped interest in this journal file and the journal file was closed normally.

04 record indicates a database update caused by a KILL command.

05 record indicates a database update caused by a SET command.

06 record indicates a ZTSTART command.

07 record indicates a ZTCOMMIT command.

08 record indicates a TSTART command.

09 record indicates a TCOMMIT command.

10 record indicates a database update caused by a ZKILL command.

11 records indicates a value for/from $ZTWORMHOLE (when replication is turned on).

12 record indicates a ZTRIGGER command.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX392.txt

GT.M Journaling

170

Journal extracts contain NULL records only in a multisite replication configuration where triggers or external M-filters are
active. Here are two examples when NULL records are sent to the journal files:

• An external filter on an instance transforms a SET record to a NULL record that has a different schema.

• If the source side has triggers enabled and its receiver side either runs a pre-trigger version of GT.M or runs on a platform
where triggers are not supported (for example, AXP VMS or HPUX HPPA), trigger definition journal records from the source
side are transformed to NULL records on the receiver side.

Important

A NULL record does not have global information. Therefore, it resides in the alphabetically last replicated
region of the global directory.

The format of the detail journal extract is as follows:

PINI(U) time\tnum\chksum\pid\nnam\unam\term\clntpid\clntnnam\clntunam\clntterm
PINI(V)
 time\tnum\chksum\pid\nnam\unam\term\mode\logintime\image_count\pname\clntpid\clntnnam\clntunam\clntterm\clntmode
\clntlogintime\clntimage_count\clntpname
PFIN time\tnum\chksum\pid\clntpid
EOF time\tnum\chksum\pid\clntpid\jsnum
SET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
KILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
ZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
ZTWORM time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\ztwormhole
ZTRIG time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
TSTART time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq
TSET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
TKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
TZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
TZTWORM time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\ztwormhole
TZTRIG time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
USET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
UKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
UZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
UZTWORM time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\ztwormhole
UZTRIG time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
TCOM time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\partners\tid
INCTN time\tnum\chksum\pid\clntpid\opcode\incdetail
EPOCH time\tnum\chksum\pid\clntpid\jsnum\blks_to_upgrd\free_blocks\total_blks\fully_upgraded[\strm_num
\strm_seq]...
PBLK time\tnum\chksum\pid\clntpid\blknum\bsiz\blkhdrtn\ondskbver
AIMG time\tnum\chksum\pid\clntpid\blknum\bsiz\blkhdrtn\ondskbver
NULL time\tnum\pid\clntpid\jsnum\strm_num\strm_seq
ZTSTART time\tnum\chksum\pid\clntpid\token
FSET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
FKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
FZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
GSET time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node=sarg
GKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
GZKILL time\tnum\chksum\pid\clntpid\token_seq\strm_num\strm_seq\updnum\nodeflags\node
ZTCOM time\tnum\chksum\pid\clntpid\token\partners
ALIGN time\tnum\chksum\pid\clntpid

GT.M Journaling

171

where:

AIMG records are unique to DSE action and exist because those actions do not have a "logical" representation.

EPOCH records are status records that record information related to check pointing of the journal.

NCTN records are the transaction numbers of the sequence of critical sections in which the process and marked the database
blocks of the globals as previously used but no longer in use in the bit maps.

PBLK records are the before image records of the bit maps.

ALIGN records pad journal records so every alignsize boundary (set with MUPIP SET -JOURNAL and is visible in DSE DUMP -
FILEHEADER output) in the journal file starts with a fresh journal record. The sole purpose of these records is to help speed up
journal recovery.

Legend (All hexadecimal fields have a 0x prefix. All numeric fields otherwise are decimal):

tnum Transaction number

chksum Checksum for the record.

fully_upgraded 1 if the db was fully upgraded (indicated by a dse dump -file -all) at the time of writing the EPOCH

pid Process id that wrote the jnl record.

clntpid If non-zero, clntpid is the process id of the GT.CM client that initiated this update on the server side.

jsnum Journal sequence number.

token Unique 8-byte token.

strm_num If replication is true and this update originated in a non-supplementary instance but was replicated to and updated
a supplementary instance, this number is a non-zero value anywhere from 1 to 15 (both inclusive) indicating
the non-supplementary stream number. In all other cases, this stream # value is 0. In case of an EPOCH record,
anywhere from 0 to 16 such "strm_num" numbers might be displayed depending on how many sources of
supplementary instance replication have replicated to the instance in its lifetime.

strm_seq If replication is true and this update originated in a non-supplementary instance but was replicated to and updated
a supplementary instance, this is the journal sequence number of the update on the originating non-supplementary
instance. If replication is true and this update originated in a supplementary instance, this is the journal sequence
number of the update on the originating supplementary instance. In all other cases, this stream sequence number is
0. Note that the journal seqno is actually 1 more than the most recent update originating on that stream number. In
case of an EPOCH record, anywhere from 0 to 16 such "strm_seq" numbers might be displayed depending on how
many sources of supplementary instance replication have replicated to the instance in its lifetime.

tid TRANSACTIONID string (BATCH or any string of descriptive text chosen by the application) specified as
an argument of the corresponding TSTART command. If TRANSACTIONID is not specified with TSTART,
GT.M sets tid to null. TRANSACTIONID can specify any value for tid but affects GT.M behavior only when
TRANSACTIONID specifies BATCH or BA.

token_seq If replication is turned on, it is the journal sequence number. If not, it is a unique 8-byte token.

updnum =n where this is the nth update in the TP or ZTP transaction. n=1 for the 1st update etc. 0 for non-TP.

nodeflags Decimal number interpreted as a binary mask.. Currently only 5 bits are used.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX393.txt

GT.M Journaling

172

• 00001 (1) => update journaled but NOT replicated (For example, update inside a trigger)

• 00010 (2) => update to a global that had at least one trigger defined, even if no trigger matched this update

• 00100 (4) => $ZTWORMHOLE holds the empty string ("") at the time of this update or was not referenced during
this update

• 01000 (8) => update did not invoke any triggers even if they existed (For example, MUPIP LOAD)

• 10000 (16) => whether the update (set or kill) is a duplicate. In case of a KILL, it is a kill of some non-existing
node aka duplicate kill. Note that the dupkill occurs only in case of the Update Process. In case of GT.M, the
KILL is entirely skipped. In both cases (duplicate set or kill), only a jnl record is written, the db is untouched.

Combinations of the above bits would mean each of the individual bit characteristics. For example, 00011 =>
update within a trigger context, and to a global with at least one trigger defined. For example, 00011 => update
inside a trigger and to a global with at least one trigger defined. Certain bit combinations are impossible. For
example, 01001 since GT.M replicates any update that does not invoke triggers.

node Key that is being updated in a SET or KILL.

sarg Right-hand side argument to the SET (that is, the value that the key is being SET to).

partners Number of journaled regions participating in this TP or ZTP transaction (TCOM/ZTCOM record written in this TP
or ZTP) .

opcode Inctn opcode. See gdsfhead.h inctn_opcode_t for all possible values.

blknum Block number corresponding to a PBLK or AIMG or INCTN record.

bsiz Block size from the header field of a PBLK or AIMG record.

blkhdrtn Transaction number from the block header of a PBLK or AIMG record.

ondskbver On disk block version of this block at the time of writing the PBLK or AIMG record. 0 => V4, 1 => V5.

incdetail 0 if opcode=1,2,3; blks2upgrd if opcode=4,5,6; blknum if opcode=7,8,9,10,11,12,13

ztwormhole string corresponding to $ZTWORMHOLE

blks2upgrd # of new V4 format bitmap blocks created if opcode=4,5; csd->blks_to_upgrd if opcode=6

uname Name of the user that wrote this PINI record.

clntunam If non-empty, clntunam is the name of the GT.CM client that initiated this update on the server side.

173

Chapter 7. Database Replication

Revision History

Revision V6.1-000/1 04 September 2014 In “Procedures ” (page 203), corrected the
downloadable scripts example (msr_proc2.tar.gz)
for setting up an A->P replication configuration.

Revision V6.1-000 01 August 2014 • In “Starting the Source Server” (page
230), added the description of -TLSID,
-[NO]PLAINTEXTFALLBACK, and -
RENEGOTIATE_INTERVAL qualifiers.

• In “Starting the Receiver Server ” (page
243), added the descriptions of -TLSID, -
START, and -LOG qualifiers..

• In “Procedures ” (page 203), added a
new topic called “Setting up a secured TLS
replication connection” (page 223). This
topic includes a downloadable example
that creates two databases and sets up TLS
replication between them.

• Added a new section called “TLS/SSL
Replication” (page 194).

Revision V6.0-003/1 19 February 2014 • In “Starting the Source Server” (page 230),
added information about the use of the
gtm_ipv4_only environment variable.

• In “REORG ” (page 102), added a caution note
about running successive reorgs.

Revision V6.0-003 27 January 2014 • In “Procedures ” (page 203), added
downloadable script examples for A->B and A-
>P replication scenarios.

• In “Activating a Passive Source Server” (page
237), added information about the
ACTIVE_REQUESTED mode.

• In “Deactivating an Active Source
Server” (page 238), added information
about the PASSIVE_REQUESTED mode.

• In “Starting the Source Server” (page 230),
added information about the IPv6 support.

Revision V6.0-001/1 22 March 1013 Improved the formatting of all command
syntaxes and corrected the description of the -
helper qualifier.

Revision V6.0-001 27 February 2013 • In “Instance Freeze” [193], added a note
about the behavior when a process configured
for instance freeze encounters an error with
journaling.

• Improved the description of -
UPDATERESYNC.

Database Replication

174

• In “Procedures ” [203], added the following
topics:

• “Setting up a new replicating instance of
an originating instance (A->B, P->Q, or A-
>P)” [221]

• “Replacing the replication instance file
of a replicating instance (A->B and P-
>Q)” [221]

• “Replacing the replication instance file of a
replicating instance (A->P)” [221]

• “Setting up a new replicating instance from
a backup of the originating instance (A-
>P)” [222]

• “Changing the database schema of
a replicating instance (A->B and A-
>P)” [223]

• In “Displaying/Changing the attributes
of Replication Instance File and Journal
Pool” [228], corrected the description of the
-offset and -size qualifiers of -EDITINSTANCE.

Revision V6.0-000/1 21 November 2012 • In “Commands and Qualifiers” [226], added
the description of the -log_interval qualifier.

• In “Starting the Receiver Server ” [243],
added the description of the -initialize
qualifier and updated the description of -
updateresync for V6.0-000.

Revision V6.0-000 19 October 2012 • In “Starting the Source Server” [230], added
the description of the -freeze qualifier.

• Added a new section called “Instance
Freeze” (page 193).

Revision V5.5-000/10 28 September 2012 In “Starting the Receiver Server ” (page 243),
improved the description of -UPDATERESYNC.

Revision V5.5-000/9 14 August 2012 Improved the description of the replication
WAS_ON state and added the “Recovering from
the replication WAS_ON state ” (page 219)
section.

Revision V5.5-000/6 19 July 2012 Removed excessive spacing around SVG
diagrams in screen and print pdfs.

Revision V5.5-000/5 17 July 2012 Updated for V5.5-000.

Revision V5.5-000/4 6 June 2012 Removed -LOG as an option for -STATSLOG.

Revision V5.5-000/3 2 May 2012 • In “Rolling Back the Database After System
Failures” (page 249), corrected the
command syntax and the example.

• In “Starting the Source Server” (page 230),
corrected the quoting of -filter examples.

Database Replication

175

Revision V5.5-000/1 5 March 2012 Improved the description of the -instsecondary
qualifier. Added the “Stopping a Source
Server” [241] section and the “Shutting Down
an instance” [209] procedure.

Revision V5.5-000 27 February 2012 In “Starting the Source Server” [230], added
information about using external filters for pre-
V5.5-000 versions.

Revision 4 13 January 2012 In “Starting the Source Server” [230], added
an example of a replication filter.

Revision 2 2 December 2011 Corrected the usage of the term propagating
instance, improved the description
of -stopsourcefilter, and changed -
nopropagatingprimary to -propagatingprimary.

Revision 1 10 November 2011 In the “Startup” [204] section, changed
"Restore the replication instance file" to
"Recreate the replication instance file".

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

GT.M replication provides logical equivalence between multiple databases. It facilitates continuous application availability, real-
time decision support, warehousing, analytics, and auditing. There are two types of replication:

1. Business Continuity (BC) replication

2. Supplementary Instance (SI) replication

BC replication provides business continuity for systems of record. Updates applied at an originating instance replicate in near
real-time to a replicating instance. To help ensure this consistency, BC replication prohibits locally generated database updates
on a replicating secondary instance. For example with instances named A and B, business logic processed on instance A can be
streamed to instance B so that should A ever go down, B can immediately take over and provide continuity. In order to ensure
that B produces results consistent with A, B can contain only material state information that is also in A.

Updates applied at an originating instance replicate in near real-time to as many as sixteen replicating instances each of which
can propagate further down to as many as sixteen replicating instances. Each replicating instance can further replicate to as any
as sixteen replicating instances and so on. When an originating instance becomes unavailable, any downstream instance can
become the replacement originating instance to keep the application available.

In the following illustration, A is the originating primary instance and B and C are its replicating instances. C is also a
propagating primary instance because it further replicates to D. This BC replication configuration can also be described as a B<-
A->C->D configuration.

Database Replication

176

BC replication is intended for mission-critical applications that must be available 24 hours a day, 365 days a year, in the face of
both unplanned events (such as system crashes) as well planned events (such as system and software upgrades).

With BC replication, you can create a logical multi-site (LMS) replication configuration for mission critical applications that
must always be available not only in face of unplanned events (such as system or data center failures) but also in the face of
planned events such as computing platform upgrades, OS upgrades, GT.M upgrades and even application upgrades. Deploying
a BC replication configuration should take into account available network capacities, operational preferences, risk assessments,
and business continuity requirements.

SI replication allows replication from an instance A to another originating primary instance P. P can execute its own business
logic, compute, and commit its own updates to its database, while receiving a replication stream. In turn, P can have its own
replicating secondary instance Q and A can have its own replicating instance B. In such an SI replication configuration, only
originating primary instances A and P can execute business logic and compute database updates. Replicating secondary
instances B and Q are only permitted to receive and apply replication streams from their originating primary instances. The
following diagram illustrates this configuration.

Database Replication

177

In this diagram, A is an originating primary instance having B and P as its replicating instance. P is another originating primary
instance (supplementary instance) having Q as its replicating instance. This SI replication can also be described as a B<-A->P-
>Q configuration.

SI replication is intended to be a general purpose mechanism whose utility includes applications such as real-time decision
support, warehousing, analytics, and auditing.

Note

In this book, instances {A, B, C...} denote system of records (BC replication) and instances {P, Q, R...} denote
instances that receive SI replication.

GT.M replication is asynchronous, which in turn means that the source and receiver ends of a replication connection are at an
identical state only when there is no activity underway. To maintain consistency, and to restore it when restarting a replication
connection, instances maintain a common, mutually coherent, instance-wide serial number called a journal sequence number.
Each journal sequence number is tagged with two fields that identify the source of the update- a stream # that can take on
values 0 through 15 and a stream sequence number (the journal sequence number of the update on the originating instance).
Because replication deals with an entire global variable namespace, regardless of the mapping of global variables to database
files, all updates participate in this numbering, even when modifying different database files.

On an originating primary instance that is not the recipient of an SI replication stream, the journal sequence number and the
stream sequence number are the same.

Suppose sequence numbers in P are 100, 101, and 102. If the first and third transactions are locally generated and the second is
replicated, the tagged journal sequence numbers might be something like {100,0,10}, {101,1,18}, {102,0,11}. The 0 stream # for 100
and 102 indicates those transactions are generated locally on P whereas stream # 1 indicates those transactions were generated

Database Replication

178

in A. It is important to note that if, as part of restarting replication with A, P needs to roll {101,1,18} off its database, database
update serialization also requires it to roll {102,0,11} off as well, and both will appear in the Unreplicated Transaction Log (also
known as Lost Transaction File).

The same transaction that has a P sequence number of 101 will have a different sequence number of 18 on A and B. That is,
the journal sequence number on A becomes the stream sequence number on P. The replication instance file in P contains
information that allows GT.M to determine this mapping, so that when P rolls {101,1,18} off its database, A knows that Malvern
has rolled off A.s transaction 18.

If P in turn implements BC replication to another instance Q, the tagging is propagated to Q, such that if A and P both go down
(e.g., if they are co-located in a data center that loses electricity), B and C can take over the functions of A and P respectively,
and Q can perform any synchronization needed in order to start accepting a replication stream from B as being a continuation
of the updates generated by A, and B in turn accepts Q as the successor to P.

An LMS Group is a set of one or more instances that receive updates from the same originating primary instance and represent
the same logical state. GT.M implicitly forms an LMS Group by storing the identification of the originating primary instance in
the replication instance file of each replicating instance. There are two types of LMS Groups:

1. BC Group: An LMS Group whose originating primary instance is a BC instance. A BC Group can have BC and SI instances
as members.

2. SI Group: An LMS Group whose originating primary instance is an SI instance. An SI Group can have only SI instances as
members and can receive replication only from a BC member of a BC Group.

BC members of a BC Group can replicate downstream to other BC and SI groups whereas an SI Group cannot replicate
downstream to other groups.

Important

Instances can change their roles within an LMS group but they cannot move between groups.however data
from one instance / group can be loaded into another group.

The following example illustrates a replication configuration where instance A from A's BC Group replicates instance Q in Q's
SI Group.

+-----------------+
| + A + |
| | | | |
|B<----| | |---->P|
+--------|--------+
 |
 |
+--------V--------+
| + Q + |
| | | |
|R<----| |---->S|
+-----------------+

Note

In this replication configuration, instance B can also replicate to instance Q. However, instance P cannot
replicate to an instance in Q's group because it is an SI member of A's BC group.

Database Replication

179

GT.M imposes no distance limits between instances. You can place instances 20,000 kilometers apart (the circumference of
Planet Earth is 40,000 kilometers) or locally within the same data center.

Using TCP connections, GT.M replicates between instances with heterogeneous stacks of hardware, operating system, endian
architecture1 and even GT.M releases. A GT.M instance can source a BC replication stream to or receive a BC replication
stream from GT.M V5.1-000 or later. However, SI replication requires both source and receive side must be GT.M V5.5-000. SI
replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M on OpenVMS. GT.M
replication can even be used in configurations with different application software versions, including many cases where the
application software versions have different database schema. This also means that a number of inexpensive system - such as
GNU/Linux commodity servers - can be placed in locations throughout an organization. Replicating instances can be used for
decision support, reporting, and analytics. Because GT.M databases can be encrypted, these commodity servers are potentially
usable in environments outside secure data centers as long as their operating systems and software are secured.

GT.M replication requires journaling to be enabled and turned on for replicated regions. Unreplicated regions (for example
global variables contain information that is meaningful only on one instance and only as long as the instance is operating - such
as process ids, temporary working files, and so on) need not be replicated or journaled.

GT.M replication mechanism is designed in such a way that a network failure between instances will not stop an application
from being available-which is a limitation of techniques such as high availability clustering2. There are mechanisms in place
for edge cases like processing "in flight" transactions and common cases like handling backlog of updates after recovery
from a network failure. While it is not possible to provide absolute continuity of business in our imperfect universe, an LMS
configuration gives you the flexibility to choose application configurations that match your investment to a risk level that best
meets the business needs of your organization.

Database Transaction Number

Every transaction applied to a database file increments the database transaction number for that file. Each block records the
database transaction number at which it was updated, and the Current transaction field in the file header shows the value
for the next transaction or mini-transaction to use. The following database file header fields all show database transaction
numbers: Last Record Backup, Last Database Backup, Last Bytestream Backup, Maximum TN, and Maximum TN Warn.

Database transaction numbers are currently unsigned 64-bit integers.

While database activity uses database transaction numbers sequentially, not every transaction number can be found in a
database block. For a Kill increments the database transaction number, but can remove blocks with earlier database transaction
numbers from the database.

Note that database transaction numbers are updated in memory and only periodically flushed to secondary storage, so in cases
of abnormal shutdown, the on-disk copies in the file header might be somewhat out-of-date.

Journal Sequence Number

While the database transaction number is specific to a database file, replication imposes a serialization of transactions across all
replicated regions. As each transaction is placed in the Journal Pool it is assigned the next journal sequence number. When a
database file in a replicated instance is updated, the Region Seqno field in the file header records the journal sequence number
for that transaction. The journal sequence number for an instance is the maximum Region Seqno of any database file in that

1BC replication from/to GT.M on OpenVMS is supported only to/from instances on OpenVMS and little endian UNIX/Linux platforms.
2GT.M database replication is compatible with clustering - each instance can be a "hot-warm" cluster where if one node fails, another node can recover the
database and continue operation. Since GT.M LMS application configurations provides better business continuity in the face of a greater range of eventualities
than clusters, if you wish to use clusters, consider their use in conjunction with, rather than instead of, GT.M LMS configurations.

Database Replication

180

instance. While it uses them in processing, GT.M stores journal sequence numbers only in journal files. In database file headers,
Zqgblmod Seqno and Zqgblmod Trans are journal sequence numbers.

Except for transactions in Unreplicated Transaction Logs, the journal sequence number of a transaction uniquely identifies that
transaction on the originating primary instance and on all replicating secondary instances. When replicated via SI replication,
the journal sequence number becomes a stream sequence number (see below) and propagated downstream, thus maintaining
the unique identity of each transaction.

Journal sequence numbers cannot have holes - missing journal sequence numbers are evidence of abnormal database activity,
including possible manual manipulation of the transaction history or database state.

Journal sequence numbers are 60-bit unsigned integers.

Stream Sequence Number

The receiver of a SI replication stream has both transactions that it receives via replication as well as transactions that it
computes locally from business logic. As discussed earlier, while journal sequence numbers can uniquely identify a series
of database updates, they cannot identify the source of those updates. Therefore, we have the concept of a stream sequence
number.

On an originating primary instance that is not the recipient of an SI replication stream, the journal sequence number and the
stream sequence number are the same.

On a primary instance that is the recipient of an SI replication stream, the journal sequence number uniquely identify and
serialize all updates, whether received from replication or locally generated. However, there is also a stream sequence number,
which is the journal sequence number for locally generated transactions, and for replicated updates, the combination of a non-
zero 4 bit tag (that is, with values 1 through 15) and the journal sequence number for the transaction on the system from which
it was replicated. These stream sequence numbers are propagated to downstream replicating secondary instances.

Stream sequence numbers are 64-bit unsigned integers.

Examples

To make the following scenarios easier to understand, each update is prefixed with the system where it was originally
generated and the sequence number on that system and any BC replicating secondary instances.

Simple Example

The three systems initially operate in roles O (Originating primary instance), R (BC Replicating secondary instance) and S
(recipient of an SI replication stream).

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97,
A98

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A98 and Malvern as a SI that includes
transaction number A97, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes O: ... A95, A96, A97,
A98, B61

... M34, A95, M35,
M36, A96, A97, M37,
M38

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A98 as the latest transaction in its
database, and starts processing application logic to maintain

Database Replication

181

Ardmore BrynMawr Malvern Comments

business continuity. In this case where Malvern is not ahead of
BrynMawr, the Receiver Server at Malvern can remain up after
Ardmore crashes. When BrynMawr connects, its Source Server
and Malvern’s Receiver Server confirms that BrynMawr is not
behind Malvern with respect to updates received from Ardmore,
and SI replication from BrynMawr picks up where replication from
Ardmore left off.

- O: ... A95, A96, A97,
A98, B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40

Malvern operating as a supplementary instance to BrynMawr
replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Although A98 was originally
generated on Ardmore, Malvern received it from BrynMawr
because A97 was the common point between BrynMawr and
Malvern.

... A95, A96, A97,
A98, A99

O: ... A95, A96, A97,
A98, B61, B62, B63,
B64

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40, B62, B63

Malvern, continuing as a supplementary instance to BrynMawr,
replicates transactions processed on BrynMawr, and also applies
its own locally generated updates. Ardmore meanwhile has been
repaired and brought online. It has to roll transaction A99 off its
database into an Unreplicated Transaction Log before it can start
operating as a replicating secondary instance to BrynMawr.

R: ... A95, A96, A97,
A98, B61, B62, B63,
B64

O: ... A95, A96, A97,
A98, B61, B62, B63,
B64, B65

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, B61,
M40, B62, B63, M41,
B64

Having rolled off transactions into an Unreplicated Transaction
Log, Ardmore can now operate as a replicating secondary instance
to BrynMawr. This is normal BC Logical Multi-Site operation.
BrynMawr and Malvern continue operating as originating primary
instance and supplementary instance.

Ensuring Consistency with Rollback

Whereas in the last example Malvern was not ahead when starting SI replication from BrynMawr, in this example,
asynchronous processing has left it ahead and must rollback its database state before it can receive the replication stream.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes O: ... A95, A96, A97 ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database.
Malvern cannot immediately start replicating from BrynMawr
because the database states would not be consistent - while
BrynMawr does not have A98 in its database and its next update
may implicitly or explicitly depend on that absence, Malvern does,
and may have relied on A98 to compute M39 and M40.

- O: ... A95, A96, A97,
B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, B61

For Malvern to accept replication from BrynMawr, it must roll
off transactions generated by Ardmore, (in this case A98) that
BrynMawr does not have in its database, as well as any additional

Database Replication

182

Ardmore BrynMawr Malvern Comments

transactions generated and applied locally since transaction
number A98 from Ardmore.a This rollback is accomplished with
a mupip journal -rollback -fetchresync operation on Malvern.b

These rolled off transactions (A98, M39, M40) go into the
Unreplicated Transaction Log and can be subsequently reprocessed
by application code.c Once the rollback is completed, Malvern
can start accepting replication from BrynMawr.d BrynMawr in
its Originating Primary role processes transactions and provides
business continuity, resulting in transactions B61 and B62.

- O: ... A95, A96, A97,
B61, B62, B63, B64

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, B61, B62, M39a,
M40a, B63

Malvern operating as a supplementary instance to BrynMawr
replicates transactions processed on BrynMawr, and also applies its
own locally generated updates. Note that M39a & M40a may or may
not be the same updates as the M39 & M40 previously rolled off the
database.

aAs this rollback is more complex, may involve more data than the regular LMS rollback, and may involve reading journal records sequentially; it may take
longer.
bIn scripting for automating operations, there is no need to explicitly test whether BrynMawr is behind Malvern - if it is behind, the Source Server will fail to
connect and report an error, which automated shell scripting can detect and effect a rollback on Malvern followed by a reconnection attempt by BrynMawr. On
the other hand, there is no harm in Malvern routinely performing a rollback before having BrynMawr connect - if it is not ahead, the rollback will be a no-op.
This characteristic of replication is unchanged from releases prior to V5.5-000.
cGT.M's responsibility for them ends once it places them in the Unreplicated Transaction Log.
dUltimately, business logic must determine whether the rolled off transactions can simply be reapplied or whether other reprocessing is required. GT.M's
$ZQGBLMOD() function can assist application code in determining whether conflicting updates may have occurred.

Rollback Not Desired or Required by Application Design

In the example above, for Malvern to start accepting SI replication from BrynMawr with consistency requires it to rollback
its database because it is ahead of BrynMawr. There may be applications where the design of the application is such that
this rollback neither required nor desired. GT.M provides a way for SI replication to start in this situation without rolling
transactions off into an Unreplicated Transaction File.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Crashes O: ... A95, A96, A97,
B61, B62

... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

When an event disables Ardmore, BrynMawr becomes the new
originating primary, with A97 the latest transaction in its database
and starts processing application logic. Unlike the previous
example, in this case, application design permits (or requires)
Malvern to start replicating from BrynMawr even though BrynMawr
does not have A98 in its database and Malvern may have relied on
A98 to compute M39 and M40.

- O: ... A95, A96, A97,
B61, B62

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40,
B61, B62

With its Receiver Server started with the -noresync option, Malvern
can receive a SI replication stream from BrynMawr, and replication
starts from the last common transaction shared by BrynMawr and

Database Replication

183

Ardmore BrynMawr Malvern Comments

Malvern. Notice that on BrynMawr no A98 precedes B61, whereas it
does on Malvern, i.e., Malvern was ahead of BrynMawr with respect
to the updates generated by Ardmore.

Two Originating Primary Failures

Now consider a situation where Ardmore and Malvern are located in one data center, with BC replication to BrynMawr and
Newtown respectively, located in another data center. When the first data center fails, the SI replication from Ardmore to
Malvern is replaced by SI replication from BrynMawr to Newtown.

Ardmore BrynMawr Malvern Newtown Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97,
A98

S: ... M34, A95, M35,
M36, A96, M37, A97,
M38

R: ... M34, A95, M35,
M36, A96, M37

Ardmore as an originating primary
instance at transaction number A99,
replicates to BrynMawr as a BC replicating
secondary instance at transaction number
A98 and Malvern as a SI that includes
transaction number A97, interspersed with
locally generated updates. Malvern in turn
replicates to Newtown.

Goes down with the
data center

O: ... A95, A96, A97,
A98, B61, B62

Goes down with the
data center

... M34, A95, M35,
M36, A96, M37

When a data center outage disables
Ardmore, and Malvern, BrynMawr becomes
the new originating primary, with A98
as the latest transaction in its database
and starts processing application logic to
maintain business continuity. Newtown
can receive the SI replication stream from
BrynMawr, without requiring a rollback
since the receiver is not ahead of the source.

- O: ... A95, A96, A97,
A98, B61, B62

- S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62

Newtown receives SI replication from
BrynMawr and also applies its own locally
generated updates. Although A97 and A98
were originally generated on Ardmore,
Newtown receives them from BrynMawr.
Newtown also computes and applies locally
generated updates

... A95, A96, A97,
A98, A99

O: ... A95, A96, A97,
B61, B62, B63, B64

... M34, A95, M35,
M36, A96, M37, A97,
M38

S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64

While BrynMawr and Newtown, keep
the enterprise in operation, the first data
center is recovered. Since Ardmore has
transactions in its database that were not
replicated to BrynMawr when the latter
started operating as the originating primary
instance, and since Malvern had transactions
that were not replicated to Newtown when
the latter took over, Ardmore and Malvern
must now rollback their databases and
create Unreplicated Transaction Files
before receiving BC replication streams
from BrynMawr and Newtown respectively.

Database Replication

184

Ardmore BrynMawr Malvern Newtown Comments

Ardmore rolls off A98 and A99, Malvern
rolls off A97 and M38.

R: ... A95, A96, A97,
B61, B62, B63, B64

O: ... A95, A96, A97,
B61, B62, B63, B64,
B65

R: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64

S: ... M34, A95, M35,
M36, A96, M37, A97,
A98, N73, B61, N74,
B62, N75, B63, N76,
B64, N77

Having rolled off transactions into an
Unreplicated Transaction Log, Ardmore
can now operate as a replicating secondary
instance to BrynMawr. This is normal BC
Logical Multi-Site operation. BrynMawr and
Malvern continue operating as originating
primary instance and supplementary
instance. Note that having rolled A97 off its
database, Malvern receives that transaction
from Newtown as it catches up.

Replication and Online Rollback

Consider the following example where Ardmore rolls back its database in state space while an application is in operation.
using the mupip journal -rollback -backward -online feature.

Ardmore BrynMawr Malvern Comments

O: ... A95, A96, A97,
A98, A99

R: ... A95, A96, A97 S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40

Ardmore as an originating primary instance at transaction number
A99, replicates to BrynMawr as a BC replicating secondary instance
at transaction number A97 and Malvern as a SI that includes
transaction number A98, interspersed with locally generated
updates. Updates are recorded in each instance's journal files using
before-image journaling.

Rolls back to
A96 with A97
through A99 in
the Unreplicated
Transaction Log

Rolls back
automatically to A96
(assume Receiver
Server started with -
autorollback - refer
to the V5.5-000
Release Notes for
details.

- Instances receiving a replication stream from Ardmore can be
configured to rollback automatically when Ardmore performs an
online rollback by starting the Receiver Server with -autorollback.
If Malvern's Receiver Server is so configured, it will roll A97
through M40 into an Unreplicated Transaction Log. This scenario
is straightforward. But with the -noresync qualifier, the Receiver
Server can be started configured to simply resume replication
without rolling back, and that scenario is developed here.

O: ... A95, A96,
A97a, A98a, A99a

R: ... A95, A96,
A97a, A98a

S: ... M34, A95, M35,
M36, A96, A97, M37,
M38, A98, M39, M40,
A97a, M41, A98a,
M42

Transactions A97a through A99a are different transactions from
A97 through A99 (which are in an Unreplicated Transaction File
on Ardmore and must be reprocessed). Note that Malvern has
both the original A97 and A98 as well as A97a and A98a. A99 was
never replicated to Malvern - Ardmore rolled back before it was
replicated, and A99a has not yet made it to Malvern (it will soon,
unless Ardmore rolls back again).

Limitations - SI Replication

SI replication is only supported on POSIX editions of GT.M - in other words, it is not supported by GT.M on OpenVMS.
Furthermore, starting V5.5-000, GT.M does not support replication between OpenVMS and POSIX platforms, or on POSIX
platforms with GT.M releases prior to V5.1-000. To upgrade to GT.M V5.5-000, or to upgrade from GT.M on OpenVMS to GT.M
V5.5-000 on a POSIX platform, first upgrade to GT.M V5.1-000 or later on a POSIX platform as an intermediate step.

Database Replication

185

Although a receiver of SI replication can source a BC replication stream for downstream propagation, it cannot source an SI
replication stream. So, in the example above, while Malvern can receive SI replication from Ardmore or BrynMawr, and it can
source a BC replication stream to Newtown, which can in turn source a BC replication stream to Oxford. Thus, none of Malvern,
Newtown or Oxford can source an SI replication stream.

Also an instance can only receive a single SI replication stream. Malvern cannot receive SI replication from an instance other
than Ardmore (or an instance receiving BC replication from Ardmore, such as BrynMawr). Newtown or Oxford are replicating
secondary instances and can receive no updates other than from Malvern.

The total number of replication streams that an instance can source is sixteen, with any combination of BC and SI replication.

Database Replication

186

Replication Architecture

The following diagram illustrates a BC replication configuration deployed as B<-A->C. White (top) is the originating instance
processing business logic, while Rose (left) and Yellow (right) are replicating instances. The dotted line represents a TCP
connection and the red dots show the movement of transactions. If White goes down in an unplanned or planned event, either
Rose or Yellow can become the originating instance within seconds to tens of seconds, and the other instance can become
a replicating instance to the new originating instance. When White recovers, it rejoins as a replicating instance to the new
originating instance. At some suitable future time, when so desired, White can again be made the originating instance.

When a process commits a transaction on White, GT.M provides Durability by writing and "hardening" an update record to the
journal file and then the database file. The same process also writes the update records to an area of shared memory called a
Journal Pool as part of committing the transaction, but does not wait for Rose and Yellow to commit the transaction (this means

Database Replication

187

that a failure of the network between instances does not stop application operation on White). Two Source Server processes,
one for Rose and one for Yellow, read journal update records from the Journal Pool and stream updates over TCP connections
to Receiver Server processes on the replicating instances they serve.

Under normal conditions, White Source Servers stream update records from the Journal Pool to the Rose and Yellow Receiver
Servers. The Journal Pool is a shared memory segment that does not expand after its initial creation. If updates for the database
state to which the replicating instance needs to catch up are no longer in the Journal Pool, the Source Server finds the updates
in journal files, until the replicating instance catches up to the point where the remaining required updates can again come
from the Journal Pool. The diagram represents this with the curved lines from the journal file to the Source Server processes.

A Source Server3 can be in either of two modes--active mode or passive mode.

In active mode, a Source Server connects to the Receiver Server on its replicating instance and transfers update records from
the Journal Pool via the communication channel. If an active Source Server is not connected to its Receiver Server, it makes
repeated attempts to connect until it succeeds. When an active Source Server connects with its Receiver Server, they ensure
their two instances are in sync before proceeding with replication. In the diagram, the White Source Servers are in active mode.
When an active Source Server receives a command to switch to passive mode, it closes the connection with its Receiver Server
and "goes to sleep" until it receives a command to become active.

In passive mode, a Source Server is in a stand-by state. In the diagram, the Rose and Yellow Source Servers are in passive mode.
When a passive Source Server receives a command to switch to active mode, it attempts to establish a connection with the
specified Receiver Server on its replicating instance.

Under typical operating conditions, with no system or network bottlenecks, GT.M moves a transaction off the originating
instance and into the care of the network moving towards its replicating instance in sub-millisecond time frames. Network
transit times then determine how long the transaction message takes to reach the replicating instance. Because it uses a change-
or delta-based protocol, GT.M Replication uses network bandwidth efficiently. Furthermore, the Source Server can compress
the byte stream which the Receiver Server then decompresses; alternatively network routers can perform the compression and
decompression. You can use standard techniques at the stack or router for encrypting TCP connections to secure replication.

On Rose and Yellow instances, a Receiver Server receives update records sent by the White Source Server and puts them in the
Receive Pool, which is in a shared memory segment. Source and Receiver Server processes implement flow control to ensure
that the Receive Pool does not overflow. The Update Process picks these update records and writes them to the journal file, the
database file, and the Journal Pool. The Update Process on a replicating instance performs operations analogous to "Application
Logic" on the originating instance.

Helper Processes

Helper processes accelerate the rate at which an Update Process can apply an incoming replication stream to the database on a
replicating instance.

The GT.M database engine performs best when multiple processes concurrently access the database, cooperating with one
another to manage it. Therefore, it is possible for the tens, hundreds or thousands of application processes executing on an
originating instance to outperform a replicating instance with only a single Update Process. Helper processes enable the update
process to apply database updates faster and thereby keep up.

There are two types of helper processes:

1. Reader: Reader processes read the update records in the Receive Pool and attempt to pre-fetch database blocks into the
global buffer pools, so they are more quickly available for the Update Process.

3The first Source Server process started on an instance creates the Journal Pool.

Database Replication

188

2. Writer: Writer processes help the Update Process by flushing database and journal records from shared memory (global and
journal buffers) to the file system.

A certain number of each type of helper process maximizes throughput. As a practical matter, as long as the file system
bandwidth on a replicating instance is equal to or greater than that of the originating instance providing its replication stream,
there need be little concern about having too many helper processes.

Note

There may be other reasons for a replicating instance to lag behind its originating instance during
replication. Helper processes cannot improve situations such as the following:

• There is a bottleneck in the network between the originating and replicating instances--increase the
network bandwidth or use compression.

• The hardware of the replicating instance is not as capable as that of the hardware on the originating
instance--upgrade the hardware of the replicating instance.

Filters

A Filter is a conversion program that transforms a replication stream to a desired schema. It operates as a traditional UNIX
filter, reading from STDIN and writing to STDOUT. Both input and output use the GT.M journal extract format. A filter can
operate on an originating instance or a replicating instance. When the originating instance is an older application version,
a filter can change the update records from the old schema to the new schema. When the originating instance is the newer
application version, a filter can change the update records from the new schema to the old schema. Once you have logic for
converting records in the old schema to the new schema, the per record code serves as the basis for the filter by replacing the
scanning logic with logic to read the extract format and extract the update and completing the filter by reassembling the revised
record(s) into the GT.M extract format.

For complete redundancy during rolling upgrades, you must also have a filter that changes transactions from the new schema
to the old schema. The principal restriction in creating schema change filters is that the filter must not change the number of
transactions in the replication stream, since GT.M uses the journal sequence numbers for checking and restoring the logical
equivalence of instances.

This means:

• If a replication stream contains transactions, for each input transaction, the filter must produce one and exactly one output
transaction. It's acceptable for a transaction to be empty, that is, to make no database updates.

• If an update in a replication stream is outside a transaction, it is considered a transaction in that the journal sequence number
is to be incremented by one.

• If the schema change requires a single database update, simply emit the new update in the output stream.

• If the schema change requires no database updates in the new schema, emit a single empty transaction.

• If the schema change requires multiple database updates in the new schema, create a transaction, and package all the updates
inside that transaction.

Database Replication

189

Replication Instance File

A Replication Instance file maintains the current state of an instance. It also serves as a repository of the history of the journal
sequence numbers that are generated locally or received from other instances.

It includes 3 sections -- File Header, Source Server slots, and History Records.

The File Header section records information about the current instance, such as semaphore and shared memory ids of the
Journal and Receive Pool, journal sequence number of the current instance.

The Source Server slots store information for each replicating instance for which a Source Server is started. A slot stores the
name of the replicating instance, the last transmitted sequence number, and the sequence number when the Source Server was
last connected to the originating instance (Connect Sequence Number).

A Replication Instance file has 16 slots. Initially, all are unused. A Source Server replicating to a replicating instance for the first
time utilizes an unused slot to store the information and any future Source Server process replicating to the same replicating
instance updates this information.

If an unused slot is not available, the first time a Source Server is started to replicate to an instance, the slot for the least
recently started replicating instance is reused, and the information that is previously stored in that slot is overwritten. Any
subsequent mupip replic -source on the preempted replicating instance generates a REPLINSTSECNONE message.

Preemption of slots does not occur if an instance connects to no more than 16 different replicating instances throughout its
lifetime.

In the History Records section, the history of on instance is maintained as a set of records. A new history records is added to
the tail of the instance file whenever an instance changes from being an originating instance to replicating instance or vice
versa --the only exception being when a history record is removed from the tail of the instance file when updates are rolled
back from the database as part of a mupip journal -rollback. Every record identifies a range of journal sequence numbers and
the name of the originating instance that generated those journal records. The first history record starts with the current
journal sequence number of the instance.

When an originating instance transmits a sequence number to a replicating instance, the originating instance name is recorded
as "Root Primary Instance Name" in the replication instance file history of both the instances. The same rule applies when a
replicating instance is acting as an originating instance for another replicating instance downstream.

This history is crucial for determining the journal sequence numbers through which both instances are synchronized when two
instances attempt to connect. This journal sequence number is determined by going back in the history of both the instance
files and finding the earliest shared journal sequence number that was generated by the same originating instance. If the shared
journal sequence number matches the current journal sequence number of the replicating instance, the Receiver Server on the
replicating instance continues with normal replication. Otherwise, a mupip journal -rollback -fetchresync must be performed
on the replicating instance to rollback to a common synchronization point from which the originating instance can transmit
updates to allow it to catch up.

Note

It is necessary to take a backup of the Replication Instance file that is consistent with the snapshot of the
database files in the backup. mupip backup -replinstance creates a backup of the Replication Instance file.
If the replication instance file is damaged or deleted, a new instance file must be created, and all replicating
instance downstream must be recreated from backups.

Database Replication

190

Implementing Replication and Recovery

A transaction processing application makes a series of database updates. GT.M executes these updates online or from data-
driven logic, commonly called "batch."

1. Online Update: An online update arrives at GT.M as a message from a client.

2. Driven by internal information, such as balances in end-of-day, or external information, such as a list of checks from a
clearinghouse.

The processing model in each case is a transaction or a unit of work initiated by client input such as a request to transfer funds
from one account to another, or as the next logical unit of work such as posting interest on the next account. This general
model holds both for applications where users login directly to a host (perhaps using terminal emulation from a workstation)
and those where a client communicates with a host server process. This section lists key considerations for a transaction
processing application to:

• reliably perform online and batch updates on GT.M

• implement an LMS configuration in a tiered environment, and

• facilitate recovery in a cutover event.

Application Architecture

FIS recommends you to plan upfront for database consistency while designing the architecture of an LMS application. Some of
the planning parameters for application's architecture may include:

• Always package all database updates into transactions that are consistent at the level of the application logic using
the TSTART and TCOMMIT commands. For information on commands, refer to the "Commands" chapter in the GT.M
Programmer's Guide. For any updates not so packaged, ensure that the database is logically consistent at the end of every
M statement that updates the database; or that there is application logic to check, and restore application-level consistency
when the database recovers after a crash.

• Ensure that internally driven batch operations store enough information in the database to enable an interrupted batch
operation to resume from the last committed transaction. In case an originating instance fails in the middle of a batch
process, a new originating instance (previously a replicating instance) typically must resume and complete the batch process.

• If the application cannot or does not have the ability to restart batch processes from information in the database, copy a
snapshot of the database to a replicating instance just before the batch starts. In case an originating instance fails, restore the
new originating instance to the beginning of the batch operations, and restart the batch operation from the beginning on the
new originating instance.

• Ensure that externally driven batch processing also has the ability to resume. The external file driving the batch operation
must be available on the replicating instance before starting the batch operation on the originating instance. This is required
to handle originating instance failure during the batch process.

• GT.M produces an error for updates outside the set of database files defined by the instance file. External references are not
prohibited as such. In other words, there can be global directory and instance configurations where an external reference
update falls within the instance and works correctly. Read references outside an instance are permitted because they
currently do not engage replication.

Database Replication

191

This diagram illustrates an application architecture that can reliably perform batch and online updates in a tiered environment.
It addresses the online updates via the Message Transport (which has to be able to reroute communications to the current
originating instance after a cutover) and batch updates via an external file (which has to be made available to the current
originating instance after a cutover).

An application server is a GT.M process that accepts, processes, and responds to messages provided through the Message
Transport. They may exist as a bunch of application servers in a “cloud” of size determined by the size of the node and the
needs of the application. On the originating instance, an application server process receives messages and processes application
transactions. The application logic issues the TSTART command and a series of SET (also KILL and MERGE) commands that
[potentially/provisionally] update the database, then a TCOMMIT command to finalize the transaction. The process may
directly WRITE a reply, but another process may act as an agent that takes that reply from a database record and sends it to the
originator.

Implement a Message Delivery System

This section describes how a well-designed messaging system makes an application's architecture more cutover-ready by using
an example in which the originating instance fails after the TCOMMIT, but before the system generates a reply and transmits it
to the client.

As noted in the previous section, application servers on the originating instance respond to messages from clients delivered
over a network for online operations in a tiered environment. Each client message results in zero (inquiry) or one update
transaction on the server. The network delivering messages must be robust. This means each message must either be delivered

Database Replication

192

exactly once to an application server on the originating instance, or result in client notification of the delivery failure. The
messaging system must handle situations such as failure on the originating instance after the client transmits the message but
before the originating instance receives it. Integration of the message delivery system with the logic determining whether an
instance is an originating instance or replicating instance at any time reduces risk and switch over time.

Application logic typically responds to client messages with a reply generated immediately after the TCOMMIT for a
transaction. The application and the message architecture must handle the scenario in which the originating system fails after
the TCOMMIT, but before the system generates a reply and transmits it to the client. In such a scenario, the client waits for a
response and eventually timesout and retries the message.

An LMS application can handle this situation by designing the message structure to have a unique message identifier (MSGID),
and the application to include the MSGID in the database as part of the TCOMMIT.

If the originating instance crashes after committing the transaction and the cutover logic makes the former replicating instance
the new originating instance--This new originating instance, then, receives the retried message that has the same MSGID from
the client. In this case, one of the following can occur:

• The database shows that the transaction corresponding to the MSGID in the message was processed. The server could then
reply that this transaction was processed. A more sophisticated approach computes the response to the client within the
transaction, and to stores it in the database as part of the transaction commit. Upon receipt of a message identified as a retry
of a previously processed message, the server returns the stored response from the database to the client.

• The database shows the transaction as unprocessed. In this case, the new originating instance processes the transaction.
At this time, it is unknown whether the former originating instance processed the transaction before going down. If it was
not processed, there is no issue. If it was processed but not replicated, GT.M rollback logic rolls it back when the former
originating instance comes up as a replicating instance, and it must be reconciled either manually or automatically, from the
rollback report (since the result of processing the first time may be different from the result of processing the second time).

System Requirements

This section describes the system requirements that are necessary to implement an application with an LMS configuration.

Root Primary Status Identification

GT.M does not make any decisions regarding originating or replicating operations of an instance. You must explicitly specify –
ROOTPRIMARY to identify an instance as current originating instance during application startup.

To implement a robust, continuously available application, each application instance must come up in the correct state. In
particular, there must be exactly one originating instance (-ROOTPRIMARY) at any given time. All database update operations
on replicated databases must take place on the originating instance. LMS prohibits independent logical database updates on
instances other than the originating instance.

Note

MUPIP BACKUP -ONLINE and MUPIP REORG -ONLINE update control information or physical
representations, not the logical database contents, and can operate freely on a replicating instance.

Cutover

Cutover is the process of reconfiguring an LMS application so that a replicating instance takes over as the current originating
instance. This might be a planned activity, such as bringing down the originating instance for hardware maintenance, or it

Database Replication

193

may be unplanned such as maintaining application availability when the originating instance or the network to the originating
instance goes down.

Implementing and managing cutover is outside the scope of GT.M. FIS recommends you to adhere to the following rules while
designing cutover:

1. Always ensure that there is only one originating instance at any given time where all database updates occur. If there is no
originating instance, the LMS application is also not available.

2. Ensure that messages received from clients during a cutover are either rejected, so the clients timeout and retry, or are
buffered and sent to the new originating instance.

3. Always configure a former originating instance to operate as a replicating instance whenever it resumes operations or
comes back online after a crash.

4. Failing to follow these rules may result in the loss of database consistency between an originating instance and its
replicating instances.

Important

A cutover is a wholesome practice for maximizing business continuity. FIS strongly recommends setting
up a cutover mechanism to keep a GT.M application up in the face of disruptions that arise due to errors in
the underlying platform. In environments where a cutover is not a feasible due to operational constraints,
consider setting up an Instance Freeze mechanism for your application. For more information, refer to
“Instance Freeze” (page 193).

Instance Freeze

In the event of run-time conditions such as no disk space, I/O problems, or disk structure damage, some operational policies
favor deferring maintenance to a convenient time as long as it does not jeopardize the functioning of the GT.M application. For
example, if the journal file system runs out of disk space, GT.M continues operations with journaling turned off and moves to
the replication WAS_ON state until journaling is restored. If there is a problem with one database file or journal file, processes
that update other database regions continue normal operation.

Some operational policies prefer stopping the GT.M application in such events to promptly perform maintenance. For such
environments, GT.M has a mechanism called "Instance Freeze".

The Instance Freeze mechanism provides an option to stop all updates on the region(s) of an instance as soon as a process
encounters an error while writing to a journal or database file. This mechanism safeguards application data from a possible
system crash after such an error.

The environment variable gtm_custom_errors specifies the complete path to the file that contains a list of errors that should
automatically stop all updates on the region(s) of an instance. The error list comprises of error mnemonics (one per line and in
capital letters) from the GT.M Message and Recovery Guide. The GT.M distribution kits include a custom_errors_sample.txt file
which can be used as a target for the gtm_ custom_errors environment variable.

Note

When a processes that is part of an instance configured for instance freeze behavior encounters an
error with journaling, it freezes the instance and invokes its own error trap even if it does not have the
gtm_custom_errors environment variable set.

Database Replication

194

You can enable the Instance Freeze mechanism selectively on any region(s) of an instance. For example, a region that represents
a patient or financial record may qualify for an Instance Freeze whereas a region with an easily rebuilt cross reference index
may not. You can also promptly freeze an instance irrespective of whether any region is enabled for Instance Freeze.

MUPIP SET -[NO]INST[_FREEZE_ON_ERROR] [-REGION|-FILE] enables custom errors in region to automatically cause
an Instance Freeze. MUPIP REPLICATE -SOURCE -FREEZE={ON|OFF} -[NO]COMMENT[='"string"'] promptly sets or clears
an Instance Freeze on an instance irrespective of whether any region is enabled for Instance Freeze (with MUPIP SET -
INST_FREEZE_ON_ERROR).

A process that is not in a replicated environment ignores $gtm_custom_errors. The errors in the custom errors file must have a
context in one of the replicated regions and the process recognizing the error must have the replication Journal Pool open. For
example, an error like UNDEF cannot cause an Instance Freeze because it is not related to the instance. It also means that, for
example, standalone MUPIP operations can neither cause nor honor an Instance Freeze because they do not have access to the
replication Journal Pool. A process with access to the replication Journal Pool must honor an Instance Freeze even if does not
have a custom error file and therefore cannot initiate an Instance Freeze.

Depending on the error, removing an Instance Freeze is operator driven or automatic. GT.M automatically removes Instance
Freezes that are placed because of no disk space; for all other errors, Instance Freeze must be cleared manually by operator
intervention. For example, GT.M automatically places an Instance Freeze when it detects a DSKNOSPCAVAIL message in the
operator log. It automatically clears the Instance Freeze when an operator intervention clears the no disk space condition.
During an Instance Freeze, GT.M modifies the NOSPACEEXT message from error (-E-) to warning (-W-) to indicate it is
performing the extension even though the available space is less than the specified extension amount. The following errors are
listed in the custom_errors_sample.txt file. Note that GT.M automatically clears the Instance Freeze set with DSKNOSPCAVAIL
when disk space becomes available. All other errors require operator intervention.

• Errors associated with database files caused by either I/O problems or suspected structural damage: DBBMLCORRUPT,
DBDANGER, DBFSYNCERR, DSKNOSPCAVAIL, GBLOFLOW, GVDATAFAIL, GVDATAGETFAIL, GVGETFAIL,
GVINCRFAIL, GVKILLFAIL, GVORDERFAIL, GVPUTFAIL, GVQUERYFAIL, GVQUERYGETFAIL, GVZTRIGFAIL,
OUTOFSPACE, TRIGDEFBAD.

• Errors associated with journal files caused by either I/O problems or suspected structural damage: JNLACCESS, JNLCLOSE,
JNLCLOSED, JNLEXTEND, JNLFILECLOSERR, JNLFILEXTERR, JNLFILOPN, JNLFLUSH, JNLFSYNCERR, JRTNULLFAIL,
JNLRDERR, JNLREAD, JNLVSIZE, JNLWRERR.

During an Instance Freeze, attempts to update the database and journal files hang but operations like journal file extract which
do not require updating the database file(s) continue normally. When an Instance Freeze is cleared, processes automatically
continue with no auxiliary operational or programmatic intervention. The Instance Freeze mechanism records both the freeze
and the unfreeze in the operator log.

Note

As of V6.0-000, the Instance Freeze facility is a field test grade implementation. Because there are a large
number of errors that GT.M can recognize and because GT.M has several operational states, the GT.M
team has tested the errors in the custom_errors_sample.txt which are consistent with what we expect to be
common usage. If you experience problems trying to add other errors or have concerns about plans to add
other errors, please consult your GT.M support channel.

TLS/SSL Replication

GT.M includes a plugin reference implementation that provides the functionality to secure the replication connection between
instances using Transport Layer Security (TLS; previously known as SSL). Just as database encryption helps protect against
unauthorized access to a database by an unauthorized process that is able to access disk files (data at rest), the plugin reference

Database Replication

195

implementation secures the replication connection between instances and helps prevent unauthorized access to data in
transit. FIS has tested GT.M's replication operations of the TLS plugin reference implementation using OpenSSL (http://
www.openssl.org). A future GT.M release may include support for popular and widely available TLS implementations /
cryptography packages other than OpenSSL. Note that a plug-in architecture allows you to choose a TLS implementation and
a cryptography package. FIS neither recommends nor supports any specific TLS implementation or cryptography package and
you should ensure that you have confidence in and support for whichever package that you intend to use in production.

Note

Database encryption and TLS/SSL replication are just two of many components of a comprehensive security
plan. The use of database encryption and TLS replication should follow from a good security plan. This
section discusses encrypted GT.M replicating instances and securing the replication connection between
them using TLS/SSL; it does not discuss security plans.

Important

You can setup TLS replication between instances without using GT.M Database Encryption. GT.M Database
Encryption is not a prerequisite to using TLS replication.

The general procedure of creating a TLS replication setup includes the following tasks:

1. Create a new database or use an existing one.

2. “Creating a root-level certification authority” (page 195)

3. “Creating leaf-level certificates” (page 196)

4. “Creating a configuration file” (page 198)

5. Enabling replication and starting the Source and Receiver Servers with the TLSID qualifier.

Creating a root-level certification authority

To use TLS, the communicating parties need to authenticate each other. If the authentication succeeds, the parties encrypt
the subsequent communication. TLS authentication uses certificates signed by Certificate Authorities (CAs). Certificate
Authorities' certificates themselves are signed (and trusted) by other CAs eventually leading to a Root CA, which self-signs. its
own certificate Although the topic of certificates, and the use of software such as OpenSSL is well beyond the scope of GT.M
documentation, the steps below illustrate the quick-start creation of a test environment using Source and Receiver certifications
with a self-signed Root CA certificate.

Creating a root certificate authority involves three steps.

1. Generate a private key with the OpenSSL command: openssl genrsa -des3 -out ca.key 4096. The command prompts for a
password with which to protect the private key.

2. Generate a self-signed certificate with the OpenSSL command: openssl req -new -x509 -days 365 -key ca.key -out
ca.crt. The command first prompts for the password of the private key followed by a series of interactive queries regarding
the attributes of the certificate. Below is sample output:

Enter pass phrase for ca.key:
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

http://www.openssl.org
http://www.openssl.org

Database Replication

196

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:PA
Locality Name (eg, city) []:Malvern
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Pvt. Ltd
Organizational Unit Name (eg, section) []:Certificate Authority
Common Name (e.g. server FQDN or YOUR name) []:www.example.com
Email Address []:example@example.com

At this point, ca.crt is a root certificate that can be used to sign other certificates (including intermediate certificate authorities).
The private key of the root certificate must be protected from unauthorized access.

Creating leaf-level certificates

The root certificate is used to sign regular, leaf-level certificates. Below are steps showing the creation of a certificate to be used
to authenticate a GT.M Source Server with a GT.M Receiver Server (and vice-versa).

1. Generate a private key. This is identical to step (a) of root certificate generation.

2. Generate a certificate sign request with the OpenSSL command openssl req -new -key client.key -out client.csr.
The command first prompts for the password of the private key followed by a series of interactive queries regarding the
attributes of the certificate. Below is sample output:

Enter pass phrase for client.key:
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:PA
Locality Name (eg, city) []:Malvern
Organization Name (eg, company) [Internet Widgits Pty Ltd]:XYZQ International
Organizational Unit Name (eg, section) []: OurSourceServer
Common Name (e.g. server FQDN or YOUR name) []:www.xyzq.com
Email Address []:xyzq@xyzq.com
Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:challenge
An optional company name []:XYZQ Pvt. Ltd

Typically, organization that generates the certificate sign then sends it to a certificate authority (or a root certificate
authority), which audits the request and signs the certificate with its private key, thereby establishing that the certificate
authority trusts the company/organization that generated the certificate and requested its signing. In this example, we sign
the certificate sign request with the root certificate generated above.

3. Sign the certificate sign request with an OpenSSL command like:

Database Replication

197

openssl ca -config $PWD/openssl.cnf -in client.ccr -out client.crt

The output of this command looks like the following:

>You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [US]: US
State or Province Name (full name) [Philadelphia]:Illinois
City (e.g., Malvern) [Malvern]:Chicago"
Organization Name (eg, company) [FIS]:FIS
Organizational Unit Name (eg, section) [GT.M]:GT.M
Common Name (e.g. server FQDN or YOUR name) [localhost]:fisglobal.com
Ename Address (e.g. helen@gt.m) []:root@gt.m

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./certs/ca.key:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 14 (0xe)
 Validity
 Not Before: Jun 11 14:06:53 2014 GMT
 Not After : Jun 12 14:06:53 2014 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 organizationName = FIS
 organizationalUnitName = GT.M
 commonName = fisglobal.com
 emailAddress = helen@gt.m
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 96:FD:43:0D:0A:C1:AA:6A:BB:F3:F4:02:D6:1F:0A:49:48:F4:68:52
 X509v3 Authority Key Identifier:
 keyid:DA:78:3F:28:8F:BC:51:78:0C:5F:27:30:6C:C5:FE:B3:65:65:85:C9

Certificate is to be certified until Jun 12 14:06:53 2014 GMT (1 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Database Replication

198

Important

Keep the self-signed root certificate authority and leaf-level certificates in a secure location. Protect their
directories with 0500 permissions and the individual files with 0400 permissions so that unauthorized users
cannot access them.

Please refer to OpenSSL documentation http://www.openssl.org/docs/ for information on how to create intermediate CAs,
Diffie-Hellman parameters, Certificate Revocation Lists, and so on.

Creating a configuration file

The configuration file is divided into two sections–Database encryption section and the TLS section. The database encryption
section contains the list of database files and their corresponding key files and the TLS section contains a TLSID label that
identifies the location of root certification authority certificate in PEM format and leaf-level certificate with their corresponding
private key files. Note that the use of the gtmcrypt_config environment variable require the libconfig library to be installed.

After creating a leaf-level certificate that is signed by a self-signed root certificate, create a configuration file (one for Source
and the other for Receiver Server) with the following format:

tls: {
 verify-depth: 7;
 CAfile: "/path/to/ca.crt";
 tls : {
 format: "PEM";
 cert: "/path/to/client.crt";
 key: "/path/to/client.key";
 };
};

where tls specifies the TLSID that is used to start the Source/Receiver Server, CAfile specifies the path to the root certification
authority, cert specifies the the path to leaf-level certificate and key specifies the path to the private key file.

Set the gtmcrypt_config environment variable to point to the path to the configuration file. The environment variable
gtmtls_passwd_<tlsid> must specify an obfuscated version of the password for the client's private key. Use the maskpass utility
provided with your GT.M distribution to create an obfuscated password.

Here is a sample configuration file:

/* Database encryption section */

database: {
 keys: (
 {
 dat: "/tmp/mumps.dat"; /* Encrypted database file. */
 key: "/tmp/mumps.key"; /* Encrypted symmetric key. */
 },
 {
 dat: "/tmp/a.dat";
 key: "/tmp/a.key";
 },
 ...
);
}

http://www.openssl.org/docs/

Database Replication

199

/* TLS section */

tls: {
 /* Certificate Authority (CA) verify depth provides an upper limit on the number of CAs to look up for
 verifying
 a given
 * certificate. The depth count is described as ''level 0:peer certificate'', ''level 1: CA certificate'',
 * ''level 2: higher level CA certificate'', and so on. The default verification depth is 9.
 */
 verify-depth: 7;

 /* CAfile: points to a file, in PEM format, describing the trusted CAs. The file can contain several CA
 certificates identified by:
 * -----BEGIN CERTIFICATE-----
 * ... (CA certificate in base64 encoding) ...
 * -----END CERTIFICATE-----
 * sequences.
 */
 CAfile: "/home/jdoe/current/tls/certs/CA/gtmCA.crt";

 /* CApath: points to a directory containing CA certificates in PEM format. The files each contain one CA
 certificate. The files are
 * looked up by the CA subject name hash value, which must hence be available. If more than once certificate
 with
 the same
 * name hash value exists, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). The directory
 is
 typically
 * created by the OpenSSL tool 'c_rehash'.
 */
 CApath: "/home/jdoe/current/tls/certs/CA/";

 /* Diffie-Hellman parameters used for key-exchange. Either none or both have to be specified. If neither is
 specified, then
 * then the data is encrypted with the same keys that are used for authentication.
 */
 dh512: "/home/jdoe/current/tls/dh512.pem";
 dh1024: "/home/jdoe/current/tls/dh1024.pem";

 /* crl: points to a file containing list of revoked certificates. This file is created by the openssl
 utility. */
 crl: "/home/jdoe/current/tls/revocation.crl";

 /* Timeout (in seconds) for a given session. If a connection disconnects and resumes within this time
 interval,
 the session
 * is reused to speed up the TLS handshake. A value of 0 forces sessions to not be reused. The default value
 is 1
 hour.
 */
 session-timeout: 600;

 /* List of certificate/key pairs specified by identifiers. */
 PRODUCTION: {
 /* Format of the certificate and private key pair. Currently, the GT.M TLS plug-in only supports PEM

Database Replication

200

 format. */
 format: "PEM";
 /* Path to the certificate. */
 cert: "/home/jdoe/current/tls/certs/Malvern.crt";
 /* Path to the private key. If the private key is protected by a passphrase, an obfuscated version of
 the
 password
 * should be specified in the environment variable which takes the form gtmtls_passwd_<identifier>.
 For instance,
 * for the below key, the environment variable should be 'gtmtls_passwd_PRODUCTION'.
 * Currently, the GT.M TLS plug-in only supports RSA private keys.
 */
 key: "/home/jdoe/current/tls/certs/Malvern.key";
 };

 DEVELOPMENT: {
 format: "PEM";
 cert: "/home/jdoe/current/tls/certs/BrynMawr.crt";
 key: "/home/jdoe/current/tls/certs/BrynMawr.key";
 };
};

If you are using the environment variable gtm_dbkeys to point to the master key file for database encryption, please convert
that file to the libconfig configuration file format as pointed to by the $gtmcrypt_config environment variable at your earliest
convenience. Effective V6.1-000, the gtm_dbkeys environment variable and the master key file it points to are deprecated
in favor of the gtmencrypt_config environment variable. Although V6.1-000 supports the use of $gtm_dbkeys for database
encryption, FIS plans to discontinue support for it in the very near future. To convert master key files to libconfig format

configuration files, please click on to download the CONVDBKEYS.m program and follow instructions in the comments
near the top of the program file. You can also download CONVDBKEYS.m from http://tinco.pair.com/bhaskar/gtm/doc/articles/
downloadables/CONVDBKEYS.m.

Network Link between Systems

GT.M replication requires a durable network link between all instances. The database replication servers must be able to use the
network link via simple TCP/IP connections. The underlying transport may enhance message delivery, (for example, provide
guaranteed delivery, automatic cutover and recovery, and message splitting and re-assembly capabilities); however, these
features are transparent to the replication servers, which simply depend on message delivery and message receipt.

Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE journaling

Between BEFORE_IMAGE journaling and NOBEFORE_IMAGE journaling, there is no difference in the final state of a database /
instance recovered after a crash. The difference between before image and nobefore journaling is in:

• the sequence of steps to recover an instance and the time required to perform them.

• the associated storage costs and IO bandwidth requirements.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX415.txt
downloadables/CONVDBKEYS.m

Database Replication

201

Recovery

When an instance goes down, its recovery consists of (at least) two steps: recovery of the instance itself: hardware, OS, file
systems, and so on - say tsys; tsys is almost completely4 independent of the type of GT.M journaling.

For database recovery:

• With BEFORE_IMAGE journaling, the time is simply that is needed to execute a mupip journal recover backward "*"
command or, when using replication, mupip journal recover -rollback. This uses before image records in the journal files
to roll the database files back to their last epochs, and then forward to the most current updates. If this takes tbck, the total
recovery time is tsys+tbck.

• With NOBEFORE_IMAGE journaling, the time is that required to restore the last backup, say, trest plus the time to perform
a mupip journal -recover -forward "*" command, say tfwd, for a total recovery time of tsys+trest+tfwd. If the last backup is
available online, so that "restoring the backup" is nothing more than setting the value of an environment variable, trest=0 and
the recovery time is tsys+tfwd.

Because tbck is less than tfwd, tsys+tbck is less than tsys+tfwd. In very round numbers, tsys may be minutes to tens of minutes, tfwd
may be tens of minutes and tbck may be in tens of seconds to minutes. So, recovering the instance A might (to a crude first
approximation) be a half order of magnitude faster with BEFORE_IMAGE journaling than with NOBEFORE_IMAGE journaling.
Consider two deployment configurations.

1. Where A is the sole production instance of an application, halving or quartering the recovery time of the instance is
significant, because when the instance is down, the enterprise is not in business. The difference between a ten minute
recovery time and a thirty minute recovery time is important. Thus, when running a sole production instance or a
sole production instance backed up by an underpowered or not easily accessed, "disaster recovery site," before image
journaling with backward recovery is the preferred configuration ofis the preferred configuration ofbetter suits a production
deployment. Furthermore, in this situation, there is pressure to bring A back up soon, because the enterprise is not in
business - pressure that increases the probability of human error.

2. With two equally functional and accessible instances, A and B, deployed in an LMS configuration at a point in time when A,
running as the originating instance replicating to B, crashes, B can be switched from a replicating instance to an originating
instance within seconds. An appropriately configured network can change the routing of incoming accesses from one
instance to the other in seconds to tens of seconds. The enterprise is down only for the time required to ascertain that A is
in fact down, and to make the decision to switch to B— perhaps a minute or two. Furthermore, B is in a "known good" state,
therefore, a strategy of "if in doubt, switchover" is entirely appropriate. This time, tswch, is independent of whether A and
B are running BEFORE_IMAGE journaling or NOBEFORE_IMAGE journaling. The difference between BEFORE IMAGE
journaling and NOBEFORE_IMAGE journaling is the difference in time taken subsequently to recover A, so that it can be
brought up as a replicating instance to B. If NOBEFORE_IMAGE journaling is used and the last backup is online, there is no
need to first perform a forward recovery on A using its journal files. Once A has rebooted:

• Extract the unreplicated transactions from the crashed environment

• Connect the backup as a replicating instance to B and allow it to catch up.

Note

Applications that can take advantage the forthcoming LMX capability will essentially make tswch zero when
used with a suitable front-end network.

4The reason for the "almost completely" qualification is that the time to recover some older file systems can depend on the amount of space used.

Database Replication

202

Comparison other than Recovery

Cost The cost of using an LMS configuration is at least one extra instance plus network bandwidth for
replication. There are trade-offs: with two instances, it may be appropriate to use less expensive
servers and storage without materially compromising enterprise application availability. In fact, since
GT.M allows replication to as many as sixteen instances, it is not unreasonable to use commodity
hardwarea and still save total cost.

Storage Each extra instance of course requires its own storage for databases and journal files. Nobefore
journal files are smaller than the journal files produced by before image journaling, with the savings
potentially offset if a decision is made to retain an online copy of the last backup (whether this nets out
to a saving or a cost depends on the behavior of the application and on operational requirements for
journal file retention).

Performance IO bandwidth requirements of nobefore journaling are less than those of before image journaling,
because GT.M does not write before image journal records or flush the database.

• With before image journaling, the first time a database block is updated after an epoch, GT.M writes
a before image journal record. This means that immediately after an epoch, given a steady rate of
updates, there is an increase in before image records (because every update changes at least one
database block and generates at least one before image journal record). As the epoch proceeds, the
frequency of writing before image records falls back to the steady levelb – until the next epoch.
Before image journal records are larger than journal records that describe updates.

• At epochs, both before image journaling and nobefore journaling flush journal blocks and perform
an fsync() on journal filesc. When using before image journaling, GT.M ensures all dirty database
blocks have been written and does an fsync()d, but does not take these steps.

Because IO subsystems are often sized to accommodate peak IO rates, choosing NOBEFORE_IMAGE
journaling may allow more economical hardware without compromising application throughput or
responsiveness.

aGT.M absolutely requires the underlying computer system to perform correctly at all times. So, the use of error correcting RAM, and mirrored disks is advised
for production instances. But, it may well be cost effective to use servers without redundant power supplies or hot-swappable components, to use RAID rather
than SAN for storage, and so on.
bHow much the steady level is lower depends on the application and workload.
cEven flushing as many as 20,000 journal buffers, which is more than most applications use, is only 10MB of data. Furthermore, when GT.M's SYNC_IO journal
flag is specified, the fsync() operation requires no physical IO.
dThe volume of dirty database blocks to be flushed can be large. For example, 80% of 40,000 4KB database blocks being dirty would require 128MB of data to be
written and flushed.

Database Repair

A system crash can, and often will, damage a database file, leaving it structurally inconsistent. With before image journaling,
normal MUPIP recovery/rollback repairs such damage automatically and restores the database to the logically consistent state
as of the end of the last transaction committed to the database by the application. Certain benign errors may also occur (refer
to the "Maintaining Database Integrity" chapter). These must be repaired on the (now) replicating instance at an appropriate
time, and are not considered "damage" for the purpose of this discussion. Even without before image journaling, a replicating
instance (particularly one that is multi-site) may have sufficient durability in the aggregate of its instances so that backups (or
copies) from an undamaged instance can always repair a damaged instance.

Database Replication

203

Note

If the magnetic media of the database and/or the journal file is damaged (e.g., a head crash on a disk that is
not mirrored), automatic repair is problematic. For this reason, it is strongly recommended that organizations
use hardware mirroring for magnetic media.

Caution

Misuse of UNIX commands, such as kill-9 and ipcrm, by processes running as root can cause database
damage.

Considering the high level at which replication operates, the logical dual-site nature of GT.M database replication makes it
virtually impossible for related database damage to occur on both originating and replicating instances.

To maintain application consistency, do not use DSE to repair or change the logical content of a replicated region on an
originating instance.

Note

Before attempting manual database repair, FIS strongly recommends backing up the entire database (all
regions).

After repairing the database, bring up the replicating instance and backup the database with new journal files. MUPIP backup
online allows replicating to continue during the backup. As stated in the Journaling chapter, the journal files prior to the
backup are not useful for normal recovery.

Procedures

GT.M database replication ensures that the originating instance and its replicating instances are logically identical, excluding
latency in replication. During rolling upgrades, the originating instance and its replicating instances are logically equivalent but
the exact storage of M global variables may differ. FIS recommends you to ensure that all database updates to replicated regions
must occur only on the originating instance. GT.M replicates all changes on the originating instance to its replicating instances.

Normal Operation

LMS applications require procedures for a number of situations, including both normal operation and failure scenarios.
Although LMS applications can operate manually, the requirements are complex enough to warrant automation via scripting.
It is essential to carefully design, implement, and test the procedures to provide an automatic cutover to a replicating instance
within seconds. GT.M provides the required functionality to implement continuous availability via LMS; however, smooth
operation requires significant system engineering to implement.

• Determine current and prior instance status (originating/replicating).

• Perform necessary database recovery/rollback. Different failure modes have different recovery scenarios, which may include
rollback of previously committed transactions for subsequent processing. Reconcile rolled back transactions automatically or
manually.

• Create new journal files. Although not required, this simplifies system administration.

Database Replication

204

• Bring up the Source Server on each replicating instance to establish the Journal Pool. In case of a cutover, the new
originating instance needs the Journal Pool established to replicate data. On the originating instance, bring up the Source
Server in active mode.

• On a replicating instance, bring up the Source Server in passive mode. Start the GT.M Receiver Server on the replicating
instance.

• When you start an originating instance, start any application servers. Optionally start application servers on a replicating
instance to facilitate a faster cutover; however, they must not perform updates to any replicating instance (Always remember
the golden rule: all database updates should be performed only on the originating instance).

• If you are starting a new originating instance and batch operations were in process when the former originating instance
went down, restart those batch operations on the new originating instance.

Startup

An initial startup of an application instance has no prior status. There are two ways to bring up an LMS application: bring up
the originating instance followed by the replicating instance, or bring both up at the same time.

Single-Site

• When launching a multi-site application as a conventional single-site, versus launching it as a single-site for which a
replicating instance will be launched later, always establish the Journal Pool before any M processes access the database.
Bring up the Source Server in passive mode to create the Journal Pool. Then bring up the application. Later, switch the
Source Server to active mode when the replicating instance comes up.

• Perform database recovery/rollback to the last consistent state, since the system may previously have crashed. If the database
was shut down cleanly, the recovery/rollback to the last consistent state is essentially a "no-op." This operation restores the
database to the last committed transaction. (This assumes there is no media damage.)

• Create new journal files.

• Start the Source Server in passive mode.

• Start the application servers.

• If the state of the database indicates that batch operations were in process, restart batch operations.

Dual-site - Concurrent Startup

FIS does not recommend concurrent startup of instances in an LMS configuration because of the possibility of a network or
timing problem resulting in multiple originating or replicating instances. However, in a dual-site configuration it is possible to
concurrently startup the originating and replicating instance. The steps are as follows:

• Use an external agent to identify the originating and replicating instances and then bring up both sites simultaneously.

• Ensure that both databases are logically identical and have the same journal sequence number. (When starting up, an
instance considers its journal sequence number to be the maximum reg_seqno of any replicated region. Thus, if the
originating instance and its replicating instance do not have identical files, that is if they are logically identical but configured
differently, ensure that at least one region on the replicating instance has reg_seqno and resync_seqno the same as the
largest reg_seqno on the originating instance.) No rollback/recovery should be required on either site.

• If there is any possibility that the two are not identical, do not bring both up concurrently.

Database Replication

205

Single-Site to Multi-Site

FIS recommends you to bring up the application as a single-site first and then bring up any replicating instances.

Setting up an A->B replication configuration for the first time

Perform the following steps to setup an originating instance Philadelphia and its replicating instance Shanghai.

• On Philadelphia:

• Turn on replication.

• Create the replication instance file.

• Start the Source Server.

• On Shanghai:

• Turn on replication.

• Create the replication instance file.

• Start the passive Source Server.

• Start the Receiver Server.

Download Example

msr_proc1.tar.gz contains a ready-to-run example of setting up an A->B replication configuration. Click

 to download msr_proc1.tar.gz or open directly from http://tinco.pair.com/bhaskar/gtm/doc/books/ao/
UNIX_manual/msr_proc1.tar.gz. Use the following command sequence to run this example:

Philadelphia - originating instance Shanghai - replicating instance

1 $ source ./env Philadelphia $ source ./env Shanghai

2 $./repl_setup $./repl_setup

3 $./originating_start Philadelphia
Shanghai

$./replicating_start Shanghai

4 $ mumps -r %XCMD 'set
^A="Philadelphia"'

$ mumps -r %XCMD 'write ^A'

Philadelphia

5 $./originating_stop $./replicating_stop

This example demonstrates a command sequence that can be used to set up an A->B replication
configuration on a local test system. No claim of copyright is made with respect to the scripts used in this
example. YOU MUST UNDERSTAND, AND APPROPRIATELY ADJUST, THIS MODULE BEFORE USING IN
A PRODUCTION ENVIRONMENT.

Setting up an A->P replication configuration for the first time

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/downloadables/msr_proc1.tar.gz

Database Replication

206

Perform the following steps to setup an originating instance Philadelphia and its supplementary instance Perth.

• On Philadelphia:

• Turn on replication.

• Create the replication instance file.

• Start the Source Server.

• On Perth:

• Turn on replication.

• Create the replication instance file with the -supplementary qualifier.

• Start the passive Source Server.

• Start the Receiver Server and the Update Process with -updateresync="/path/to/bkup_orig_repl_inst_file" -initialize. Use
the -updateresync -initialize qualifiers only once.

• For subsequent Receiver Server and Update Process startups, perform -rollback -fetchresync start the Recevier Server and
Update Process without the -updateresync -initialize qualifiers.

Download Example

msr_proc2.tar.gz contains a ready-to-run example of setting up an A->P replication configuration. Click

 to download msr_proc2.tar.gz or open directly from http://tinco.pair.com/bhaskar/gtm/doc/books/ao/
UNIX_manual/msr_proc2.tar.gz. Use the following command sequence to run this example:

Philadelphia - originating
instance

Perth - supplementary
instance

1 $ source ./env Philadelphia $ source ./env Perth

2 $./db_create

$./repl_setup

-

3 $./originating_start_suppl
Philadelphia Perth

-

4 $./backup_repl #Note down the
target location of orig_ri_backup

$./db_create

$./suppl_setup /path/to/
orig_ri_backup

5 $ mumps -r %XCMD 'set ^A=1' $ mumps -r %XCMD 'write ^A set
^B=2 write ^B'

6 - $./replicating_stop

7 - $./replicating_start_suppl_n
Perth #all subsequent startups of the
Receiver Server.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/downloadables/msr_proc2.tar.gz

Database Replication

207

Philadelphia - originating
instance

Perth - supplementary
instance

8 $./originating_stop $./replicating_stop

This example demonstrates a command sequence that can be used to set up an A->P replication
configuration on a local test system. No claim of copyright is made with respect to the scripts used in this
example. YOU MUST UNDERSTAND, AND APPROPRIATELY ADJUST, THIS MODULE BEFORE USING IN
A PRODUCTION ENVIRONMENT.

Replicating Instance Starts after a Shut Down or Crash

If the replicated regions are untouched after a shutdown or crash, simply restart the replicating instance. It automatically
catches up with the originating instance. Perform the following steps to start a replicating instance after a shutdown operation
or a crash:

• Recover/rollback database to last consistent state.

• Create new journal files.

• First start the passive Source Server and then the Receiver Server.

• Start the passive application servers, if appropriate.

Replicating Instance Starts from a copy of Originating Instance

In this scenario, the database used to start up a replicating instance is logically identical to the database with which the
originating instance started up, and has the same journal sequence number. When the replicating instance starts, all
transactions applied to the originating instance replicate to the replicating instance as it catches up with the originating
instance.

Perform the following steps to start a replicating instance from a copy of the originating instance:

• Load/restore the database files.

• Recreate the replication instance file.

• Turn replication on.

• Start passive Source Server, and then the Receiver Server.

• Start the passive application servers, if appropriate.

• Preserve all journal files on the originating instance along with back pointers. This is because the Source Server goes to the
journal file to read transactions that are no longer in the journal pool.

Note

Cease all GT.M activity in the replicating instance and RUNDOWN any open database files before copying
database files onto a replicating instance, or creating new database files and loading them with extracts from
the originating instance.

Database Replication

208

Replicating Instance Starts from Backup of Originating Instance

The more common scenario for bringing up a replicating instance is to take a backup of the originating instance and bring it up
as a replicating instance. If the backup is a comprehensive backup, the file headers store the journal sequence numbers.

The backup should use the -newjnlfiles switch of MUPIP backup to create new journal files. Once the replicating instance
becomes operational, the Source Server does not need to go back prior to the backup to find transactions to send to the
replicating instance.

Perform the following steps to start a replicating instance from the backup of an originating instance:

• Load/restore the database. If the replicating database is not from a comprehensive or database backup from the originating
instance, set the journal sequence number from the originating at the instant of the backup for at least one replicated region
on the replicating instance.

• Create new journal files without back pointers to previous generations of journal files with the -noprevjnlfile flag. Since this
database represents the beginning of this instance, it is not meaningful to have a previous generation journal file.

• Start the passive Source Server and then the Receiver Server with the -updateresync qualifier, along with the other startup
qualifiers for the Receiver Server. As the originating instance stores the last journal sequence number transmitted to a
replicating instance, this qualifier is required to force replication to start from the actual journal sequence number in the
replicating instance. Without -updateresync, the Receiver Server may refuse to start replication because the journal sequence
number in the replicating instance may be higher than what the originating instance expects.

• Start the passive application servers, if appropriate.

• Since the originating instance should not need to be rolled back to a state prior to the start of the backup, the generation
link on the originating instance can be cut in the journal files created by the online backup command on the originating
instance. Use MUPIP SET -jnlfile <jnl_file> -noprevjnlfile to cut the previous generation link for the journal file. Use the -
bypass qualifier to override the standalone requirements of the SET command.

Multi-Site to Single-Site

Under normal operation, when going from multi-site to single-site, shut down the Receiver Servers and Update Process as well
as any passive Source Servers and any inactive application servers. Then perform the MUPIP RUNDOWN operation of the
database.

For an extended shut down, switch the active Source Server on the originating instance to passive to prevent it from trying to
connect with a replicating instance. Under normal scenarios, the originating instance operates alone, so that when a replicating
instance comes back, replication resumes where it left off.

Normal Cutover

Follow these steps to perform a controlled cutover in which the originating instance and a replicating instance switch roles.
Such a step is necessary to test cutover or to bring the originating instance down for maintenance. In the following steps, A is
the former originating instance and new replicating instance, while B is the former replicating instance and new originating
instance.

1. Choose a time when database update rates are low to minimize the chances clients may time out and retry their messages,
and when no batch processes are running.

2. The external system responsible for originating/replicating status identification should be made aware that Site B should
now be the originating instance and Site A should now be the replicating instance. If the messaging layer between clients

Database Replication

209

and servers differs from the external control mechanism, command it to route messages to the replicating instance. There
may be a need to hold messages briefly during the cutover.

On A:

• Stop the application servers.

• Shut down the Source Server with an appropriate timeout. The timeout should be long enough to replicate pending
transactions to the replicating instance, but not too long to cause clients to conclude that the application is not available. The
GT.M default Source Server wait period is up to 120 seconds.

• Wait for B to become functional as the originating instance, and then query B (using -EDITINSTANCE -SHOW) for the
journal sequence number when it became the originating instance, and roll back to this number. Transactions that are
rolled off the originating instance become "non-replicated transactions" that must subsequently be reconciled on B, either
automatically or manually.

• Create new journal files.

• Start the passive Source Server, and then the Receiver Server.

• Start the passive application servers, if appropriate.

On B:

• Shut down the Receiver Server with an appropriate timeout.

• Create new journal files.

• Make the passive Source Server active.

• Start the application servers (if they were previously passive, make them active).

• If the state of the database indicates that batch operations were in process, restart batch operations.

• Begin accepting online transactions.

Shutting Down an instance

To shutdown an originating instance:

• Shut down all GT.M and mupip processes that might be attached to the Journal Pool.

• In case the originating instance is also a supplementary instance, shutdown the Receiver Server(s) (there might be more than
one Receiver Server in future GT.M versions).

• Shut down all active and/or passive Source Servers.

• Execute mupip rundown -region to ensure that the database, Journal Pool, and Receiver Pool shared memory is rundown
properly.

To shutdown a propagating instance:

• Shut down all replicating instance servers (Receiver Server, Update Process and its Helper processes).

Database Replication

210

• Shutdown the originating instance servers (all active and/or passive Source Servers).

• On its replicating instances, ensure that there are no GT.M or MUPIP processes attached to the Journal Pool as updates are
disabled (they are enabled only on the originating instance).

• Execute mupip rundown -region to ensure that the database, Journal Pool, and Receiver Pool shared memory is rundown
properly.

Failures

Network Failures

Perform a cutover from the originating instance to a replicating instance if the network from clients to the originating instance
fails, and the network from the clients to the replicating instance is still functioning.

If the network from clients to both the originating and all available replicating instances fails, the application is no longer
available.

If the network between the originating instance and replicating instance fails, no action is required to manage GT.M
replication. The originating instance continues to make the application available. Replicating instances will catch up with the
originating instance when the network is restored.

If the network from the clients to the replicating instance fails, no action is required to manage GT.M replication, although it
would be prudent to make the network operational as soon as possible.

Single-Site Failure

Replicating Instance Fails

When the replicating instance comes back up after failure, it will still be the replicating instance. Refer to the preceding
"Secondary Starts After a Shut Down or Crash" description for further details.

Originating instance Fails

If the originating instance fails, the replicating instance should take over; when the originating instance comes back up, it
should come up as the new replicating instance.

• The external control mechanism should detect that the originating instance has failed, and take action to switch the
replicating instance to originating mode, and either route transactions to the new originating instance (former replicating
instance) or notify clients to route transactions to the new originating instance.

• If the former originating instance did not respond to certain transactions, one cannot be certain whether they were processed
and whether or not the database updates were committed to the former replicating instance. These transactions must now be
processed on the new replicating instance. When the former originating instance comes up as the new replicating instance,
GT.M rolls off the processed transactions and database updates for reconciliation on the new originating instance.

On new originating instance (former replicating instance)

• Stop the Replication Server.

• Create new journal files.

• Switch the Source Server from passive to active mode to start replicating to the new replicating instance (former originating
instance) when it comes back up.

Database Replication

211

• Start the application servers, or if they were passive, they should be activated. The new originating instance is now ready to
receive transactions from clients.

• If the state of the database indicates that batch operations were in process, restart batch operations.

When the new replicating instance (the former originating instance) comes back up, query the originating instance for
the journal sequence number at which it became the originating instance (refer to “Displaying/Changing the attributes of
Replication Instance File and Journal Pool” (page 228) for more information), and roll back the replicating instance to this
point (refer to Section : “Rolling Back the Database After System Failures” (page 249) for more information). Reconcile the
transaction from the lost transaction file or possibly the broken transaction file resulting from the rollback operation.

• Create new journal files.

• Start the Source Server in passive mode.

• Start the Receiver Server to resume replication as the new replicating instance. Dual-site operation is now restored.

• As appropriate, start the passive application servers.

Dual-Site Failures

Various dual-site failure scenarios are possible. Each case is a full system outage - that is, the application is no longer available
(which is why multi-site may be attractive). This section identifies the recovery mechanism for each scenario. In each scenario,
Site A is initially the originating instance and Site B is initially the replicating instance, before any failure.

Replicating Instance (Site B) Fails First

In the following scenarios, the replicating instance fails first. Once the replicating instance fails, the originating instance
continues to operate. The originating instance’s replication Source Server is unable to send updates to the replicating instance.
Thus, there is a queue of non-replicated transactions at the failure point on the originating instance. Then, the originating
instance fails before the replicating instance recovers, which leads to a dual-site outage. Operating procedures differ according
to which site recovers first.

Site A recovers first

On Site A:

• Rollback the database to the last committed transaction (last application-consistent state).

• Create new journal files.

• Start the Source Server.

• Start the application servers. Application availability is now restored.

• If the state of the instance indicates that batch operations were in process, restart batch operations.

On Site B, when it recovers:

• Rollback the database to the last committed transaction.

• Create new journal files.

Database Replication

212

• Start the Source Server in passive mode.

• Start the Receiver Server. Dual-site operation is now restored.

• Start the passive application servers, as appropriate.

Site B recovers first

On Site B:

• Rollback the database to the last committed transaction (last application-consistent state).

• Create new journal files.

• Start the Source Server.

• Start the application servers. Application availability is now restored.

• If the state of the database indicates that batch operations were in process, restart batch operations.

On Site A, when it recovers:

• Query the originating instance (refer to “Displaying/Changing the attributes of Replication Instance File and Journal
Pool” (page 228)) for the journal sequence number at which it became the originating instance, and roll back the
replicating instance to this point. Then apply the lost transaction files to the originating instance for reconciliation/
reapplication.

• Create new journal files.

• Start the Source Server in passive mode.

• Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

• Start the passive application servers, as appropriate.

Originating Instance (Site A) Fails First

In the following scenarios, the originating instance fails first, causing a cutover to Site B. Site B operates as the originating
instance and then fails.

Site B Recovers First

On Site B:

• Roll back the database to the last committed transaction (last application-consistent state).

• Create new journal files.

• Start the Source Server.

• Start the application servers. Application availability is now restored. If the state of the database indicates that batch
operations were in process, restart batch operations.

Database Replication

213

On Site A, when it recovers:

• Query the originating instance (refer to Section : “Displaying/Changing the attributes of Replication Instance File and Journal
Pool” (page 228) for more information) for the journal sequence number at which it became primary, and the rollback
the replicating instance to this point. Then apply the lost transaction files to the originating instance for reconciliation/
reapplication. The broken transaction file contains information about transactions that never completed and may be useful
in researching where work should be restarted. However, broken transactions, unlike the lost transactions, are inherently
incomplete.

• Create new journal files.

• Start the Source Server in passive mode.

• Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

• Start the passive application servers, as appropriate.

Site A Recovers First

On Site A:

• Roll back the database to the last committed transaction (last application-consistent state).

• Create new journal files.

• Start the Source Server.

• Start the application servers. Application availability is now restored.

• If the state of the database indicates that batch operations were in process, restart batch operations.

On Site B, when it recovers:

• Roll back all transactions that were processed when it was the primary. Transmit the transactions backed out of the database
by the rollback to the originating instance for reconciliation/reapplication.

• Create new journal files.

• Start the Source Server in passive mode.

• Start the Receiver Server to resume replication as the new secondary. Dual-site operation is now restored.

• Start the passive application servers, as appropriate.

Complex Dual-Site Failure

A complex dual-site failure may result in a large number of non-replicated transactions, depending on how the instances
restart. This situation occurs if both instances are down, the replicating instance comes up for a period, assumes originating
instance status, and then fails again while the first originating instance remains down.

If the first originating instance comes up first after the second failure, represented as Site A in the following figure, it will be the
originating instance. When Site B comes up, it will act as the replicating instance and rollback all transactions performed while

Database Replication

214

it was the originating instance and Site A was down. These transactions become non-replicated transactions. If Site B came up
first, then the non-replicated transactions would occur when Site A restarted. These would be the transactions while A was the
originating instance after B failed.

When recovering from these situations, the originating instance is always the current system of record when the replicating
instance comes up. The replicating instance must roll back to the transaction with the highest journal sequence number
common in both the instance and "catch up" from there. On the originating instance, reconcile all the lost and possibly broken
transactions files that resulted from the rollback operation.

Rolling Software Upgrades

A rolling software upgrade provides continuous service while applying a new software release to the system. In other words,
a rolling software upgrade removes the need for application downtime as while each system is updated with the new software
release independently, the other system acts as the originating instance during that period.

Database Replication

215

Dual-Site Rolling Upgrade

This rolling upgrade sequence assumes that there is only one replicating instance, which is down during the upgrade. Thus, if
the originating instance goes down during the upgrade, the application becomes unavailable.

Note

A properly set LMS configuration avoids this exposure.

Assuming that Site A is the originating instance before the upgrade, here are the steps to perform a rolling upgrade:

• Site A continues to operate normally, (that is, to the originating instance, a replicating instance upgrade looks like a
replicating instance failure).

On Site B:

• Shut down the Source and Receiver Servers and the application. Perform a MUPIP RUNDOWN operation and make a backup
copy.

• Upgrade the software.

• If there is no change to the database layout or schema, bring the replicating instance up and proceed with the planned
cutover (as follows).

• Note the largest journal sequence number in any replicated database region.

• Upgrade the database.

• Set the journal sequence number of any replicated region to the largest journal sequence number noted above.

• If there was no change to the database schema, bring the replicating instance back up and proceed with the planned cutover
(as follows).

• If there was a change to the database schema, bring up the replicating instance with the new-to-old filter on the Source
Server, and the old-to-new filter on the Receiver Server.

• At this point, dual-site operation is restored with Site B running the new software and Site A running the old software. It
may be appropriate to operate in this mode for some time to verify correct operation.

• After which you can execute the following to complete the upgrade:

• Perform a controlled cutover between systems.

• Make Site A the replicating instance and Site B the originating instance for the remainder of the upgrade.

On Site A:

• Once you are satisfied with the operation of the new software on Site B, shut down the Source and Receiver Servers and the
application. Run down the database and take a backup copy.

• Upgrade the software.

Database Replication

216

• Note the largest journal sequence number in any replicated database region.

• Upgrade the database.

• Set the journal sequence number of any replicated region to the largest journal sequence number noted above.

• If there was no change to the database schema, bring the replicating instance back up. Normal operation is now restored, and
the upgrade is complete.

• If there are filters, Bring up Site A as the secondary. Use the -stopsourcefilter qualifier on the Receiver Server on Site A to
turn off the filter on Site B. This restores normal operation.

Rolling SI Replication Upgrade

Although V5.5-000 supports only one source stream for SI replication, the architecture allows for fifteen externally sourced
streams (numbers 1 through 15), with stream 0 being locally generated updates. Under normal conditions, on a supplementary
instance, one will see updates from streams 0 and 1. If the recipient of an SI stream has been moved from receiving replication
from one source to another, you may see other stream numbers (corresponding to updates from other streams) as well.

When adding SI replication, the rules to remember are that (a) both source and receiver sides of SI replication must be V5.5-000,
(b) upgrading an instance to V5.5-000 requires a new replication instance file because the replication instance file format for
SI is not compatible with those of prior releases and (c) the -updateresync qualifier requires the name of a prior replication
instance file when both source and receiver are V5.5-000.

Remember that except where an instance is an unreplicated sole instance, you should upgrade replicating secondary instances
rather than originating primary instances. Starting with BC replication (e.g., Ardmore as originating primary and BrynMawr as
replicating secondary), the simplest steps to start SI replication to Malvern are:

• Bring BrynMawr down and upgrade it to V5.5-000. BrynMawr requires a new replication instance file. Please refer to the
relevant release notes for details of upgrading database files and global directories; unless otherwise instructed by FIS, always
assume that object and journal files are specific to each GT.M release.

• Resume BC replication from Ardmore to BrynMawr. Since Ardmore is at an older GT.M release than V5.5-000, when
starting the Receiver Server for the first time at BrynMawr, the -updateresync qualifier does not require the name of a prior
replication instance file.

• Create supplementary instance Malvern from a backup of BrynMawr or Ardmore, if that is more convenient. Malvern will
require a new replication instance file, created with the -supplementary qualifier.

• Start SI replication from BrynMawr to Malvern. Since Malvern and BrynMawr are both V5.5-000, the -updateresync qualifier
used when the Malvern Receiver Server starts for the first time requires the old replication instance file copied, perhaps as
part of a BACKUP, up from BrynMawr as its value.

At your convenience, once BrynMawr is upgraded you can:

• Switchover so that BrynMawr is the originating primary instance with BC replication to Ardmore and SI replication to
Malvern. This is unchanged from current LMS procedures. SI replication from BrynMawr to Malvern can operate through the
switchover.

• Bring Ardmore down and upgrade it to V5.5-000. It requires a new replication instance file.

• Start BC replication from BrynMawr to Ardmore. Since Ardmore and BrynMawr are both V5.5-000, the -updateresync
qualifier for Ardmore's first Receiver Server start requires the name of a prior replication instance file. As it cannot use

Database Replication

217

Ardmore's pre-V5.5-000 format replication instance file, in this special case, use a backup copy from BrynMawr as that prior
file.

Creating a new instance file without an -updateresync qualifier

On the source side:

• Use the MUPIP BACKUP command with the -REPLINSTANCE qualifier to backup the instance to be copied.

• Ship the backed up databases and instance file to the receiving side.

On the receiving side:

• Run the MUPIP REPLIC -EDITINST command on the backed up instance file to change the instance name to reflect the target
instance. This makes the source replication instance file usable on the target instance while preserving the history records in
the instance file.

• Create new journal files, start a passive Source Server and a Receiver Server (without an -updateresync qualifier).

• Allow a Source Server to connect.

Upgrade Replication Instance File

To upgrade the replication instance file, perform the following steps:

• Shut down all mumps, MUPIP and DSE processes except Source and Receiver Server processes; then shut down the Receiver
Server (and with it, the Update Process) and all Source Server processes. Use MUPIP RUNDOWN to confirm that all database
files of the instance are closed and there are no processes accessing them.

• Rename the existing replication instance file after making a backup copy.

• Create a new replication instance file (you need to provide the instance name and instance file name, either with command
line options or in environment variables, as documented in the Administration and Operations Guide):

• If this is instance is to receive SI replication (Malvern in the examples above) or to receive BC replication from an instance
that receives SI replication (Newtown in the examples above), use the command:

 mupip replicate -instance_create -supplementary

• Otherwise use the command:

mupip replicate -instance_create

• Prepare it to accept a replication stream:

• Start a passive Source Server using the -updok flag.

• Start the Receiver Server using the updateresync flag, e.g.: mupip replicate -receiver -start -updateresync=filename flag
where filename is the prior replication file if the source is V5.5-000 and no filename if it is an older GT.M release (with
other required command line flags, as documented in the Administration and Operations Guide).

• Start a Source Server on a root or propagating primary instance to replicate to this instance. Verify that updates on the
source instance are successfully replicated to the receiver instance.

Database Replication

218

The -updateresync qualifier indicates that instead of negotiating a mutually agreed common starting point for synchronization
the operator is guaranteeing the receiving instance has a valid state that matches the source instance currently or as some point
in the past. Generally this means the receiving instance has just been updated with a backup copy from the source instance.

Note

A GT.M V5.5-000 instance can source a BC replication stream to or receive a BC replication stream from
older GT.M releases, subject to limitations as discussed in the Limitations section of this document. It is only
for SI replication that both source and recipient must both be V5.5-000.

Creating a Supplementary Instance

A supplementary instance cannot be the first or sole instance that you upgrade to V5.5-000 - you must already have created an
instance running V5.5-000 to provide a replication stream to the supplementary instance.

You can create a supplementary instance from (a) a backup copy of another instance, a supplementary instance, an originating
primary or replicating secondary by giving it a new identity, or (b) a freshly created, new instance. An instance used to create a
supplementary instance must already be upgraded to V5.5-000.

Starting with a backup of another instance, follow the procedures above under Upgrade Replication Instance File using the -
supplementary flag to the mupip replicate -instance_create command.

Creating a supplementary instance from a backup of an existing instance creates an SI replication instance with all the
database state in the existing instance and is perhaps the most common application need. But there may be situations when a
supplementary instance only needs new data, for example if it is to provide a reporting service only for new customers, and
historical data for old customers is just excess baggage. In this case, you can also create a supplementary instance by creating
a new instance, pre-loading it with any data required, enabling replication for the database files (since an Update Process will
only apply updates to a replicated - and journaled - database region), and following the procedures above under above under
Upgrade Replication Instance File using the -supplementary=on flag to the mupip replicate -instance_create command. Ship a
replication instance file from the source to provide the -updateresync=filename qualifier required when starting the Receiver
Server for the first time.

Starting / Resuming SI Replication

For starting SI replication on an originating primary supplementary instance P in a B<-A->P-<Q configuration, the procedure
is similar to a non-supplementary instance except that one also needs to start a receiver server (after having started a source
server to set up the journal pool) to receive updates from the corresponding non-supplementary instance (A or B in this case).
Similarly, as part of shutting down the originating primary supplementary instance, an added step is to shut down the Receiver
Server (if it is up and running) before shutting down the Source Server.

Remember that for GT.M replication, the Receiver Server listens at a TCP port and the Source Server connects to it. If the
Receiver Server is not ahead of the Source Server, replication simply starts and streams updates from the source to the receiver.
When the Receiver Server is ahead of the Source Server, the cases are different for BC and SI replication.

For either BC or SI replication, if the Receiver Server is started with the -autorollback qualifier, it performs an online rollback
of the receiving instance, so that it is not ahead of the originating instance, creating an Unreplicated Transaction Log of any
transactions that are rolled off the database. When started without the -autorollback qualifier, a Receiver Server notified by its
Source Server of a rollback, logs the condition and exits so an operator can initiate appropriate steps.

For SI replication the -noresync qualifier tells the Receiver Server not to rollback the database even if the receiver is ahead
of the source. In this case, the Source Server starts replication from the last journal sequence number common to the two
instances.

Database Replication

219

Changing the Replication Source

When changing the source of a supplementary replication stream to another in the same family of instances (for example in the
example where Ardmore and Malvern crash and Newtown is to receive a replication stream from BrynMawr, start the Receiver
Server normally (with either -autorollback or -noresync, as appropriate) and allow BrynMawr to connect to it. Instead of using -
autorollback, you can also perform a mupip journal -rollback -backward -fetchresync before starting the Receiver Server.

To migrate a supplementary instance from receiving SI replication from one set of BC instances to a completely different set
- for example, if Malvern is to switch from receiving SI replication from the set of {Ardmore, BrynMawr} to a completely
unrelated set of instances {Pottstown, Sanatoga}

Switchover between instances having triggers

GT.M stores trigger definitions in the regions to which they map and the maintenance-related information in the default region.
To invoke a trigger on a global variable, GT.M uses the in-region information but for $ZTRIGGER() and MUPIP TRIGGER it
searches the lookup information in the default region to find the region that holds its trigger definition.

Take this aspect into account while designing trigger maintenance actions and switchover processes for an LMS configuration
having a mix of replicated and unreplicated regions.

You should exercise caution when you set up an LMS configuration where the default region is replicated but some regions
that store trigger definitions are unreplicated. If the triggers in the unreplicated regions are needed for proper operation in the
event of a switchover, you must define and maintain them seperately on the originating instance as well as on each replicating
instance that may become an originating instance. To define or maintain triggers on a replicating instance, follow these steps:

1. Shutdown the Receiver Server of the replicating instance.

2. Apply the trigger definitions using MUPIP TRIGGER or $ZTRIGGER().

3. Set the sequence number of the default region to match the sequence number of the default region on the originating
instance.

4. Restart the Receiver Server of the replicating instance.

Schema Change Filters

Filters between the originating and replicating systems perform rolling upgrades that involve database schema changes. The
filters manipulate the data under the different schemas when the software revision levels on the systems differ.

GT.M provides the ability to invoke a filter; however, an application developer must write the filters specifically as part of each
application release upgrade when schema changes are involved.

Filters should reside on the upgraded system and use logical database updates to update the schema before applying those
updates to the database. The filters must invoke the replication Source Server (new schema to old) or the database replication
Receiver Server (old schema to new), depending on the system's status as either originatig or replicating. For more information
on Filters, refer to “Filters” (page 188).

Recovering from the replication WAS_ON state

If you notice the replication WAS_ON state, correct the cause that made GT.M turn journaling off and then execute MUPIP SET
-REPLICATION=ON.

Database Replication

220

To make storage space available, first consider moving unwanted non-journaled and temporary data. Then consider moving
the journal files that predate the last backup. Moving the currently linked journal files is a very last resort because it disrupts
the back links and a rollback or recover will not be able to get back past this discontinuity unless you are able to return them to
their original location.

If the replication WAS_ON state occurs on the originating side:

If the Source Server does not reference any missing journal files, -REPLICATION=ON resumes replication with no downtime.

If the Source Server requires any missing journal file, it produces a REPLBRKNTRANS or NOPREVLINK error and shuts down.
Note that you cannot rollback after journaling turned off because there is insufficient information to do such a rollback.

In this case, proceed as follows:

1. Take a backup (with MUPIP BACKUP -BKUPDBJNL=OFF -REPLINST=<bckup_inst>) of the originating instance.

2. Because journaling was turned off in the replication WAS_ON state, the originating instance cannot be rolled back to a state
prior to the start of the backup. Therefore, cut the previous generation link of the journal files on the originating instance
and turn replication back on. Both these operations can be accomplished with MUPIP SET -REPLICATION="ON".

3. Restore the replicating instance from the backup of the originating instance. Change the instance name of <bckup_inst> to
the name of the replicating instance (with MUPIP REPLIC -EDITINST -NAME).

4. Turn on replication and journaling in the restored replicating instance. Specify the journal file pathname explicitly with
MUPIP SET -JOURNAL=filename=<repinst_jnl_location> (as the backup database has the originating instance's journal file
pathname).

5. Restart the Source Server process on the originating instance.

6. Start the Receiver Server (with no -UPDATERESYNC) the replicating instance.

If the replication WAS_ON state occurs on the receiving side:

Execute MUPIP SET -REPLICATION=ON to return to the replication ON state. This resumes normal replication on the receiver
side. As an additional safety check, extract the journal records of updates that occurred during the replication WAS_ON state
on the originating instance and randomly check whether those updates are present in the receiving instance.

If replication does not resume properly (due to errors in the Receiver Server or Update Process), proceed as follows:

1. Take a backup (with MUPIP BACKUP -BKUPDBJNL=OFF -REPLINST=<bckup_inst>) of the originating instance.

2. Restore the replicating instance from the backup of the originating instance. Change the instance name of <bckup_inst> to
the name of the replicating instance (with MUPIP REPLIC -EDITINST -NAME).

3. Turn on replication and journaling in the restored replicating instance. Specify the journal file pathname explicitly with
MUPIP SET -JOURNAL=filename=<repinst_jnl_location> (as the backup database has the originating instance's journal file
pathname).

4. Restart the Source Server process on the originating instance. Normally, the Source Server might still be running on the
originating side.

5. Start the Receiver Server (with no -UPDATERESYNC) the replicating instance.

Database Replication

221

Setting up a new replicating instance of an originating instance (A->B, P->Q, or A->P)

To set up a new replicating instance of an originating instance for the first time or to replace a replicating instance if database
and instance file get deleted, you need to create the replicating instance from a backup of the originating instance, or one of its
replicating instances.

If you are running GT.M V5.5-000 or higher:

• Take a backup of the database and the replication instance file of the originating instance together at the same time with
BACKUP -REPLINSTANCE and transfer them to the location of the replicating instance. If the originator's replicating
instance file was newly created, take its backup while the Source Server is running to ensure that the backup contains at least
on history record.

• Use MUPIP REPLICATE -EDITINST -NAME=<secondary-instname> to change the replicating instance's name.

• Start the replicating instance without -udpateresync.

If you are running GT.M pre-V5.5-000:

• Create a new replication instance file on the replicating instance.

• Start the replicating instance with this new replication instance file with the -updateresync qualifier (no value specified).

Replacing the replication instance file of a replicating instance (A->B and P->Q)

In this case, it is possible that the replicating instance's database files are older than the originating instance. Note that to
resume replication there is no need to transfer the backup of the originating instance's database and replication instance files.

To replace the existing replicating instance file with a new replication instance file, follow these steps:

If you are running GT.M V5.5-000 or higher:

• Take a backup of just the replication instance file (no database files with BACKUP -REPLINST=</path/to/bkup-orig-repl-inst-
file>) and transfer it to the site of the replicating instance.

• Start the replicating instance with -updateresync=</path/to/bkup-orig-repl-inst-file>.

In this case, the Receiver Server determines the current instance's journal sequence number by taking a maximum of the Region
Sequence Numbers in the database file headers on the replicating instance and uses use the input instance file to locate the
history record corresponding to this journal sequence number, and exchanges this history information with the Source Server.

If you are running GT.M pre-V5.5-000:

• Create a new replication instance file on the replicating instance.

• Start the replicating instance with this new instance file with the -updateresync qualifier (no value specified).

Replacing the replication instance file of a replicating instance (A->P)

On P:

• Use the -SUPPLEMENTARY qualifier with the MUPIP REPLICATE -INSTANCE_CREATE command to indicate this is a
supplementary instance file.

Database Replication

222

• Start a Source Server on P with -UPDOK to indicate local updates are enabled on P.

• Start the Receiver Server on P with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -RESUME. -
RESUME indicates that A and P had been replicating before. The Receiver Server looks at the local (stream #0) sequence
numbers in the database file headers on P and takes the maximum value to determine the journal sequence number of the
new stream on P. It then uses this as the instance journal sequence number on A to resume replication.

Setting up a new replicating instance from a backup of the originating instance (A->P)

On A:

• Take a backup of the replication instance file and the database together at the same time with BACKUP -REPLINSTANCE
and transfer it to P. If the A's replication instance file was also freshly created, then take the backup while the Source Server
is running on the originating instance. This ensures that the backed up replication instance file contains at least one history
record.

On P:

• Create a new replication instance file. Use the -SUPPLEMENTARY qualifier with the MUPIP REPLICATE -
INSTANCE_CREATE command to indicate this is a supplementary instance file.

• Restore the database backups from A to P or use MUPIP LOAD to load the data.

• Start a Source Server on P with -UPDOK to indicate local updates are enabled on P.

• Start the Receiver Server on P with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -INITIALIZE.
The -INITIALIZE indicates this is the first time A and P are replicating.

In this case, the Receiver Server uses the current journal sequence number in the </path/to/bkup-orig-repl-inst-file> as the
point where A starts sending journal records. GT.M updates the stream sequence number of Stream # 1 in the instance file on P
to reflect this value. From this point, GT.M maps the journal sequence number on A to a stream journal sequence number (for
example, stream # 1) on P.

Setting up an A->P configuration for the first time if P is an existing instance (having its own set of
updates)

On P:

• Turn off passive Source Server and Receiver Server (if they are active).

• Turn off replication and run down the database.

On A:

• Take a backup of the replication instance file and the database together with BACKUP -REPLINSTANCE and transfer it to P.
If A's instance file was also freshly created, take the backup while the Source Server is running on the originating instance.
This ensures that the backed up replication instance file contains at least one history record.

On P:

• Do not create a new instance file. Continue using the existing instance file to preserve updates that have already occurred on
P.

• Start the Source Server with -UPDOK to indicate that local updates are enabled on P.

Database Replication

223

• Start the Receiver Server with the -UPDATERESYNC=</path/to/bkup-orig-repl-inst-file> qualifier and -INITIALIZE. The -
INITIALIZE indicates this is the first time A and P are replicating.

The Receiver Server uses the current journal sequence number in the </path/to/bkup-orig-repl-inst-file> as the point where A
starts sending journal records. GT.M updates the stream sequence number (for example, of Stream # 1) in the instance file on P
to reflect this value. Going forward, the journal sequence number on A will always map to a stream journal sequence number
(for example, of stream # 1) on P.

Changing the database schema of a replicating instance (A->B and A->P)

1. Shut down the Receiver Server, passive Source Server, turn off replication, and rundown the database.

2. Open DSE and execute DUMP -FILEHEADER -ALL and note down the Region Seqno field of each replicated region(s). FIND
-REGION="*" displays all regions and FIND -REGION=<region-name> switches between regions. Identify the highest Region
Seqno of all the Region Seqnos. If you are running an A->P configuration, note down the Stream and Reg Seqno of all the
streams.

3. Change the schema by modifying the global directory and relocating any data that needs to be moved.

4. Open DSE and run CHANGE -FILEHEADER -REG_SEQNO=<the-highest-region-seqno> to set the Region Seqno field in
the database file header to the highest Region Seqno identified in step 2. If you are running an A->P configuration, run the
CHANGE -FILEHEADER -STRM_NUM=1 -STRM_REG_SEQNO=<hexa> command to set the Stream and Reg Seqno of the
streams noted in step 2.

5. Turn replication ON, start the passive Source Server, and start the Receiver Server without -UPDATERESYNC.

6. GT.M resumes receiving replication from the point of interruption.

When replication is ON, GT.M increments the Region Seqno field in the database file header for every update that occurs on a
region. When replication is OFF, database updates do not affect the Region Seqno field. Except step 4, no other step affects the
Region Seqno field. When you set the Region Seqno in step 4, you instruct GT.M to resume receiving replication from point
replication turned off in step 1.

Setting up a secured TLS replication connection

tlsrepl.tar.gz contains scripts that create two databases and sets up a secure (TLS/SSL) replication connection between them.

Please click to download tlsrepl.tar.gz and follow the below instructions. You can also download tlsrepl.tar.gz from http://
tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/tlsrepl.tar.gz. The scripts in tlsrepl.tar.gz are solely for the purpose
of explaining the general steps required to encrypt replication data in motion. You must understand, and appropriately adjust,
the scripts before using them in a production environment. The following steps create two instances and a basic framework
required for setting up a TLS replication connection between them. Note that all certificates created in this example are for the
sake of explaining their roles in a TLS replication environment. For practical applications, use certificates signed by a CA whose
authority matches your use of TLS.

On instance Helen:

1. Specify the value of $gtm_dist and $gtmroutines in the env script and execute the following command:

$ source ./env Helen

This creates a GT.M environment for replication instance name Helen. When prompted, enter a password for
gtmtls_passwd_Helen.

tlsrepl.tar.gz

Database Replication

224

2. Create a certificate directory setup in the current directory and a self-signed root certification authority.

$./cert_setup

This creates a self-signed root certification authority (ca.crt) in $PWD/certs/. ca.crt needs to be available on both Source
and Receiver Servers. In a production environment, ensure that you keep root-level certificates in directories with 0500
permissions and the individual files with 0400 permissions so that unauthorized users cannot access them.

The output of this script is like the following"

Generating RSA private key, 512 bit long modulus
...........++++++++++++
...............++++++++++++
e is 65537 (0x10001)
Enter pass phrase for /home/jdoe/certs/ca.key:
Verifying - Enter pass phrase for /home/jdoe/certs/ca.key:
Enter pass phrase for /home/jdoe/certs/ca.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [US]:US
State or Province Name (full name) [Philadelphia]:Philadelphia
City (e.g., Malvern) [Malvern]:Malvern
Organization Name (eg, company) [FIS]:FIS
Organizational Unit Name (eg, section) [GT.M]:GT.M
Common Name (e.g. server FQDN or YOUR name) [localhost]:fis-gtm.com
Email Address (e.g. helen@gt.m) []:root@gt.m

3. Create the global directory and the database for instance Phil.

$./db_setup

This also creates a leaf-level certificate for Helen. The openssl.conf used to create this example in available in the download
for your reference. Ensure that your openssl.cnf file is configured according to your environment and security requirements.

The output of this script is like the following:

Generating RSA private key, 512 bit long modulus
.++++++++++++
.......++++++++++++
e is 65537 (0x10001)
Enter pass phrase for /home/jdoe/certs/Helen.key: [Specify the password that you entered for gtmtls_passwd_Helen]
Verifying - Enter pass phrase for /home/jdoe/certs/Helen.key:
Enter pass phrase for /home/jdoe/certs/helen.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
Country Name (2 letter code) [US]:
State or Province Name (full name) [Philadelphia]:Illinois
City (e.g., Malvern) [Malvern]:Chicago
Organization Name (eg, company) [FIS]:FIS
Organizational Unit Name (eg, section) [GT.M]:GT.M
Common Name (e.g. server FQDN or YOUR name) [localhost]:fisglobal.com
Ename Address (e.g. helen@gt.m) []:helen@gt.m

Database Replication

225

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./certs/ca.key:
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 14 (0xe)
 Validity
 Not Before: Jun 11 14:06:53 2014 GMT
 Not After : Jun 12 14:06:53 2014 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Illinois
 organizationName = FIS
 organizationalUnitName = GT.M
 commonName = fisglobal.com
 emailAddress = helen@gt.m
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 96:FD:43:0D:0A:C1:AA:6A:BB:F3:F4:02:D6:1F:0A:49:48:F4:68:52
 X509v3 Authority Key Identifier:
 keyid:DA:78:3F:28:8F:BC:51:78:0C:5F:27:30:6C:C5:FE:B3:65:65:85:C9

Certificate is to be certified until Jun 12 14:06:53 2014 GMT (1 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

4. Create the $gtmcrypt_config file. Specify the names of all participating instances.

./gen_gc Helen Phil

5. Turn replication on and create the replication instance file:

$./repl_setup

6. Start the originating instance Helen:

$./originating_start Helen Phil

On instance Phil:

1. Specify the value of $gtm_dist and $gtmroutines in the env script and execute the following command:

$ source ./env Phil

This creates a GT.M environment for replication instance name Phil. When prompted, enter a password for
gtmtls_passwd_Phil.

2. Create the global directory and the database for instance Phil.

Database Replication

226

$./db_setup

This also creates a leaf-level certificate for Phil. The openssl.conf used to create this example in available in the download
for your reference. Ensure that your openssl.cnf file is configured according to your environment and security requirements.

3. Create the $gtmcrypt_config file. Specify the names of all participating instances.

./gen_gc Helen Phil

Ensure that ca.key generated on Instance Helen is available on instance Phil.

4. Create the $gtmcrypt_config file. Specify the names of all participating instances.

$./gen_gc Helen Phil

5. Turn replication on and create the replication instance file:

$./repl_setup

6. Start the replicating instance Phil.

$./replicating_start

For subsequent environment setup, use the following commands:

source ./env Phil or source ./env Helen
./replicating_start or ./originating_start Helen Phil

Commands and Qualifiers

The following MUPIP commands and qualifiers control database replication in a GT.M environment.

Turning Replication On/Off

Command Syntax:

mupip set {-file db-file|-region reg-list} -replication={ON|OFF}

Qualifiers:

-file and -region

Use these qualifiers in the same manner that you would use them for a MUPIP SET. For more information refer to Chapter 5:
“General Database Management” [67].

 -replication=replication-state

Switches the GT.M replication subsystem ON/OFF and possibly modify the current journaling [no-]before image field (which is
stored in the database file header).

replication-state is either of the following keywords:

OFF

Disable replication of the database file(s) or region(s). Even if you turn off replication, journaling continues to operate as before.

Database Replication

227

Important

GT.M creates a new set of journal files and cuts the back link to the previous journal files if the replication-
state is OFF and then turned ON again. The database cannot rollback to a state prior to ON. Therefore, ensure
that replication-state remains ON throughout the span of database replication. Turn replication-state OFF
only if database replication is no longer needed or the instance is about to be refreshed from the backup of
the originating instance.

 ON

Enables replication for the selected database file(s) or region(s). When the JOURNAL qualifier is not specified, this action
turns BEFORE_IMAGE journaling on. Specify -JOURNAL=NOBEFORE_IMAGE to enable replication with no-before-image
journaling. In both cases, GT.M creates a new journal file for each database file or region, and switches the current journal file.
FIS recommends you to specify the desired journaling characteristics (MUPIP SET -JOURNAL=BEFORE_IMAGE or MUPIP SET
-JOURNAL=NOBEFORE_IMAGE).

When replication is ON, a MUPIP SET REPLICATION=ON command with no JOURNAL qualifier assumes the current
journaling characteristics (which are stored in the database file header). By default GT.M sets journal operation to
BEFORE_IMAGE if this command changes the replication state from OFF to ON and JOURNAL=NOBEFORE_IMAGE is not
specified. Therefore, conservative scripting should always specify the desired journaling characteristics using the JOURNAL
qualifier of the MUPIP SET command.

The replication state ON in the file header denotes normal replication operation.

 [WAS_ON] OFF

Denotes an implicit replication state when GT.M attempts to keep replication working even if run-time conditions such as no
available disk space or no authorization for a process attempting to auto-switch a journal file cause GT.M to turn journaling
off. Even with journaling turned off, the Source Server attempts to continue replication using the records available in the
replication journal pool. In this state, replication can only continue as long as all the information it needs is in the replication
journal pool. Events such as an operationally significant change on the replicating instance(s) or communication problems are
likely to cause the Source Server to need information older than that in the replication journal pool and because it cannot look
for that information in journal files, at that point the Source Server shuts down.

Note

If the replication ON state is like a bicycle running smoothly on the road, replication WAS_ON is like a
bicycle with a flat front tire being ridden like a unicycle - the system is operating outside its intended mode
of use and is more subject to misfortune.

WAS_ON is an implicit replication state. At all times during the WAS_ON state, you can see the current backlog of transactions
and the content of the Journal Pool (MUPIP REPLICATE -SOURCE -SHOWBACKLOG and MUPIP REPLICATE -SOURCE -
JNLPOOL -SHOW). This information is not available in the replication OFF state.

For more information on recovering originating and replicating instances from WAS_ON, refer to Recovering from the
replication WAS_ON state (page 219).

Example:

$ mupip set -replication=on -file mumps.dat

This example enables database replication and turns before-image journaling on for mumps.dat.

Database Replication

228

$ mupip set -replication=on -journal=nobefore_image -file mumps.dat

This example enables database replication and turns no-before-image journaling on for mumps.dat.

$ mupip set -replication=off -file mumps.dat

This example turns off database replication for mumps.dat.

Creating the Replication Instance File

Command Syntax:

mupip replicate -instance_create -name=<instance name> [-noreplace] [-supplementary]

Qualifiers:

-instance_create

Creates a replication instance file. mupip replicate -instance_create takes the file name of the replication instance file from the
environment variable gtm_repl_instance.

If an instance file already exists, GT.M renames it with a timestamp suffix, and creates a new replication instance file. This
behavior is similar to the manner in which GT.M renames existing journal files while creating new journal files. Creating an
instance file requires standalone access.

-name

Specifies the instance name that uniquely identifies the instance and is immutable. The instance name can be from 1
to 16 characters. GT.M takes the instance name (not the same as instance file name) from the environment variable
gtm_repl_instname. If gtm_repl_instname is not set and -name is not specified, GT.M produces an error.

 -noreplace

Prevents the renaming of an existing replication instance file.

 -supplementary

Specifies that the replication instance file is suitable for use in a supplementary instance.

Example:

$ export gtm_repl_instance=mutisite.repl
$ export gtm_repl_instname=America
$ mupip replicate -instance_create

This example creates a replication instance file called multisite.repl specified by gtm_repl_instance with an instance name
America specified by environment variable gtm_repl_instname.

Displaying/Changing the attributes of Replication Instance File and Journal Pool

Command Syntax:

mupip replicate

Database Replication

229

 -edit[instance] {<instance-file>|-source -jnlpool}
 {-show [-detail]|-change [-offset=] [-size=] [-value=]}
 [-name=<new-name>]

 -editinstance

Displays or changes the attributes of the specified instance-file. Use -editinstance in combination with SHOW or CHANGE
qualifiers.

 -jnlpool

Displays or changes the attributes of Journal Pool. Always specify -source with -jnlpool. Use -jnlpool in combination with
SHOW or CHANGE qualifiers.
-change

The CHANGE qualifier is intended only for use under the guidance of FIS and serves two purposes. When used with -
editinstance -offset -size, it changes the contents of the replication instance file. When used with -jnlpool, it changes the
contents of journal pool header. Although MUPIP does not enforce standalone access when using this feature on the instance
file or the journal pool, doing so when replication is actively occurring can lead to catastrophic failures.

 -name=<new-name>

Changes the instance name in the replication instance file header to the new-name. Note that changing an instance name
preserves the instance history.

 -show

Displays File Header, Source Server slots, and History Records from the Replication Instance file.

 -detail

When specified, all fields within each section are displayed along with their offset from the beginning of the file and the size
of each field. Use this qualifier to find the -offset and -size of the displayed field. To edit any displayed field, use the -change
qualifier.

 -size

Indicates the new size of the new value in bytes. The value of size can be either 1, 2, 4, or 8.

 -offset

Takes a hexadecimal value that is a multiple of -size. With no -offset specified, GT.M produces an error. GT.M also produces an
error if the offset is greater than the size of the instance file or the journal pool header.

 -value

Specifies the new hexadecimal value of the field having the specified -offset and -size. With no value specified, GT.M displays
the current value at the specified offset and does not perform any change. Specifying -value=<new_value> makes the change
and displays both the old and new values.

Caution

Change the instance file or the journal pool only on explicit instructions from FIS.

Database Replication

230

 -show

The SHOW qualifier serves two purposes. When used with -editinstance, it displays the content of the replication instance file.
When used with -jnlpool, it displays the content of the journal pool.

Example:

$ mupip replicate -editinstance -show -detail multisite.repl

This example displays the content of the replication instance file multisite.repl. The optional detail qualifier displays each
section along with its offset from the beginning of the file and the size of each field. Use this information when there is a need
to edit the instance file.

Example:

$ mupip replicate -editinstance -change -offset=0x00000410 -size=0x0008 -value=0x010 multisite.repl

This command sets the value of the field having the specified offset and size to 16. Note that mupip replicate -editinstance -
show -detail command displays the offset and size of all fields in an instance file.

Starting the Source Server

Command syntax:

mupip replicate -source -start
 {-secondary=<hostname:port>|-passive}
 [-buffsize=<Journal Pool size in bytes>]
 [-filter=<filter command>]
 [-freeze[=on|off] -[no]comment[='"<string>"']
 [-connectparams=<hard tries>,<hard tries period>,
 <soft tries period>, <alert time>, <heartbeat period>,
 <max heartbeat wait>]
 -instsecondary=<replicating instance name>
 -log=<log file name> [-log_interval=<integer>]
 {-rootprimary|-propagateprimary} [{-updok|-updnotok}]
 [-cmplvl=<compression level>]
 [-tlsid=<label>]
 [-[no]plaintextfallback]
 [-renegotiate_interval=<minutes>]

Qualifiers:

-replicate

Use this qualifier to access the replication subsystem.

 -source

Identifies the Source Server.

 -start

Starts the Source Server.

 -secondary=<hostname:port>

Database Replication

231

Identifies the replicating instance. <hostname:port> specifies an IPv4 or IPv6 address optionally encapsulated by square-
brackets ([]) like "127.0.0.1", "::1", "[127.0.0.1]", or "[::1]" or a hostname that resolves to an IPv4 or IPv6 address and the port at
which the Receiver Server is waiting for a connection.

If, in your environment, the same hostname is used for both IPv4 and IPv6, GT.M defaults to IPv6. If you wish to use IPv4,
perhaps because you have a Receiver Server running a pre-V6.0-003 version of GT.M that does not support IPv6, set the
environment variable gtm_ipv4_only to "TRUE", "YES", or a non-zero integer in order to force GT.M to use IPv4.

-passive

Starts the Source Server in passive mode.

 -log=<log file name>

Specifies the location of the log file. The Source Server logs its unsuccessful connection attempts starting frequently and
slowing to approximately once every five minutes. This interval does not affect the rate of connection attempts.

 -log_interval=<integer>

Specifies the number of transactions for which the Source Server should wait before writing to the log file. The default logging
interval is 1000 transactions.

-log_interval=0 sets the logging interval to the default value.

 -buffsize=<Journal Pool size in bytes>

Specifies the size of the Journal Pool. The server rounds the size up or down to suit its needs. Any size less than 1 MB is
rounded up to 1 MB. If you do not specify a qualifier, the size defaults to the GT.M default value of 64 MB. Remember that you
cannot exceed the system-provided maximum shared memory. For systems with high update rates, specify a larger buffer size
to avoid the overflows and file I/O that occur when the Source Server reads journal records from journal files.

-filter=<filter command>

Specifies the complete path of the filter program and any associated arguments. If you specify arguments, then enclose the
command string in quotation marks. If a filter is active, the Source Server passes the entire output stream to the filter as input.
Then, the output from the filter stream passes to the replicating instance. If the filter program is an M program with entry-ref
OLD2NEW^FILTER, specify the following path:

filter='"$gtm_dist/mumps -run OLD2NEW^FILTER"'

Write the filter as a UNIX process that takes its input from STDIN and writes its output to STDOUT.

The format of the input and output data is the MUPIP journal file extract format. The filter must maintain a strict 1:1
relationship between transactions on the input stream and transactions on the output stream. If a transaction on the input
results in no sets and kills in the output, the filter must still write an empty transaction to the output stream.

Example:

extfilter
 ; A command like mupip replic -source -start -buffsize=$gtm_buffsize
 ;-instsecondary=$secondary_instance -secondary=$IP_Address:$portno
 ;-filter='"$gtm_exe/mumps -run ^extfilter"' -log=$SRC_LOG_FILE
 ;deploys this filter on the Source Server.
 set $ztrap="goto err"

Database Replication

232

 set TSTART="08"
 set TCOMMIT="09"
 set EOT="99"
 set log=$ztrnlnm("filterlog") ; use the environment variable filterlog" (if defined)
 ;to specify which logfile to use
 if logersion="" set log="logcharout" char
 if $zv["VMS" sechar EOL=$C(13)_$C(10)
 else set EOL=$C(10)
 open log:newve:sion
 use $principal:nowrap
 for do
 . use $principal
 . read extrRec
 . if $zeof halt
 . set rectype=$piece(extrRec,"\",1)
 . if rectype'=EOT do
 .. if rectype'=TSTART set filtrOut=extrRec_EOL
 .. else do
 ... set filtrOut=extrRec_EOL
 ... for read extrRec set filtrOut=filtrOut_extrRec_EOL quit:$zextract(extrRec,1,2)=TCOMMIT
 ... if $zeof halt
 .. ; set $x=0 is needed so every write starts at beginning of record position
 .. ; do not write more than width characters in one output operation to avoid "chopping".
 .. ; and/or eol in the middle of output stream
 .. ; default width=32K-1
 .. ; use $zsubstr to chop at valid character boundary (single or multi byte character)
 .. set cntr=0,tmp=filtrOut
 .. for quit:tmp="" do
 ... set cntr=cntr+1,$x=0,record(cntr)=$zsubstr(tmp,1,32767),tmp=$zextract(tmp,$zlength(record(cntr))+1,
$zlength(tmp))
 ... write record(cntr)
 . use log
 . write "Received: ",EOL,$s(rectype'=TSTART:extrRec_EOL,1:filtrOut)
 . if rectype'=EOT write "Sent: ",EOL,filtrOut
 . else write "EOT received, halting..." halt
 quit
err
 set $ztrap=""
 use log
 write !!!,"**** ERROR ENCOUNTERED ****",!!!
 zshow "*"
 halt

This example reads logical database updates associated with a transaction from STDIN and writes them to log.out and STDOUT
just like the UNIX tee command. It runs on GT.M V5.5-000 where it is no longer required to treat filter output as a transaction.
To run this example on a pre-GT.M V5.5-000 version, replace the line:

.. if rectype'=TSTART set filtrOut=extrRec_EOL

with

.. if rectype'=TSTART set filtrOut=TSTART_EOL_extrRec_EOL_TCOMMIT_EOL

to wrap mini-transactions in 08 09.

 -freeze[=on|off] -[no]comment[='"<string>"']

Database Replication

233

Promptly sets or clears an Instance Freeze on an instance irrespective of whether a region is enabled for an Instance Freeze. -
freeze with no arguments displays the current state of the Instance Freeze on the instance.

-[no]comment[='"<string>"'] allows specifying a comment/reason associated with an Instance Freeze. Specify -nocomment if
you do not wish to specify a comment/reason.

For more information on enabling a region to invoke an Instance Freeze on custom errors, refer to the -
INST_FREEZE_ON_ERROR section of “SET ” (page 109).

For more information on Instance Freeze, refer to “Instance Freeze” (page 193).

-connectparams=<hard tries>,<hard tries period>, <soft tries period>,<alert time>,<heartbeat period><max heartbeat wait>

Specifies the connection retry parameters. If the connection between the Source and Receiver Servers is broken or the Source
Server fails to connect to the Receiver Server at startup, the Source Server applies these parameters to the reconnection
attempts.

First, the Source Server makes the number of reconnection attempts specified by the <hard tries> value every <hard tries
period> milliseconds. Then, the Source Server attempts reconnection every <soft tries period> seconds and logs an alert
message every <alert time> seconds. If the specified <alert time> value is less than <hard tries>*<hard tries period>/1000 +
lt;soft tries period>, it is set to the larger value. The Source Server sends a heartbeat message to the Receiver Server every
<heartbeat period> seconds and expects a response back from the Receiver Server within <max heartbeat wait> seconds.

 -instsecondary

Identifies the replicating instance to which the Source Server replicates data.

With no -instsecondary specified, the Source Server uses the environment variable gtm_repl_instsecondary for the name of the
replicating instance.

With no -instsecondary specified and environment variable gtm_repl_instsecondary not set, mupip replicate -source -
checkhealth looks at all the Source Servers (Active or Passive) that are alive and running and those that were abnormally
shutdown (kill -9ed). Any Source Server that was kill -15ed or MUPIP STOPped is ignored because GT.M considers those Source
Server shut down in the normal way. This command reports something only if it finds at least one Source Server that is alive
and running or was abnormally shutdown (kill -9ed). Otherwise it returns a zero (0) status without anything to report even
when the Journal Pool exists and GT.M processes (Update Process or Receiver Server on the replicating instance) are up and
running.

You can start multiple Source Servers from the same originating instance as long as each of them specifies a different name for -
instsecondary.

Specify -instsecondary explicitly (by providing a value) or implicitly (through the environment variable
gtm_repl_instsecondary) even for starting a Passive Source Server. Whenever it activates, a Passive Source Server connects to
this replicating instance.

Example:

$ mupip replicate -source -start -buffsize=$gtm_buffsize -secondary=localhost:1234 -log=A2B.log -instsecondary=B

This command starts the Source Server for the originating instance with instance B as its replicating instance.

 -rootprimary

Assign the current instance as the originating instance. You can specify -rootprimary either explicitly or implicitly to start an
instance as an originating instance.

Database Replication

234

 -updok

Instructs the Source Server to allow local updates on this instance. This is a synonym for -rootprimary but is named so it better
conveys its purpose.

 -propagate[primary]

Use this optional qualifier to assign the current instance as a propagating instance. Specifying -propagateprimary disables
updates on the current instance.

Note that it is not possible to transition an originating instance to a propagating instance without bringing down the Journal
Pool. However, it is possible to transition a propagating instance to an originating instance without bringing down the Journal
Pool for an already running passive Source Server (start one with -propagateprimary if none is running).

Both -rootprimary and -propagateprimary are optional and mutually exclusive. However, FIS recommends you to specify both -
rootprimary and -propagateprimary explicitly in the script for clarity.

Example:

$ mupip replicate -source -activate -rootprimary

This command transitions a propagating originating instance to an originating instance without bringing down the Journal
Pool.

With neither -rootprimary nor -propagateprimary specified, GT.M uses a default value of -propagateprimary for the passive
Source Server startup command (mupip replic -source -start -passive) and the deactivate qualifier (mupip replicate -source
-deactivate). GT.M uses a default value of -rootprimary for the mupip replicate -source -start -secondary=... and the mupip
replic -source -activate commands. These default values make the replication script simpler for users who are planning to
limit themselves to one originating instance and multiple replicating instance (without any further replicating instances
downstream).

$ export gtm_repl_instance=multisite.repl
$ mupip set -journal="enable,before,on" -replication=on -region "*"
$ mupip replicate -instance_create -name=America
$ mupip replicate -source -start -buffsize=$jnlpool_size -secondary=localhost:1234 -log=A2B.log -instsecondary=Brazil

This example starts the Source Server at port 1234 for the replicating instance Brazil. The Source Server creates a Journal Pool.
A GT.M Process writes the updated journal records to the Journal Pool. Then, the Source Server process transports each record
from the Journal Pool to Brazil via a TCP/IP connection.

Note

Before starting replication, always remember to rundown every replicated database region then start the
Source Server.

Important

GT.M updates to replicated regions are permitted only on the originating instance and disabled on ALL other
replicating instances.

The Source Server records actions and errors in A2B.log. It also periodically record statistics such as the current backlog, the
number of journal records sent since the last log, the rate of transmission, the starting and current JNL_SEQNO, and the path of
the filter program, if any.

Database Replication

235

 -updnotok

Instructs the Source Server to not allow local updates on this instance. This is a synonym for -propagateprimary but is named
so it better conveys its purpose.

 -cmplvl=n

Specifies the desired compression level for the replication stream. n is a positive integer value indicating the level of
compression desired. Level 0 offers no compression. Level 1 offers the least compression while Level 9 (as of version 1.2.3.3 of
the zlib library) offers the most compression (at the cost of the most CPU usage). Specifying -cmplvl without an accompanying -
start produces an error. In the case of the source server, if N specifies any value outside of the range accepted by the zlib library
or if -cmplvl is not specified, the compression level defaults to zero (0). In the case of the receiver server, as long as N is non-
zero the decompression feature is enabled; since the source server setting determines the actual level, any legal non-zero value
enables compressed operation at the receiver.

Alternatively, the environment variable gtm_zlib_cmp_level can specify the desired compression level (in the same value range
as N above) and the source server can then be started without -cmplvl. This has the same effect as starting it with -cmplvl
specified. An explicitly specified value on the command line overrides any value specified by the environment variable.

Whenever the source and receiver server connect with each other, if the source server was started with a valid non-zero
compression level, they first determine whether the receiver server is running a version of GT.M which handles compressed
records and has been started with a non-zero compression level. Only if this is true, do they agree to use compressed journal
records. They also verify with a test message that compression/decompression works correctly before sending any compressed
journal data across. They automatically fall back to uncompressed mode of transmission if this test fails or if, at any point,
either side detects that compression or decompression has failed. That is, any runtime error in the compression/decompression
logic results in uncompressed replication (thereby reducing replication throughput) but never jeopardizes the functional health
of replication.

The Source and Receiver Servers log all compression related events and/or messages in their respective logs. The source server
also logs the length of the compressed data (in addition to the uncompressed data length) in its logfile.

Note

If you plan to use the optional compression facility for replication, you must provide the compression library.
The GT.M interface for compression libraries accepts the zlib compression libraries without any need for
adaptation. These libraries are included in many UNIX distributions and are downloadable from the zlib
home page. If you prefer to use other compression libraries, you need to configure or adapt them to provide
the same API provided by zlib. Simple instructions for compiling zlib on a number of platforms follow.
Although GT.M uses zlib, zlib is not FIS software and FIS does not support zlib. These instructions are merely
provided as a convenience to you.

If a package for zlib is available with your operating system, FIS suggests that you use it rather than building your own.

Solaris/cc compiler from Sun Studio:

./configure --shared
make CFLAGS="-KPIC -m64"

HP-UX(IA64)/HP C compiler:

./configure --shared
make CFLAGS="+DD64"

AIX/XL compiler:

Database Replication

236

./configure --shared
Add -q64 to the LDFLAGS line of the Makefile
make CFLAGS="-q64"

Linux/gcc:

./configure --shared
make CFLAGS="-m64"

z/OS:

Download the zlib 1.1.4 from the libpng project's download page on SourceForge.com. Use a transfer mechanism that does
not perform automatic conversion to download a source tarball. If pax cannot read the archive, it is a sign that the download
mangled the archive. Use pax to unpack the tarball, converting files from ASCII to EBCDIC.

pax -r -o setfiletag -ofrom=ISO8859-1,to=IBM-1047 -f zlib-1.1.4.tar.gz

Apply the following patch to the zlib 1.1.4 sources:

---------------------------------- zlib_1.1.4_zos.patch --diff -purN downloads/
zlib/src.orig/configure downloads/zlib/src/configure--- downloads/zlib/src.orig/configure Tue Dec 16 14:09:57
2008+++ downloads/zlib/src/configure Mon Feb 9 14:30:49 2009@@ -116,6 +116,11 @@ else SFLAGS=${CFLAGS-"-
Kconform_pic -O"} CFLAGS=${CFLAGS-"-O"} LDSHARED=${LDSHARED-"cc -G"};;+ OS/390*)+ CC=xlc+
SFLAGS=${CFLAGS-"-qascii -q64 -Wc,DLL,LP64,XPLINK,EXPORTALL -D_ALL_SOURCE_NOTHREADS"}+
CFLAGS=${CFLAGS-"-qascii -q64 -Wc,DLL,LP64,XPLINK,EXPORTALL -D_ALL_SOURCE_NOTHREADS"}+
LDSHARED=${LDSHARED-"xlc -qascii -q64 -Wl,dll,LP64,XPLINK "};; # send working options for other systems to
support@gzip.org *) SFLAGS=${CFLAGS-"-O"} CFLAGS=${CFLAGS-"-O"}

Build and install the zlib DLL, placing the xlc compilers in compatibility to mode by setting the environment variable
C89_CCMODE to 1. When not in compatibility mode, xlc follows strict placement of command line options. Configure and
build the zlib software with ./configure --shared && make. By default, the configure script places zlib in /usr/local/lib. Install
the software with make install. To ensure that GT.M finds zlib, include /usr/local/lib in LIBPATH, the environment variable that
provides a search path for processes to use when they link DLLs.

By default, GT.M searches for the libz.so shared library (libz.sl on HPUX PA-RISC) in the standard system library directories
(for example, /usr/lib, /usr/local/lib, /usr/local/lib64). If the shared library is installed in a non-standard location, before starting
replication, you must ensure that the environment variable $LIBPATH (AIX and z/OS) or $LD_LIBRARY_PATH (other UNIX
platforms) includes the directory containung the library. The Source and Receiver Server link the shared library at runtime. If
this fails for any reason (such as file not found, or insufficient authorization), the replication logic logs a DLLNOOPEN error
and continues with no compression.

-tlsid=<label>

Instructs the Source or Receiver Server to use the TLS certificate and private key pairs having <label> as the TLSID in the
configuration file pointed to by the gtmcrypt_config environment variable. TLSID is a required parameter if TLS/SSL is to be
used to secure replication connection between instances. If private keys are encrypted, an environment variable of the form
gtmtls_passwd_<label> specifies their obfuscated password. You can obfuscate passwords using the 'maskpass' utility provided
along with the encryption plugin. If you use unencrypted private keys, set the gtmtls_passwd_<label> environment variable to
a non-null dummy value; this prevents inappropriate prompting for a password.

-[NO]PLAINtextfallback

Specifies whether the replication server is permitted to fallback to plaintext communication. The default is -
NOPLAINtextfallback. If NOPLAINTEXTFALLBACK is in effect, GT.M issues a REPLNOTLS error in the event it is unable to

sourceforge.com

Database Replication

237

establish a TLS connection. [Note: GT.M versions prior to V6.1-000 did not support TLS for replication - if needed it could be
implemented with an external application such as stunnel (http://stunnel.org).] If PLAINTEXTFALLBACK is in effect, in the
event of a failure to establish a TLS connection, GT.M issues REPLNOTLS as a warning. Once a permitted plaintext replication
connection is established for a connection session, GT.M never attempts to switch that connection session to TLS connection.

-RENEGotiate_interval=<minutes >

Specifies the time in mintues to wait before attempting to perform a TLS renegotiation. The default -
RENEGOTIATE_INTERVAL is a little over 120 minutes. A value of zero causes GT.M never to attempt a renegotiation. The
MUPIP REPLIC -SOURCE -JNLPOOL -SHOW [-DETAIL] command shows the time at which the next TLS renegotiation
is scheduled, and how many such renegotiations have occurred thus far for a given secondary instance connection.
As renegotiation requires the replication pipeline to be temporarily flushed, followed by the actual renegotiation, TLS
renegotiation can cause momentary spikes in replication backlog.

Shutting down the Source Server

Command syntax:

mupip replicate -source -shutdown [-timeout=<timeout in seconds>]

Qualifiers:

 -shutdown

Shuts down the Source Server.

 -timeout=<timeout in seconds>

Specifies the time (in seconds) the Source Server should wait before shutting down. If you do not specify -timeout, the default
timeout period is 120 seconds. If you specify -timeout=0 , shutdown occurs immediately.

Activating a Passive Source Server

Command syntax:

mupip replicate -source -activate
 -secondary=<hostname:port>
 -log=<log file name>
 -connectparams=<hard tries>,<hard tries period>,
 <soft tries period>,<alert time>,<heartbeat period>,
 <max heartbeat wait>]
 -instsecondary=<instance_name>
 {-rootprimary|-propagateprimary}

Qualifiers:

-activate

Activates a passive Source Server. Once activated, the Source Server reads journal records from the Journal Pool and transports
them to the system specified by -secondary.

Before activation, -activate sets the Source Server to ACTIVE_REQUESTED mode. On successful activation, GT.M sets
the Source Server mode to ACTIVE. GT.M produces an error when there is an attempt to activate a Source Server in
ACTIVE_REQUESTED mode.

http://stunnel.org

Database Replication

238

 -instsecondary=<instance_name>

Identifies the replicating instance to which the passive Source Server connects after activation.

With no -instsecondary specified, the passive Source Server uses the environment variable gtm_repl_instsecondary as the value
of -instsecondary.

 -rootprimary

Specifies that the passive Source Server activation occurs on an originating instance.

 -propagateprimary

Specifies that the passive Source Server activation occurs on a propagating instance.

If neither -rootprimary nor -propagateprimary are specified, this command assumes -propagateprimary.

Example:

$ mupip replicate -source -activate -secondary=localhost:8998 -log=A2B.log -instsecondary=America

This example activates a Source Server from passive mode.

Deactivating an Active Source Server

Command syntax:

mupip replicate -source -deactivate -instsecondary=<instance_name>

Qualifiers:

-deactivate

Makes an active Source Server passive. To change the replicating instance with which the Source Server is communicating,
deactivate the Source Server and then activate it with a different replicating instance.

Before deactivation, -deactivate sets the Source Server to PASSIVE_REQUESTED mode. On successful deactivation, GT.M
sets the Source Server mode to PASSIVE. GT.M produces an error when there is an attempt to deactivate a Source Server in
PASSIVE_REQUESTED mode.

-instsecondary=<instance_name>

Identifies the active Source Server to transition to the passive (standby) state.

With no -instsecondary specified, $gtm_repl_instsecondary determines the active Source Server.

-rootprimary

Specifies that the active Source Server is on originating instance.

-propagateprimary

Specifies that the active Source Server is on a propagating instance.

If neither -rootprimary nor -propagateprimary are specified, this command assumes -propagateprimary.

Database Replication

239

Stopping the Source Filter

There are two ways to stop an active filter on the Source Server.

• Execute mupip replicate -source -stopsourcefilter on the originating Source Server.

• Specify -stopsourcefilter as an option for starting the Receiver Server.

If a filter fails to respond within just over a minute to delivery of a mini-transaction or TP transaction, a
Source or Receiver Server issues a FILTERTIMEDOUT error, stops the filter, and exits.

Checking Server Health

Use the following command and qualifier to determine whether the Source Server is running.

Command syntax:

mupip replicate -source -checkhealth
 [-instsecondary=<instance_instance>] [-he[lpers]]

Qualifiers:

-checkhealth

Determine whether the Source Server is running. If the Source Server is running, the exit code is 0 (zero). If the Source Server is
not running or an error exists, the exit code is not 0.

With helpers specified, -checkhealth displays the status of Helper Processes in addition to the status of Receiver Server and
Update Process.

 -instsecondary=<instance_name>

Identifies a Source Server process.

If -instsecondary is not specified, -checkhealth checks all Source Server processes.

Example:

$ mupip replic -source -checkhealth -inst=INSTB

Fri May 21 15:26:18 2010 : Initiating CHECKHEALTH operation on source server pid [15511] for secondary
instance name [INSTB]
PID 15511 Source server is alive in ACTIVE mode

$ mupip replic -source -checkhealth -inst=INSTB

Fri May 21 15:29:52 2010 : Initiating CHECKHEALTH operation on source server pid [0] for secondary
instance name [INSTB]
PID 0 Source server is NOT alive
%GTM-E-SRCSRVNOTEXIST, Source server for secondary instance INSTB is not alive

Changing the Log File

Database Replication

240

Command syntax:

mupip replicate -source -changelog -log=<log file name> [-log_interval=<integer>]
 -instsecondary=<instance_name>

Qualfiers:

-changelog

Instructs the Source Server to change its log file.

 -instsecondary=<instance_name>

Identifies a Source Server process.

-log=<log file name>

Use this mandatory qualifier to specify the name of the new log file. If you specify the name of the current log file, no change
occurs.

Example:

$ mupip replicate -source -changelog -log=/more_disk_space/newA2B.log -instsecondary=Brazil

 -log_interval=<integer>

Specifies the number of transactions for which the Source Server should wait before writing to the log file. The default logging
interval is 1000 transactions.

-log_interval=0 reverts the logging interval to the prior value.

Enabling/Disabling Detailed Logging

Command syntax:

mupip replicate -source -statslog={ON|OFF}
 [-log_interval=<integer>

Qualifiers:

-statslog={ON | OFF}

Enables or disables detailed logging. When ON, the system logs current-state information of the Source Server and messages
exchanged between the Source and Receiver Servers. By default, detailed logging is OFF. Once you enable it (ON), changing
-statslog to OFF can stop detailed logging.

 -log_interval=<integer>

Specifies the number of transactions for which the Source Server should wait before writing to the log file. The default logging
interval is 1000 transactions.

-log_interval=0 reverts the logging interval to the prior value.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX451.txt

Database Replication

241

Stopping a Source Server

Command Syntax:

mupip replic -source -shutdown [-instsecondary=<instance_name>] [-timeout=<seconds>]

Qualifiers:

 -instsecondary=<instance_name>

Identifies a Source Server process.

If -instsecondary is not specified, -shutdown stops all Source Server processes.

 -timeout=<seconds>

Specifies the period of time (in seconds) a Source Server should wait before shutting down. If you do not specify -timeout, the
default timeout period is 30 seconds. If you specify -timeout=0, shutdown occurs immediately.

Reporting the Current Backlog of Journal Records

Command syntax:

mupip replicate -source -showbacklog

Qualifiers:

-showbacklog

Reports the current backlog of journal records (in terms of JNL_SEQNO) on the output device (normally the standard output
device). This qualifier does not affect the statistics logged in the log file. The backlog is the difference between the last
JNL_SEQNO written to the Journal Pool and the last JNL_SEQNO sent by the Source Server to the Receiver Server. In the
WAS_ON state, -showbacklog reports the backlog information even if the Source Server is shut down.

Example:

$ mupip replic -source -showbacklog -inst=INSTB
Wed May 19 18:58:29 2010 : Initiating SHOWBACKLOG operation on source server pid [0] for secondary
instance [INSTB]
101 : backlog number of transactions written to journal pool and yet to be sent by the source server
102 : sequence number of last transaction written to journal pool
1 : sequence number of last transaction sent by source server
%GTM-E-SRCSRVNOTEXIST, Source server for secondary instance INSTB is not alive

Processing Lost Transactions File

Except following a failover when the backlog is zero, whenever a former originating instance comes up as a new replicating
instance, there is always a lost transaction file. Apply this lost transaction file at the new originating instance as soon as
practicable because there could be additional lost transaction files in the event of other failovers. For example, failure of the new
originating instance before the lost transaction file is processed. These additional lost transactions files can complicate the logic
needed for lost transaction processing.

Apply the lost transactions on the new originating instance either manually or in a semi-automated fashion using the M-
intrinsic function $ZQGBLMOD(). If you use $ZQGBLMOD() , two perform 2 additional steps (mupip replicate -source -

Database Replication

242

needrestart and mupip replicate -source -losttncomplete) as part of lost transaction processing. Failure to run these steps can
cause $ZQGBLMOD() to return false negatives that in turn can result in application data consistency issues.

Command Syntax:

mupip replicate -source
{-losttncomplete | -needrestart}
-instsecondary=<replicating instance name>

 -losttncomplete

Indicate to GT.M that all lost transaction processing using $ZQGBLMOD() is complete. Use this qualifier either explicitly
or implicitly to prevent a future $ZQGBLMOD() on an instance from returning false positives when applying future lost
transactions. This ensures accuracy of future $ZQGBLMOD() results.

Always use this qualifier when an originating instance comes up as a replicating instance.

Always run MUPIP REPLICATE -SOURCE -LOSTTNCOMPLETE on each of the replicating instances after applying all lost
transaction files except on the following occasions:

• The replicating instance is connected to the originating instance at the time the command is run on the originating instance.

• The replicating instance is not connected at the time the command is run on the originating instance but connects to the
originating instance, before the originating instance is brought down.

 -needrestart

Checks whether the originating instance ever communicated with the specified replicating instance (if the receiver server or
a fetchresync rollback on the replicating instance communicated with the Source Server) since the originating instance was
brought up. If so, this command displays the message SECONDARY INSTANCE xxxx DOES NOT NEED TO BE RESTARTED
indicating that the replicating instance communicated with the originating instnace and hence does not need to be restarted.
If not, this command displays the message SECONDARY INSTANCE xxxx NEEDS TO BE RESTARTED FIRST. In this case,
bring up the specified instance as a replicating instance before the lost transactions from this instance are applied. Failure to
do so before applying the corresponding lost transactions causes $ZQGBLMOD() to return false negatives which can result in
application data inconsistencies.

The mupip replic -source -needrestart command should be invoked once for each lost transaction file that needs to be applied.
It should be invoked on the new originating instance before applying lost transactions. Specify -instsecondary to provide
the instance name of the replicating instance where the lost transaction file was generated. If not, the environment variable
gtm_repl_instsecondary is implicitly assumed to hold the name of the replicating instance.

If the lost transaction file was generated from the same instance to which it is to be applied, a mupip replicate -source -
needrestart command is not required.

Always remember to bring the replicating instance (specified in the -needrestart command) as an immediate replicating
instance of the current originating instance. If it is brought up as a replicating instance through a different intermediate
replicating instance, the -needrestart command unconditionally considers the instance as not having communicated with the
originating instance even though it might be up and running.

The Source Server on the originating instance and/or Receiver Server or fetchresync rollback on the replicating instance need
not be up and running at the time you run this command.

However, it is adequate if they were up at some point in time after the originating instance was brought up.

Database Replication

243

This command protects against a scenario where the originating instance when the lost transaction file is generated is different
from the primary instance when the lost transactions are applied (note that even though they can never be different in case of a
dual-site configuration, use of this command is nevertheless still required).

$ZQGBLMOD() relies on two fields in the database file header of the originating instance to be set appropriately. Zqgblmod
Trans and Zqgblmod Seqno. In an LMS configuration, if there are more than two instances, and no instances other than
the originating and replicating instances are involved in the rollback -fetchresync participate in the sequence number
determination. Hence, they do not have their Zqgblmod Seqno (and hence Zqgblmod Trans) set when that particular lost
transaction file is generated. If any of the non-participating instances is brought up as the new originating instance and that
particular lost transaction file is applied on the originating instance, the return values of $ZQGBLMOD() will be unreliable since
the reference point (Zqgblmod Trans) was not set appropriately. Hence, this command checks whether the replicating instance
where the lost transaction was previously generated has communicated with the current originating instance after it came up
as the originating instance. If it is affirmative, the Zqgblmod Seqno and Zqgblmod Trans fields would have been appropriately
set and hence $ZQGBLMOD() values will be correct.

Example:

$ mupip replic -source -losttncomplete

This command updates the Zqgblmod Seqno and Zqgblmod Trans fields (displayed by a dse dump -fileheader command) in the
database file headers of all regions in the global directory to the value 0. Doing so causes a subsequent $ZQGBLMOD() to return
the safe value of one unconditionally until the next lost transaction file is created.

Lost Transaction File format

The first line of the lost transaction file include up to four fields. The first field displays GDSJEX04 signifying the file format
version.The second field indicates whether the lost transaction file is a result of a rollback or recover. If the second field
is ROLLBACK, a third field indicates whether the instance was a PRIMARY or SECONDARY immediately prior to the lost
transaction file being generated. If it was a PRIMARY, the lost transaction file is termed a primary lost transaction file and it
needs to be applied on the new originating instance. A fourth field holds the name of the replicating instance on which the lost
transactions were generated. This instance name should be used as the -instsecondary qualifier in the mupip replic -source -
needrestart command when the lost transactions are applied at the new originating instance.

The first line of a lost transaction file looks like the following:

GDSJEX04 ROLLBACK SECONDARY Perth

Starting the Receiver Server

Command syntax:

mupip replicate -receiver -start
 -listenport=<port number>
 -log=<log file name> [-log_interval="[integer1],[integer2]"]
 [-autorollback[=verbose]]
 [-buffsize=<Receive Pool size in bytes>]
 [-filter=<filter command>]
 [-noresync]
 [-stopsourcefilter]
 [-updateresync=</path/to/bkup-orig-repl-inst-file>
 {[-resume=<strm_num>|-reuse=<instname>]}
 [-initialize] [-cmplvl=n]
 [-tlsid=<label>]

Database Replication

244

Qualifiers:

-receiver

Identifies the Receiver Server.

-start

Starts the Receiver Server and Update Process.

 -listenport=<port number>

Specifies the TCP port number the Receiver Server will listen to for incoming connections from a Source Server. Note that the
current implementation of the Receiver Server does not support machines with multiple IP addresses.

 -autorollback[=verbose]

Allows the receiving instance of SI or BC replication to roll back as required when the source instance rolls back with a mupip
journal -rollback -backward command. The optional value keyword VERBOSE allows roll back to provide more diagnostic
information.

Caution

As autorollback uses mupip online rollback under the covers, it should be considered field test grade
functionality as long as that function is considered field test grade functionality.

-log=<recsrv_log_file_name >

Specifies the location of the log file of the Receiver Server. When -log is specified, the Update Process writes to a log file named
<recsrv_log_file_name>.updproc. Note that the name of the Update Process log file name has .updproc at the end to distinguish
it from the Receiver Server's log file name.

-log_interval="[integer1],[integer2]"

integer1 specifies the number of transactions for which the Receiver Server should wait before writing to its log file. integer2
specifies the number of transactions for which the Update Process should wait before writing to its log file. The default logging
interval is 1000 transactions.

If integer1 or integer2 is 0, the logging interval is set to the default value.

-stopsourcefilter

Starting the Receiver Server with -stopsourcefilter turns off any active filter on the originating Source Server. Use this option at
the time of restarting the Receiver Server after a rolling upgrade is complete.

 -updateresync=</path/to/bkup-orig-repl-inst-file>

-updateresync guarantees GT.M that the replicating instance was, or is, in sync with the originating instance and it is now safe
to resume replication. Use -updateresync only in the following situations:

• To replace an existing replication instance files when an upgrade to a GT.M version changes the instance file format. Consult
the release notes to determine whether this applies to your upgrade.

• When an existing replication instance file is unusable because it was damaged or deleted, and is replaced by a new replication
instance file.

Database Replication

245

• Setting up an A->P configuration for the first time if P is an existing instance with existing updates that are not, and not
expected to be, in the originating instance.

• Setting up a new replicating instance from a backup of the originating instance (A->P only) or one of its replicating
secondary instances.

• If you are running a GT.M version prior to V5.5-000 and you have to set up a replicating instance from a backup of an
originating instance.

-updateresync uses the journal sequence number stored in the replicating instance's database and the history record available in
the backup copy of the replication instance file of the originating instance (</path/to/bkup-orig-repl-inst-file>) to determine the
journal sequence number at which to start replication.

When replication resumes after a suspension (due to network or maintenance issues), GT.M compares the history records
stored in the replication instance file of the replicating instance with the history records stored in the replication instance file
of the originating instance to determine the point at which to resume replication. This mechanism ensures that two instances
always remain in sync when a replication connection resumes after an interruption. -updateresync bypasses this mechanism
by ignoring the replication history of the replicating instance and relying solely on the current journal sequence number and
its history record in the originating instance's history to determine the point for resuming replication. As it overrides a safety
check, use -updateresync only after careful consideration. You can check with your GT.M support channel as to whether -
updateresync is appropriate in your situation.

To perform an updateresync, the originating instance must have at least one history record. You need to take a backup
(BACKUP -REPLINST) of the replication instance file of the originating instance while the Source Server is running.
This ensures that the instance file has at least one history record. Even though it is safe to use a copy (for example, an
scp) of the replication instance file of the originating instance taken after shutting down its Source Server, BACKUP -
REPLINST is recommended because it does not require Source Server shutdown. You also need an empty instance file (-
INSTANCE_CREATE) of the replicating instance to ensure that it bypasses the history information of the current and prior
states.

You also need use -updateresync to replace your existing replication instance files if a GT.M version upgrade changes the
instance file format. The instance file format was changed in V5.5-000. Therefore, upgrading a replicating instance from a
version prior to GT.M V5.5-000 up to V5.5-000 or higher requires replacing its instance file.

Prior to V5.5-000, -updateresync did not require the argument (<bckup_orig_repl_inst_file>). The syntax for -updateresync
depends on the GT.M version.

For information on the procedures that use -updateresync, refer to “Setting up a new replicating instance of an originating
instance (A->B, P->Q, or A->P)” (page 221), “Replacing the replication instance file of a replicating instance (A->B and P-
>Q)” (page 221), “Replacing the replication instance file of a replicating instance (A->P)” (page 221), and “Setting up a new
replicating instance from a backup of the originating instance (A->P)” (page 222).

 -initialize

Used when starting a Receiver Server of an SI replication stream with -updateresync to specify that this is the first connection
between the instances. MUPIP ignores these qualifiers when starting BC replication (that is, no updates permitted on the
instance with the Receiver Server). This qualifier provides additional protection against inadvertent errors.

 -resume=<strm_num>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver instance has
previously received from the same source but had only its instance file (not database files) recreated in between (thereby
erasing all information about the source instance and the stream number it corresponds to recorded in the receiver instance

Database Replication

246

file). In this case, the command mupip replic -receiv -start -updateresync=<instfile> -resume=<strm_num>, where strm_num
is a number from 1 to 15, instructs the receiver server to use the database file headers to find out the current stream sequence
number of the receiver instance for the stream number specified as <strm_num>, but uses the input instance file (specified with
-updateresync) to locate the history record corresponding to this stream sequence number and then exchange history with
the source to verify the two instances are in sync before resuming replication. Note that in case -resume is not specified and
only -updateresync is specified for a SI replication stream, it uses the input instance file name specified with -updateresync to
determine the stream sequence number as well as provide history records to exchange with the source instance (and verify the
two are in sync). Assuming that instance files are never recreated (unless they are also accompanied by a database recreate),
this qualifier should not be required in normal usage situations.

 -reuse=<instname>

Used when starting a Receiver Server of an SI replication stream with -updateresync in case the receiver instance has
previously received from fifteen (all architecturally allowed) different externally sourced streams and is now starting to receive
from yet another source stream. The command mupip replic -receiv -start -updateresync=<instfile> -reuse=<instname>, where
instname is the name of a replication instance, instructs the receiver server to look for an existing stream in the replication
instance file header whose Group Instance Name (displayed by a mupip replic -editinstance -show command on the receiver
replication instance file) matches the instance name specified and if one does, reuse that stream number for the current source
connection (erasing any record of the older Group using the same stream number).

 -noresync

Instructs the Receiver Server to accept a SI replication stream even when the receiver is ahead of the source. In this case, the
source and receiver servers exchange history records from the replication instance file to determine the common journal
stream sequence number and replication resumes from that point onwards. Specifying -noresync on a BC replication stream is
produces a NORESYNCSUPPLONLY error. Specifying -noresync on a SI replication stream receiver server where the receiving
instance was started with -UPDNOTOK (updates are disabled) produces a NORESYNCUPDATERONLY error. Note also that the
noresync qualifier is not the opposite of the resync qualifier of rollback (mupip journal -rollback -resync), which is intended for
use under the direction of FIS GT.M support.

-tlsid=<label>

Instructs the Source or Receiver Server to use the TLS certificate and private key pairs having <label> as the TLSID in the
configuration file pointed to by the gtmcrypt_config environment variable. TLSID is a required parameter if TLS/SSL is to be
used to secure replication connection between instances. If private keys are encrypted, an environment variable of the form
gtmtls_passwd_<label> specifies their obfuscated password. You can obfuscate passwords using the 'maskpass' utility provided
along with the encryption plugin. If you use unencrypted private keys, set the gtmtls_passwd_<label> environment variable to
a non-null dummy value; this prevents inappropriate prompting for a password.

Starting the Update Process

The following command starts the Update Process only, if it has been shutdown independent of the Receiver Server.

Command syntax:

mupip replicate -receiver -start {-updateonly|-helpers[=m[,n]]

Qualifiers:

-updateonly

If the Update Process has been shutdown independent of the Receiver Server, use this qualifier to restart the Update Process.

Database Replication

247

 -helpers[=m[,n]]

Starts additional processes to help improve the rate at which updates from an incoming replication stream are applied on a
replicating instance.

• m is the total number of helper processes and n is the number of reader helper processes, in other words m≥n.

• Helper processes can start only on a receiver server.

• If helper processes are already running, specifying -helpers[=m[,n]] again starts additional helper processes. There can be a
maximum of 128 helper processes for a receiver server.

• If -helpers=0[,n] is specified, GT.M starts no helper processes.

• With the HELPERS qualifier specified but neither m nor n specified, GT.M starts the default number of helper processes with
the default proportion of roles. The default number of aggregate helper processes is 8, of which 5 are reader helpers and 3
writers.

• With only m specified, helper processes are started of which floor(5*m/8) processes are reader helpers.

• With both m and n specified, GT.M starts m helper processes of which n are reader helpers and m-n are writers. If m<n,
mupip starts m readers, effectively reducing n to m and starting no writers.

• GT.M reports helper processes (for example, by the ps command and in /proc/<pid>/cmdline on platforms that implement a /
proc filesystem) as mupip replicate -updhelper -reader and mupip replicate -updhelper -writer.

Example:

$ mupip replicate -receiver -start -listenport=1234 -helpers -log=B2C.log
 -buffsize=$recpool_size

This command starts the Receiver Server with Helper Processes. The following sample output from the ps command shows that
there are 5 reader processes and 3 writer processes.

gtmuser1 11943 1 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -receiver -start
-listenport=1234 -helpers -log=B2C.log -buff=$rec_pool_size
gtmuser1 11944 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updateproc
gtmuser1 11945 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -reader
gtmuser1 11946 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -reader
gtmuser1 11947 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -reader
gtmuser1 11948 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -reader
gtmuser1 11949 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -reader
gtmuser1 11950 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -writer
gtmuser1 11951 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -writer
gtmuser1 11952 11943 0 06:42 ? 00:00:00 /usr/library/GTM/mupip replicate -updhelper -writer

Stopping the Update Process

Command syntax:

mupip replicate -receiver -shutdown [-updateonly|-helpers] [-timeout=<timeout in seconds>]

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX460.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX461.txt

Database Replication

248

Qualifiers:

-updateonly

Use this qualifier to stop only the Update Process. If neither -updateonly nor -helper are specified, the Update Process, all helper
processes (if any), and Receiver Server shut down.

 -helper

Shuts down only the Helper Processes and leaves the Receiver Server and Update Process to continue operating as before. All
helpers processes shut down even if -helper values are specified.

-timeout

Specifies the period of time (in seconds) the Receiver Server should wait before shutting down. If you do not specify -timeout,
the default timeout period is 30 seconds. If you specify -timeout=0, shutdown occurs immediately.

Example:

$ mupip replicate -receiver -shutdown -helper

This example shuts down only the helper processes of the current Receiver Server. Note that all helpers processes shut down
even if HELPER values are specified.

Checking Server Health

Use the following command to determine whether the Receiver Server is running.

Command syntax:

mupip replicate -receiver -checkhealth

Changing the Log File

Command syntax:

mupip replicate -receiver -changelog -log=<log file name>
 [-log_interval="[integer1],[integer2]"]

 -log_interval="[integer1],[integer2]"

integer1 specifies the number of transactions for which the Receiver Server should wait before writing to the log file. integer2
specifies the number of transactions for which the Update Process should wait before writing to the log file. The default logging
interval is 1000 transactions.

If integer1 or integer2 is 0, the logging interval reverts to the prior value.

Enabling/Disabling Detailed Logging

Command syntax:

mupip replicate -receiver -statslog={ON|OFF}

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX464.txt

Database Replication

249

 [-log_interval="[integer1],[integer2]"]

 -log_interval="[integer1],[integer2]"

integer1 specifies the number of transactions for which the Receiver Server should wait before writing to the log file. integer2
specifies the number of transactions for which the Update Process should wait before writing to the log file. The default logging
interval is 1000 transactions.

If integer1 or integer2 is 0, the logging interval reverts to the prior value.

Reporting the Current Backlog of Journal Records

Command syntax:

mupip replicate -receiver -showbacklog

Qualifiers:

-showbacklog

Use this qualifier to report the current backlog (that is, the difference between the last JNL_SEQNO written to the Receive Pool
and the last JNLSEQNO processed by the Update Process) of journal records on the Receiver Server.

Rolling Back the Database After System Failures

Command syntax:

mupip journal -rollback
 {[-fetchresync=<port number>|-resync=<JNL_SEQNO>]
 [-rsync_strm=<strm_num>]}
 -losttrans=<extract file> -backward *

Qualifiers:

-rollback

Use this qualifier to rollback the database. If you do not use the -fetchresync qualifier, the database rolls back to the last
consistent state.

-fetchresync=<port number>

The <port number> is the communication port number that the rollback command uses when fetching the reference point.
Always use the same <port number> on the originating instance for rollback as the one used by the Receiver Server.

Important

FIS recommends you to unconditionally script the mupip journal -rollback -fetchresync command prior to
starting any Source Server on the replicating instance to avoid a possible out-of-sync situation.

The reference point sent by the originating instance is the RESYNC_SEQNO (explained later) that the originating instance once
maintained. The database/journal files are rolled back to the earlier RESYNC_SEQNO (that is, the one received from originating
instance or the one maintained locally). If you do not use -fetchresync, the database rolls back to the last consistent replicating
instance state.

Database Replication

250

A FETCHRESYNC ROLLBACK operation sends its current working directory to the Source Server log.

The system stores extracted lost transactions in the file <extract file> specified by this mandatory qualifier. The starting point
for the search for lost transactions is the JNL_SEQNO obtained from the originating instance in the -fetchresync operation.
If -fetchresync is not specified, <extract file> lists the post-consistent-state transactions that were undone by the rollback
procedure to reach a consistent state.

Note

The extracted lost transactions list may contain broken transactions due to system failures that occurred
during processing. Do not resolve these transactions-they are not considered to be committed.

Caution

The database header may get corrupted if you suspend an ongoing ROLLBACK -FETECHRESYNC
operation or if the TCP connection between the two instances gets broken. The workaround is to restart the
ROLLBACK -FETCHRESYNC operation or wait 60 seconds for the FETCHRESYNC operation to timeout.

Example:

$ mupip journal -rollback -fetchresync=2299 -losttrans="glo.lost" -backward *

This command performs a ROLLBACK -FETCHRESYNC operation on a replicating instance to bring it to a common
synchronization point from where the originating instance can begin to transmit updates to allow it to catch up. It also
generates a lost transaction file glo.lost of all those transactions that are present on the replicating instance but not on the
originating instance at port 2299.

-resync=<JNL_SEQNO>

Use this qualifier to roll back to the transaction identified by JNL_SEQNO (in decimal) only when the database/ journal files
need to be rolled back to a specific point. If you specify a JNL_SEQNO that is greater than the last consistent state, the database/
journal files will be rolled back to the last consistent state. Under normal operating conditions, you would not need this
qualifier.

-losttrans=<extract file>

If failover occurs (that is, originating instance fails and replicating instance assumes the originating instance role), some
transactions committed to A's database may not be reflected in B's database. Before the former originating instance becomes the
new replicating instance, these transactions must be rolled off before it can assume the role of an originating instance. These
transactions are known as "lost transactions".

The system stores extracted lost transactions in the file <extract file> specified by this mandatory qualifier. The starting point
for the search for lost transactions is the JNL_SEQNO obtained from the originating instance in the -fetchresync operation.
If -fetchresync is not specified, <extract file> lists the post-consistent-state transactions that were undone by the rollback
procedure to reach a consistent state.

Note

The extracted lost transactions list may contain broken transactions due to system failures that occurred
during processing. Do not resolve these transactions-they are not considered to be committed.

-rsync_strm=<strm_num>

Database Replication

251

Used when starting a rollback command with the -resync qualifier. The command mupip journal -rollback -
resync=<sequence_num> -rsync_strm=<strm_num> instructs rollback to roll back the database to a sequence number specified
with the -resync=<sequence_num> qualifier but that <sequence_num> is a journal stream sequence number (not a journal
sequence number) corresponding to the stream number <strm_num> which can be any value from 0 to 15. Note that like the -
resync qualifier, the -rsync_strm qualifier is also intended for use under the direction of your GT.M support channel.

252

Chapter 8. M Lock Utility (LKE)

Revision History

Revision V6.0-000/1 21 November 2012 In “SHow ” [257], added updated for V6.0-000.

Revision V5.5-000/4 6 June 2012 In “SHow ” [257], added the description of the
LOCKSPACEUSE message.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

The M Lock Utility (LKE) is a tool for examining and changing the GT.M LOCK environment. For a description of M LOCKs,
refer to the LOCKs section in the General Language Features of M chapter and the description of the LOCK command in the
Commands chapter of the GT.M Programmer's Guide.

The two primary functions of the M Lock Utility (LKE) are:

1. SHOW all or specified LOCKs currently active

2. CLEAR all or specified LOCKs currently active

When debugging an M application, you may use LKE to identify a possible deadlock situation, that is, two or more processes
have LOCKs and are waiting to add resource names LOCKed by the other(s).

Process 1 Process 2
LOCK A
 LOCK B
 LOCK +A
LOCK +B

Process 1 has A LOCKed and attempts to LOCK B. Process 2 has B LOCKed and attempts to LOCK A. Because these processes
do not release their current LOCKs before adding additional LOCKs, nor do they provide a timeout to detect the problem, they
are deadlocked. Neither process can proceed normally. You can use LKE to release one of the LOCKs so both processes may
execute. However, because releasing a LOCK may cause the process to violate its design assumptions, terminating one process
is generally a safer way to break the deadlock.

Note

When a process leaves M, GT.M normally releases any LOCKs or ZALLOCATEs held by that process. If a
GT.M process terminates abnormally, or if the system "crashes" while a GT.M process is active, GT.M cannot
perform normal clean-up. However, as soon as any other process waits several seconds for a LOCK owned by
a process that no longer exists, GT.M automatically clears the "orphaned" LOCK.

To Invoke and Exit LKE

GT.M installation procedure places the LKE utility package in a directory specified by the environment variable gtm_dist.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

M Lock Utility (LKE)

253

LKE requires that the environment variable gtmgbldir be defined.

Invoke LKE using the following command at the shell prompt. If this does not work, consult your system manager to
investigate setup and file access issues.

$gtm_dist/lke LKE>

Important

Always run LKE on the node where the lock is held.

When LKE is ready to accept commands, it displays the LKE> prompt. To leave LKE, enter the EXIT command at the LKE>
prompt.

When additional information is entered on the command line after the LKE command, LKE processes the additional information
as its command.

$gtm_dist/lke show -all

This command displays all current LOCKs and then returns to the shell prompt.

If your LKE argument contains quotes, precede each quote in the argument by a back-slash (\) or enclose the entire argument in
a set of quotes (matching single or double). Apply this convention only for those LKE commands that you run from the shell.

$gtm_dist/lke show -lock="^Account(\"Name\")"
$gtm_dist/lke show -lock='^Account("Name")'

Both these commands display the status of LOCK ^Account("Name") in the default region.

To establish a Global Directory

LKE uses the environment variable gtmgbldir to identify the active global directory. gtmgbldir should be defined by individual
users in their login files.

$ gtmgbldir=prod.gld
$ export gtmgbldir

LKE Commands and Qualifiers

The general format of LKE commands is:

command [-qualifier[=qualifier-value]]

LKE accepts command and qualifier abbreviations. The section describing each command provides the minimal abbreviation
that can be used for that command, and the command qualifiers, if any. FIS recommends the use of a minimum of four
characters for key words in scripts to ensure new keywords do not conflict with older scripts.

Clear

Use the CLEAR command to remove active LOCKs.

M Lock Utility (LKE)

254

Caution

FIS recommends restricting the use of the LKE CLEAR facility to debugging environments; removing LOCKs
in a production environment typically violates application design assumptions and can cause aberrant
process behavior. GT.M automatically removes abandoned LOCKs so it is typically safer to MUPIP STOP a
process that is inappropriately hanging on to a LOCK.

The format of the CLEAR command is:

C[LEAR] [-qualifier...]

The optional qualifiers are:

-A[LL]
-L[OCK]
-[NO]C[RIT]
-[NO]EXACT
-[NO]I[NTERACTIVE]
-O[UTPUT]="file-name"
-P[ID]=pid
-R[EGION]=region-name

By default, CLEAR operates interactively (-INTERACTIVE).

Qualifiers for CLEAR

-A[LL]

Specifies all current LOCKs.

• -ALL removes all current LOCKs.

• If used, CLEAR and -REGION qualifier, -ALL removes all LOCKs in that region.

• Issue a CLEAR - ALL only when there are no active GT.M processes using LOCKs, or when you can predict the effect on the
application.

• By default, CLEAR -ALL operates interactively (-INTERACTIVE).

-[NO]C[RIT]

Allows LKE CLEAR to work even if another process is holding a critical section.

Caution

This can damage current LOCKs and the LOCK mechanism. It is intended for use only under the direction of
FIS.

By default LKE operates in CRIT mode and ensures a consistent view of LOCKs by using the database critical section(s).

-[NO]EXACT

Limits the CLEAR command to the exact resource name specified with -LOCK=resource_name. NOEXACT (the default)
treats the specified resource name as a prefix and works not only on it, but also on any of its descendants, since their existence
effectively LOCK their parent tree.

M Lock Utility (LKE)

255

-L[OCK]=""resource_name""

Unless used with -EXACT, specifies the leading prefix for an implicit wild card search of all locks that start with the
resource_name.

• The resource_name is enclosed in two double quotation marks ("" ""). Because M resource names are formatted the same as
global nodes with punctuation characters, in this context they are usually enclosed in sets of double quotation marks with
string subscripts enclosed in sets of two double quotations.

• When used with CLEAR, -LOCK removes the locks that start with resource_name.

• When used with SHOW,-LOCK provides a precise way to examine the specified lock.

-[NO]I[NTERACTIVE]

Interactively clears one LOCK at a time. LKE displays each current LOCK with the PID of the owner process and prompts for
verification that the LOCK should be cleared. LKE retains the LOCK for any response other than Y[ES].

• By default, CLEAR operates interactively (-INTERACTIVE).

• To avoid holding a lock resource too long, LKE skips to the next matching LOCK if there is no operator response for several
seconds.

• -NOINTERACTIVE forces the action to take place without user confirmation of each change. Using -NOINTERACTIVE
prevents the LKE operator from controlling the LOCK subsystem for potentially long periods of time when many locks are
held. To do this, it limits the amount of time it waits for each response.

-O[UTPUT]="file-name"

Directs the reporting of all specified LOCKs to a file.

• If you specify an existing file, LKE creates a new version and overwrites that file.

• If file-name has permission issues, OUTPUT reports the cause of the error.

• The -OUTPUT qualifier is compatible with all other qualifiers.

• By default, CLEAR sends output messages to stdout.

-P[ID]=pid

Specifies the process identification number that holds a LOCK on a resource name.

• LKE interprets pid as a decimal number.

• PID clears LOCKs held by the process with the specified process identification number.

• Provides a means for directing CLEAR to LOCKs held by a process that is behaving abnormally.

• The -PID qualifier is compatible with all other qualifiers.

-R[EGION]=region-name

M Lock Utility (LKE)

256

region-namespecifies the region that holds the locked resource names.

• REGION clears LOCKs mapped by the current global directory to a region specified by the region-name.

• The -REGION qualifier is compatible with all other qualifiers.

• By default, CLEAR -REGION= operates interactively (-INTERACTIVE).

Example:

LKE>CLEAR -ALL

This command clears all current LOCKs.

Example:

LKE>clear -pid=2325 -interactive

This command presents all LOCKs held by the process with PID equal to 2325. You can choose whether or not to clear each
LOCK.

LKE>clear -reg=areg -interactive

This command produces an output like the following:

AREG ^a Owned by PID= 2083 which is an existing
process Clear lock ?

Type Yes or Y in response to the prompt.

LKE responds with an informational message:

%GTM-S-LCKGONE, Lock removed : ^a

Type Yes or N or No or N until all LOCKs are displayed and acted upon.

LKE> clear -pid=4208 -nointeractive

This command clears the lock held by a process with PID 4208. This command produces an output like the following:

DEFAULT Lock removed : ^A

Note that -NOINTERACTIVE forced the action without asking for a confirmation.

Example:

LKE>clear -lock="^a("b")
Clear lock ? y
Lock removed : ^a("b")
LKE>

This command clears lock ^a("b") in the default region.

Example:

LKE>clear -lock="^a" -nointeractive

M Lock Utility (LKE)

257

This command clears all the locks that start with "^a" in the default region. -NOINTERACTIVE qualifier instructs LKE to clear
these locks without further user intervention.

Example:

LKE>clear -lock="^a" -exact -nointeractive

This command clears lock ^a in the default region. -NOINTERACTIVE instructs LKE to clear lock ^a without further user
intervention.

Example:

LKE>CLEAR -PID=4109 -LOCK=""^A""
Clear lock ? Y
Lock removed : ^A
LKE>

This command clears LOCK ^A held by process with PID 4109.

SHow

Use the SHOW command to get status of the LOCK mechanism and the LOCK database. The format of the SHOW command
is:

SH[OW] [-qualifier...]

The optional qualifiers are:

-A[LL]
-L[OCK]
-[NO]C[RIT]
-O[UTPUT]="file-name"
-P[ID]=pid
-R[EGION]=region-name
-W[AIT]

• By default, SHOW displays -A[LL].

• The SHOW command reports active LOCKs. Information includes the LOCK resource name and the process identification
(PID) of the LOCK owner.

• LKE SHOW displays lock space usage with a message in the form of: "%GTM-I-LOCKSPACEUSE, Estimated free lock space:
xxx% of pppp pages." If the lock space is full, it also displays a LOCKSPACEFULL error.

• A LOCK command which finds no room in LOCK_SPACE to queue a waiting LOCK, does a slow poll waiting for
LOCK_SPACE to become available. If LOCK does not acquire the ownership of the named resource with the specified
timeout, it returns control to the application with $TEST=0. If timeout is not specified, the LOCK command continues to do a
slow poll till the space becomes available.

• LOCK commands which find no available lock space send a LOCKSPACEFULL message to the operator log. To prevent
flooding the operator log, GT.M suppresses further such messages until the lock space usage drops below 75% full.

• The results of a SHOW may be immediately "outdated" by M LOCK activity.

M Lock Utility (LKE)

258

• If the LOCK is owned by a GT.CM server on behalf of a client GT.M process, then LKE SHOW displays the client
NODENAME (limited to the first 15 characters) and clientPID. The client PID (CLNTPID) is a decimal value in UNIX.

Note

GT.CM is an RPC-like way of remotely accessing a GT.M database.

-ALL

Specifies all current LOCKs.

• -ALL displays all current LOCKs in all regions and information about the state of processes owning these LOCKs.

• The -ALL qualifier is compatible with all other qualifiers.

• When -ALL is combined with -PID or -REGION, the most restrictive qualifier prevails.

• SHOW -ALL and -WAIT displays both -ALL and -WAIT information.

-L[OCK]=resource_name

resource_name specifies a single lock.

• The resource_name is enclosed in double quotation marks ("" ""). Because M resource names are formatted the same as
global nodes with punctuation characters, in this context they are usually enclosed in sets of double quotation marks with
string subscripts enclosed in sets of two double quotations.

• When used with the CLEAR command, the LOCK qualifier removes the specified lock.

• When used with the SHOW command, the LOCK qualifier provides a precise way to examine the specified lock and any
descendant LOCKed resources.

-[NO]C[RIT]

Allows the SHOW command to work even if another process is holding a critical section.

• By default LKE operates in CRIT mode and ensures a consistent view of LOCKs by using the database critical section(s).

• Use NOCRIT with SHOW only when normal operation is unsuccessful, as NOCRIT may cause LKE to report incomplete or
inconsistent information.

-O[UTPUT]="file-name"

Directs the reporting of all specified LOCKs to a file.

• If you specify an existing file, LKE creates a new version and overwrites that file.

• The -OUTPUT qualifier is compatible with all other qualifiers.

• By default, the SHOW command send output messages to stdout.

M Lock Utility (LKE)

259

-P[ID]=pid

Specifies the process identification number that holds a LOCK on a resource name.

• LKE interprets pid as a decimal number.

• PID displays all LOCKs owned by the specified process identification number.

• The -PID qualifier is compatible with all other qualifiers; the most restrictive of the qualifiers prevails.

• By default, SHOW displays the LOCKs for all PIDs.

-R[EGION]=region-name

Specifies the region that holds the locked resource names.

• The REGION qualifier displays LOCKs of that specified region.

• The REGION qualifier is compatible with all other qualifiers; the most restrictive of the qualifiers prevails.

• By default, SHOW displays the LOCKs for all regions.

-W[AIT]

Displays the LOCK resource name and the process state information of all processes waiting for the LOCK to be granted.

• SHOW -WAIT does not display the owner of the LOCK.

• SHOW -ALL -WAIT displays both -ALL and -WAIT information.

• When a process abandons a "wait" request, that request may continue to appear in LKE SHOW -WAIT displays. This
appearance is harmless, and is automatically eliminated if the GT.M lock management requires the space which it occupies.

Use the following procedure to display all LOCKs active in the database(s) defined by the current global directory.

LKE> SHOW -ALL -WAIT

This produces an output like the following:

No locks were found in DEFAULT
AREG
^a Owned by PID=2080 which is an existing process
BREG
^b(2) Owned by PID= 2089 which is a nonexistent process
No locks were found in CREG

Example:

LKE>SHOW -ALL

This command displays all LOCKs mapped to all regions of the current global directory. It produces an output like the
following:

DEFAULT
^A Owned by PID= 5052 which is an existing process

M Lock Utility (LKE)

260

^B Owned by PID= 5052 which is an existing process
%GTM-I-LOCKSPACEUSE, Estimated free lock space: 99% of 40 pages

Example:

LKE>show -lock="^a"(""b"")"

This command shows lock ^a("b") in the default region.

Example:

LKE>SHOW -CRIT

This command displays all the applicable locks held by a process that is holding a critical section.

Example:

LKE>show -all -output="abc.lk"

This command create a new file called abc.lk that contains the output of the SHOW -ALL command.

Example:

LKE>show -pid=4109

This command displays all locks held by process with PID 4109 and the total lock space usage.

Example:

LKE>show -region=DEFAULT -lock=""^A""

This command displays the lock on ^A in the region DEFAULT. It produces an output like the following:

DEFAULT
^A Owned by PID= 5052 which is an existing process
%GTM-I-LOCKSPACEUSE, Estimated free lock space: 99% of 40 pages

Exit

The EXIT command ends an LKE session. The format of the EXIT command is:

E[XIT]

Help

The HELP command explains LKE commands. The format of the HELP command is:

H[ELP] [options...]

Enter the LKE command for which you want information at the Topic prompt(s) and then press RETURN or CTRL-Z to
return to the LKE prompt.

Example:

LKE> HELP SHOW

M Lock Utility (LKE)

261

This command displays help for the SHOW command.

SPawn

Use the SPAWN command to create a sub-process for access to the shell without terminating the current LKE environment.
Use the SPAWN command to suspend a session and issue shell commands such as ls or printenv.

The format of the SPAWN command is:

SP[AWN]

The SPAWN command has no qualifiers.

Example:

LKE>spawn

This command creates a sub-process for access to the current shell without terminating the current LKE environment. Type
exit to return to LKE.

Summary

COMMAND QUALIFIER COMMENTS

C[LEAR] -ALL

-L[OCK]

-[NO]CRIT

-[NO]EXACT

-[NO]I[NTERACTIVE]

-O[UTPUT]=file-name

-P[ID]=pid

-R[EGION]=name

Use CLEAR with care and planning.

E[XIT] none -

H[ELP] [option] -

SH[OW] -ALL

-L[OCK]

-[NO]CRIT

-N[OINTERACTIVE]

-O[UTPUT]=file-name

-P[ID]=pid

-

M Lock Utility (LKE)

262

COMMAND QUALIFIER COMMENTS

-R[EGION]=name

-W[AIT]

SP[AWN] none shellcommand

LKE Exercises

When using M Locks, you must use a well designed and defined locking protocol. Your locking protocol must specify guidelines
for acquiring LOCKs, selecting and using timeout, releasing M Locks, defining a lock strategy according the given situation,
identifying potential deadlock situations, and providing ways to avoid or recover from them. This section contains two
exercises. The first exercise reinforces the concepts of GT.M LOCKs previously explained in this chapter. The second exercise
describes a deadlock situation and demonstrates how one can use LKE to identify and resolve it.

Exercise 1: Preventing concurrent updates using M Locks

Consider a situation when two users (John and Tom) have to exclusively update a global variable ^ABC.

Note

Transaction Processing may offer a more efficient and more easily managed solution to the issue of
potentially conflicting updates. For more information, see General Language Features of M chapter of the
GT.M Programmer's Guide.

At the GT.M prompt of John, execute the following commands:

GTM>lock +^ABC

This command places a GT.M LOCK on "^ABC " (not the global variable^ABC). Note: LOCKs without the +/- always release all
LOCKs held by the process, so they implicitly avoid dead locks. With LOCK +, a protocol must accumulate LOCKs in the same
order (to avoid deadlocks).

Then execute the following command to display the status of the LOCK database.

GTM>zsystem "lke show -all"

This command produces an output like the following:

DEFAULT ^ABC Owned by PID= 3657 which is an existing
process

Now, without releasing lock^ABC, execute the following commands at the GT.M prompt of Tom.

GTM>lock +^ABC

This command wait for the lock on resource "^ABC " to be released. Note that that the LOCK command does not block global
variable ^ABC in any way. This command queues the request for locking resource "^ABC" in the LOCK database. Note that
you can still modify the value of global variable ^ABC even if it is locked by John.

Now, at the GT.M prompt of John, execute the following command:

GTM>zsystem "LKE -show -all -wait"

../pg/UNIX_manual/chapter5.html
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

M Lock Utility (LKE)

263

This command produces an output like the following:

DEFAULT ^ABC Owned by PID= 3657 which is an existing process
Request PID= 3685 which is an existing process

This output shows that the process belonging to John with PID 3657 currently owns the lock for global variable ^ABC and PID
of Tom has requested the ownership of that lock. You can use this mechanism to create an application logic that adhere to your
concurrent access protocols.

Exercise 2: Rectifying a deadlock situation

Now, consider another situation when both these users (John and Tom) have to update two text files. While an update is in
progress, a GT.M LOCK should prevent the other user from LOCKing that file. In some cases, a deadlock occurs when both
users cannot move forward because they do not release their current LOCKs before adding additional LOCKs.

A deadlock situation can occur in the following situation:

John Tom
LOCK +file_1 LOCK +file_2
LOCK +file_2 LOCK +file_1

Here both the users are deadlocked and neither can move forward. Note that a deadlock situation does not actually block the
underlying resource.

Let us now create this situation.

At the GT.M prompt of John, execute the following commands:

GTM>set file1="file_1.txt"
GTM>lock +file1
GTM>open file1:APPEND
GTM>use file1
GTM>write "John",!
GTM>close file1

Note that John has not released the LOCK on resource "file1".

At the GT.M prompt of Tom, execute the following commands:

GTM> set file2="file_2.txt"
GTM> lock +file2
GTM> open file2:APPEND
GTM> use file2
GTM>write "Tom",!
GTM>close file2

Note that Tom has not released the LOCK on resource "file2".

Now, at the GT.M prompt of John, execute the following commands.

GTM>set file2="file_2.txt"
GTM>lock +file2

The latter command attempts to acquire a lock on resource file2 that is already locked by Tom. Therefore, this results in a
deadlock situation. Repeat the same process for Tom and attempt to lock resource file1.

M Lock Utility (LKE)

264

Execute the following command at LKE prompt to view this deadlock situation.

LKE>show -all -wait
file1 Owned by PID= 2080 which is an existing process
Request PID= 2089 which is an existing process
file2 Owned by PID= 2089 which is an existing process
Request PID=2080 which is an existing process

This shows a deadlock situation where neither user can proceed forward because it is waiting for the other user to release the
lock. You can resolve this situation by clearing the locks using the LKE CLEAR -PID command.

Caution

Avoid using the LKE CLEAR command to clear a deadlock in a production environment as it may lead to
unpredictable application behavior. Always use the MUPIP STOP command to clear a deadlock situation
in your production environment. However, in a debugging environment, you can use LKE to debug LOCKs,
analyze the status of the LOCK database and even experiment with LKE CLEAR.

265

Chapter 9. GT.M Database Structure(GDS)

Revision History

Revision V6.0-003/1 19 February 2014 In “File Header Data Elements ” [266],
updated the descriptions for V6.0-003.

Revision V6.0-003 27 January 2014 In “GDS Blocks ” [273], corrected the
description of block header fields.

Revision V5.5-000/10 28 September 2012 • In “Use of Keys ” [275], corrected the first
sentence as follows:

GT.M locates records by finding the first key
in a block lexically greater than, or equal to,
the current key.

• Added the “Using GDS records to hold
spanning nodes ” [274] section.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

GDS is an FIS proprietary internal database structure used to store global variables and lock resource names. A high-level
understanding of GDS can help database administrators correctly interpret GT.M logs/error messages, and maintain database
metrics. You should always consult GT.M support (gtmsupport@fisglobal.com) in the unlikely event of getting database
integrity issues.

Note

This chapter provides a high-level overview of GDS components. A comprehensive description of all the
components of GDS is beyond the scope of this chapter.

Database File Organization with GDS

GT.M processes a GDS file using predominantly low-level system services. The GDS file consists of two parts:

• The database file header

• The database itself

Database File Header

The fields in the file header convey the following types of information:

• Data Elements

• Master Bitmap

gtmsupport@fisglobal.com

GT.M Database Structure(GDS)

266

File Header Data Elements

All GT.M components, except GDE, (the run-time system, DSE, LKE, MUPIP) use the data elements of the file header for
accounting, control, and logging purposes.

The current state of the file header always determines the characteristics of the database. The MUPIP CREATE command
initializes the values of the file header data elements from the global directory and creates a new .DAT file.

The file header data elements are listed as follows in alphabetical order for easier access, rather than the order in which they
appear in the file header.

Data Elements Description

Access method The buffering strategy of the database. Access Method can have 2 values - BG or MM. The
default value is BG.

Buffered Global (BG) manages the buffers (the OS/file system may also buffer "in series");
MM - the OS/file system manages all the buffering.

Block size (in bytes) The size (in bytes) of a GDS block. Block size can have values that are multiples of 512. The
default value is 1024. Block size should be a multiple of the native block size for the OS file
system chosen to accommodate all but outlying large records. For additional information,
see Chapter 4: “Global Directory Editor” (page 32).

Blocks to Upgrade The count of the blocks in the database that are still in prior major version format. GT.M
uses this element during incremental upgrades.

Cache freeze id The process identification number (PID) of a process which has suspended updates to the
segment.

Certified for Upgrade to V5 Count of blocks "pre-certified" (with the dbcertify utility) for an incremental upgrade. GT.M
uses this element during incremental upgrades.

Create in progress Create in progress is TRUE only during the MUPIP CREATE operation. The normal value is
FALSE.

Collation Version The version of the collation sequence definition assigned to this database. DSE only reports
this if an external collation algorithm is specified.

Commit Wait Spin Count COMMITWAIT_SPIN_COUNT specifies the number of times a GT.M process waiting for
control of a block to complete an update should spin before yielding the CPU when GT.M
runs on SMP machines.

Current transaction The 64-bit hexadecimal number of the most recent database transaction.

Default Collation The collation sequence currently defined for this database. DSE only reports this if an
external collation algorithm is defined.

Desired DB Format The desired version format of database blocks. Desired DB Format can have 2 possible
values- the major version for the current running GT.M distribution or the last prior major
version. Newly created databases and converted databases have the current major version.

Endian Format The Endian byte ordering of the platform.

Extension Count The number of GDS blocks by which the database file extends when it becomes full. The
default value is 100 and the maximum is 65535. In production, typically this value should
reflect the amount of new space needed in a relatively long period (say a week or a month).
UNIX file systems use lazy allocations so this value controls the frequency at which GT.M

GT.M Database Structure(GDS)

267

Data Elements Description

checks the actual available space for database expansion in order to warn when space is
low.

Flush timer Indicates the time between completion of a database update and initiation of a timed flush
of modified buffers. The default value is 1 second and the maximum value is 1 hour.

Flush trigger The total number of modified buffers that trigger an updating process to initiate a flush.
The maximum and default value is 93.75% of the global buffers; the minimum is 25% of the
global buffers. For large numbers of global buffers, consider setting the value towards or at
the minimum.

Free blocks The number of GDS blocks in the data portion of the file that are not currently part of the
indexed database (that is, not in use). MUPIP INTEG -NOONLINE (including -FAST) can
rectify this value if it is incorrect.

Free space The number of currently unused blocks in the fileheader (for use by enhancements).

Freeze match The PID extension (image count) for Cache freeze id - OpenVMS only

Global Buffers The number of BG buffers for the region. It can have values that are multiples of 512 (in
bytes). The minimum value is 64 and the maximum is 2147483647 (may vary depending
on your platform). The default value is 1024. In a production system, this value should
typically be higher.

In critical section The process identification number (PID) of the process in the write-critical section, or zero
if no process holds the critical section.

Journal Alignsize Specifies the number of 512-byte-blocks in the alignsize of the journal file. DSE only reports
this field if journaling is ENABLED (or ON).

If the ALIGNSIZE is not a perfect power of 2, GT.M rounds it up to the nearest power of 2.

The default and minimum value is 4096. The maximum value is 4194304 (=2 GigaBytes).

A small alignsize can make for faster recover or rollback operations, but makes less
efficient use of space in the journal file.

Journal Allocation The number of blocks at which GT.M starts testing the disk space remaining to support
journal file extensions. DSE only reports this field if journaling is ENABLED or ON.

Journal AutoSwitchLimit The number of blocks after which GT.M automatically performs an implicit online switch
to a new journal file. DSE only reports this field if journaling is ENABLED or ON.

The default value for Journal AutoSwitchLimit is 8386560 & the maximum value is 8388607
blocks (4GB-512 bytes). The minimum value is 16384. If the difference between the Journal
AutoSwitchLimit and the allocation value is not a multiple of the extension value, GT.M
rounds-down the value to make it a multiple of the extension value and displays an
informational message.

Journal Before imaging Indicates whether or not before image journaling is allowed; DSE only reports this field if
journaling is ENABLED or ON.

Journal Before imaging can either be TRUE or FALSE.

Journal Buffer Size The amount of memory allotted to buffer journal file updates. The default value is 2308.
The minimum is 2307 and the maximum is 32K blocks which means that the maximum
buffer you can set for your journal file output is 16MB. Larger journal buffers can improve

GT.M Database Structure(GDS)

268

Data Elements Description

run-time performance, but they also increase the amount of information at risk in failure.
Journal Buffer size must be large enough to hold the largest transaction.

Journal Epoch Interval The elapsed time interval between two successive EPOCHs in seconds. An EPOCH is a
checkpoint, at which all updates to a database file are committed to disk. All journal files
contain epoch records. DSE only reports this field if journaling is ENABLED or ON.

The default value is 300 seconds (5 minutes). The minimum is 1 second and the maximum
value is 32,767 (one less than 32K) seconds, or approximately 9.1 hours. Longer Epoch
Intervals can increase run-time performance, but they can also cause longer recovery times.

Journal Extension The number of blocks used by GT.M to determine whether sufficient space remains
to support continuing journal file growth. DSE only reports this field if journaling is
ENABLED or ON.

The default value is 2048 blocks. The minimum is zero (0) blocks and the maximum is
1073741823 (one less than 1 giga) blocks. In production, this value should typically be
either zero (0) to disable journal extensions and rely entirely on the Journal Allocation, or
it should be large. In UNIX, this value serves largely to allow you to monitor the rate of
journal file growth.

UNIX file systems use lazy allocations so this value controls the frequency at which GT.M
checks the actual available space for journal file expansion in order to warn when space is
low.

Journal File The name of the journal file. DSE only reports this field if journaling is ENABLED or ON.

Journal State Indicates whether journaling is ON, OFF, or DISABLED (not allowed).

Journal Sync IO Indicates whether WRITE operation to a journal file commits directly to disk. The default
value is FALSE.

DSE only reports this field if journaling is ENABLED (or ON).

Journal Yield Limit The number of times a process needing to flush journal buffer contents to disk yields its
timeslice and waits for additional journal buffer content to be filled-in by concurrently
active processes, before initiating a less than optimal I/O operation.

The minimum Journal Yield Limit is 0, the maximum Journal Yield Limit is 2048.

The default value for Journal Yield Limit is 8. On a lightly loaded system, a small value can
improve run-time performance, but on actively updating systems a higher level typically
provides the best performance.

KILLs in progress The sum of the number of processes currently cleaning up after multi-block KILLs and the
number of Abandoned KILLs.

Note

Abandoned KILLs are associated with blocks incorrectly marked busy
errors.

Last Bytestream Backup The transaction number of the last transaction backed up with the MUPIP BACKUP -
BYTESTREAM command.

GT.M Database Structure(GDS)

269

Data Elements Description

Last Database Backup The transaction number of the last transaction backed up with the MUPIP BACKUP -
DATABASE command. (Note -DATABASE is the default BACKUP type.)

Last Record Backup Transaction number of last MUPIP BACKUP -RECORD or FREEZE -RECORD command.

Lock space A hexadecimal number indicating the 512 byte pages of space dedicated to LOCK
information.

The minimum Lock space is 10 pages and the maximum is 65,536 pages. The default is 40
pages. In production with an application that makes heavy use of LOCKs, this value should
be higher.

Master Bitmap Size The size of the Master Bitmap. The current Master Bitmap Size of V6 format database is 496
(512 byte blocks).

Maximum key size The minimum key size is 3 bytes and the maximum key size is 1019 bytes. For information
on setting the maximum key size for your application design, refer to “Global Directory
Editor” (page 32).

Maximum record size The minimum record size is zero. A record size of zero only allows a global variable node
that does not have a value. The maximum is 1,048,576 bytes (1MiB). The default value is 256
bytes.

GT.M an error if you decrease and then make an attempt to update nodes with existing
longer records.

Maximum TN The maximum number of TNs that the current database can hold. For a database
in V6 format, the default value of Maximum TN is 18,446,744,071,629,176,83 or
0xFFFFFFFF83FFFFFF.

Maximum TN Warn The transaction number after which GT.M generate a warning and update it to a new
value. The default value of Maximum TN Warn is 0xFFFFFFFD93FFFFFF.

Modified cache blocks The current number of modified blocks in the buffer pool waiting to be written to the
database.

Mutex Hard Spin Count The number of attempts to grab the mutex lock before initiating a less CPU-intensive wait
period. The default value is 128.

Mutex Sleep Spin Count The number of timed attempts to grab the mutex lock before initiating a wait based on
interprocess wake-up signals. The default value is 128.

Mutex Spin Sleep Time The number of milliseconds to sleep during a mutex sleep attempt. The default value is
2048.

No. of writes/flush The number of blocks to write in each flush. The default value is 7.

Null subscripts "ALWAYS" if null subscripts are legal. "NEVER" if they are not legal and "EXISTING" if
they can be accessed and updated, but not created anew.

Number of local maps (Total blocks + 511)\512.

Online Backup NBB Block to which online backup has progressed. DSE displays this only when an online
backup is currently in progress.

Reference count The number of GT.M processes and utilities currently accessing that segment on a given
node

GT.M Database Structure(GDS)

270

Data Elements Description

Note: GT.M does not rely on this field. A database segment initially has a reference count
of zero. When a GT.M process or utility accesses a segment, GT.M increments the reference
count. GT.M decrements the reference count upon termination.

GT.M counts DSE as a process. When examining this field with DSE, the reference count is
always greater than zero. When DSE is the only process using a region, the reference count
should be one.

Region Seqno The current replication relative time stamp for a region.

Replication State Either On or OFF. [WAS ON] OFF means that replication is still working, but a problem
with journaling has caused GT.M to turn it off, so GT.M is still replicating, but will turn
replication OFF if it ever has to turn to the journal because the pool has lost data needed for
replication.

Reserved Bytes Number of bytes reserved in database blocks.

Starting VBN Virtual Block Number of the first GDS block after the GDS file header; this is block 0 of the
database and always holds the first local bitmap.

Timers pending Number of processes considering a timed flush.

Total blocks Total number of GDS blocks, including local bitmaps.

Wait Disk Seconds that GT.M waits for disk space to become available before it ceases trying to flush
a GDS block's content to disk. During the wait, it sends eight (8) approximately evenly
spaced operator log messages before finally issuing a GTM-E-WAITDSKSPACE error. For
example, if Wait Disk is 80 seconds and GT.M finds no disk space to flush a GDS block, it
sends a GTM-E-WAITDSKSPACE syslog message about every 10 seconds, and after the
eighth message issues a WAITDSKSPACE error. This field is only used in UNIX because of
its reliance on lazy disk space allocation.

Zqgblmod Seqno The replication sequence number associated with the $Zqgblmod() Transaction number.

Zqgblmod Trans Transaction number used by the $ZQGBLMOD() function in testing whether a block was
modified by overlapping transactions during a replication switchover.

Average Blocks Read per 100 Records Acts as a clue for replication update helper processes as to how aggressively they should
attempt to prefetch blocks. It's an estimate of the number of database blocks that GT.M
reads for every 100 update records. The default value is 200. For very large databases, you
can increase the value up to 400.

Update Process Reserved Area An approximate percentage (integer value 0 to 100) of the number of global buffers
reserved for the update process. The reader helper processes leaves at least this percentage
of the global buffers for the update process. It can have any integer value between 0 to 100.
The default value is 50.

Pre read trigger factor The percentage of Update Process reserved area after which the update process processes
signals the reader helper processes to resume processing journal records and reading global
variables into the global buffer cache. It can have any integer value between 0 to 100. The
default value is 50.

Update writer trigger factor One of the parameters used by GT.M to manage the database is the flush trigger. One of
several conditions that triggers normal GT.M processes to initiate flushing dirty buffers
from the database global buffer cache is when the number of dirty buffers crosses the flush
trigger. In an attempt to never require the update process itself to flush dirty buffers, when
the number of dirty global buffers crosses the update writer trigger factor percentage of the

GT.M Database Structure(GDS)

271

Data Elements Description

flush trigger value, writer helper processes start flushing dirty buffers to disk. It can have
any integer value between 0 to 100. The default value is 33, that is, 33%.

MLOCK Space

The file header also provides M lock information, specifically whether any resource names belonging to the database region are
locked. M code commonly uses locks as flags or semaphores controlling access to global data. Generally the LOCK argument
specifies the resource of the same name as the name of the global variable that requires protected access. For more information
about LOCKs, see the "M LOCK Utility" chapter and the LOCK section in the "Commands" chapter in the GT.M Programmer's
Guide.

Local Bitmaps

GT.M partitions GDS blocks into 512-block groups. The first block of each group contains a local bitmap. A local bitmap reports
whether each of the 512 blocks is currently busy or free and whether it ever contained valid data that has since been KILLed.

The two bits for each block have the following meanings:

• 00 - Busy

• 01 - Free and never used before

• 10 - Currently not a legal combination

• 11 - Free but previously used

These two bits are internally represented as:

• 'X' - BUSY

• '.' - FREE

• '?' - CORRUPT

• ':' - REUSABLE

The interpreted form of the local bitmap is like the following: >

Block 0 Size 90 Level -1 TN 1 V5 Master Status: Free Space
 Low order High order
Block 0: | XXXXX... |
Block 20: | |
Block 40: | |
Block 60: | |
Block 80: | |
Block A0: | |
Block C0: | |
Block E0: | |
Block 100: | |
Block 120: | |
Block 140: | |
Block 160: | |
Block 180: | |

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Database Structure(GDS)

272

Block 1A0: | |
Block 1C0: | |
Block 1E0: | |
'X' == BUSY '.' == FREE ':' == REUSABLE '?' == CORRUPT

Note

The first block described by the bitmap is itself and is, therefore, always marked busy.

If bitmaps marked as "?", they denote that they are corrupted (not currently in a legal combination) bitmaps. The consequences
of corrupted bitmaps are:

Possible loss of data when GT.M overwrites a block that is incorrectly marked as free (malignant).

Reduction in the effective size of the database by the number of blocks incorrectly marked as busy (benign).

Master Bitmap

Using bitmaps, GT.M efficiently locates free space in the database. A master bitmap has one bit per local bitmap which indicates
whether the corresponding local bitmap is full or has free space. When there is no free space in a group of 512 blocks, GT.M
clears the associated bit in the master map to show whether the local bitmap is completely busy. Otherwise, GT.M maintains
the bit set.

There is only one Master Bitmap per database. You can neither see the contents of the master bitmap directly or can change the
size of the master bitmap. The maximum size of a GT.M database is over 7TB (terabytes, assuming 32K blocks).

The size of the master bitmap constrains the size of the database. The size of the master maps reflects current expectations for
the maximum operational size of a single database file. Note: In addition to the limit imposed by the size of the master map,
GT.M currently limits a tree to a maximum number of 7 levels. This means if a database holds only one global, depending on
the density and size of the data, it might reach the level limit before the master map limit.

Database Structure

The GT.M database structure is hierarchical, based on a form of balanced tree called a B-star tree (B*-tree) structure. The B*-
tree contains blocks that are either index or data blocks. An index block contains pointers used to locate data in data blocks,
while the data blocks actually store the data. Each block contains a header and records. Each record contains a key and data.

Tree Organization

GDS structures the data into multiple B*-trees. GT.M creates a new B*-tree, called a Global Variable Tree (GVT), each time the
application defines a new named global variable. Each GVT stores the data for one named global, that is all global variables
(gvn) that share the same unsubscripted global name. For example, global ^A, ^A(1), ^A(2), ^A("A"), and ^A("B") are stored
in the same GVT. Note that each of these globals share the same unsubscripted global name, that is, ^A. A GVT contains both
index and data blocks and can span several levels. The data blocks contain actual global variable values, while the index blocks
point to the next level of block.

At the root of the B*-tree structure is a special GDS tree called a Directory Tree (DT). DT contains pointers to the GVT. A data
block in the DT contains an unsubscripted global variable name and a pointer to the root block of that global variable's GVT.

All GDS blocks in the trees have level numbers. Level zero (0) identifies the terminal nodes (that is, data blocks). Levels greater
than zero (0) identify non-terminal nodes (that is, index blocks). The highest level of each tree identifies the root. All the B*-
trees have the same structure. Block one (1) of the database always holds the root block of the Directory Tree.

GT.M Database Structure(GDS)

273

The following illustration describes the internal GDS B*-tree framework GT.M uses to store globals.

GT.M creates a new GVT when a SET results in the first use of an unsubscripted global name by referring to a subscripted or
unsubscripted global variable with a name prefix that has not previously appeared in the database.

Important

GVTs continue to exist even after all nodes associated with their unsubscripted name are KILLed. An
empty GVT occupies negligible space and does not affect GT.M performance. However, if you are facing
performance issues because you have many empty GVTs, you need to reorganize your database file using
MUPIP EXTRACT, followed by MUPIP CREATE, and the MUPIP LOAD to remove those empty GVTs.

The following sections describe the details of the database structures.

GDS Blocks

Index and data blocks consist of a block header followed by a series of records. The block header has four fields that contain
information. The first field, of two bytes, specifies the block version. The second field, of two byes, specifies the number of
bytes currently in use in the block. The third field, of one byte, specifies the block level. The last field of eight bytes represents
the transaction number at which the block was last changed. An interpreted form of a block header looks like the following:

File /home/jdoe/.fis-gtm/V6.0-000_x86_64/g/gtm.dat
Region DEFAULT

GT.M Database Structure(GDS)

274

Block 3 Size 262 Level 0 TN 3845EE V6

Depending on the platform, there may also be an empty field containing filler to produce proper alignment. The filler occurs
between the second and third data field and causes the length of the header to increase from seven to eight bytes.

GDS Records

Records consist of a record header, a key, and either a block pointer or the actual value of a global variable name (gvn). Records
are also referred to as nodes.

The record header has two fields that contain information. The first field, of two bytes, specifies the record size. The second
field, of one byte, specifies the compression count.

Note

Like the GDS block headers, a filler byte may be added, depending on the platform.

The interpreted form of a block with global ^A("Name",1)="Brad" looks like the following:

Rec:1 Blk 3 Off 10 Size 14 Cmpc 0 Key ^A("Name",1)
 10 : | 14 0 0 61 41 0 FF 4E 61 6D 65 0 BF 11 0 0 42 72 61 64|
 | . . . a A . . N a m e B r a d|

The data portion of a record in any index block consists of a four-byte block pointer. Level 0 data in the Directory Tree also
consists of four-byte block pointers. Level 0 data in Global Variable Trees consists of the actual values for global variable names.

Using GDS records to hold spanning nodes

A global variable node spans across multiple blocks if the size of its value exceeds one database block. Such a global variable
node is called a "spanning node". For example, if ^a holds a value that exceeds one database block, GT.M internally spans the
value of ^a in records with keys ^a(#SPAN1), ^a(#SPAN2), ^a(#SPAN3), ^a(#SPAN4), and so on. Note that #SPAN1, #SPAN2,
#SPAN3, #SPAN4, and so on are special subscripts that are visible to the database but invisible at the M application level. GT.M
uses these special subscripts to determine the sequence of the spanning nodes.

The first special subscript #SPAN1 is called a "special index". A special index contains the details about the size of the spanning
node's value and the number of additional records that are necessary to hold its value. #SPAN2 and the rest of the records hold
chunks of the value of the spanning node. During the load of a binary extract, GT.M uses these chunks to reconstitute the value
of a global. This allows globals to be re-spanned if the block size of the source database is different from the block size of the
destination database.

Note

If the destination database's block size is large enough to hold the key and value, then the global is not a
spanning node (because it can fit in one database block).

GDS Keys

A key is an internal representation of a global variable name. A byte-by-byte comparison of two keys conforms to the collating
sequence defined for global variable nodes. The default collating sequence is the one specified by the M standard. For more
information on defining collating sequences, see the "Internationalization" chapter in the GT.M Programmer's Guide.

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

GT.M Database Structure(GDS)

275

Compression Count

The compression count specifies the number of bytes at the beginning of a key that are common to the previous key in the
same block. The first key in each block has a compression count of zero. In a global variable tree, only the first record in a block
can legitimately have a compression count of zero.

RECORD KEY COMPRESSION COUNT RESULTING KEY in Record

CUS(Jones,Tom) 0 CUS(Jones,Tom)

CUS(Jones,Vic) 10 Vic)

CUS(Jones,Sally) 10 Sally)

CUS(Smith,John) 4 Smith,John)

The previous table shows keys in M representation. For descriptions of the internal representations, refer to the section on
keys.

The non-compressed part of the record key immediately follows the record header. The data portion of the record follows the
key and is separated from the key by two null (ASCII 0) bytes.

Use of Keys

GT.M locates records by finding the first key in a block lexically greater than, or equal to, the current key. If the block has
a level of zero (0), the location is either that of the record in question, or, if the record in question does not exist, that of the
(lexically) next record. If the block has a level greater than zero (0), the record contains a pointer to the next level to search.

GT.M does not require that the key in an index block correspond to an actual existing key at the next level.

The final record in each index block (the *-record) contains a *-key ("star-key"). The *-key is a zero-length key representing the
last possible value of the M collating sequence. The *-key is the smallest possible record, consisting only of a record header and
a block pointer, with a key size of zero (0).

The *-key has the following characteristics:

• A record size of seven (7) or eight (8) bytes (depending on endian)

• A record header size of three (3) or four (4) bytes (depending on endian)

• A key size of zero (0) bytes

• A block pointer size of four (4) bytes

Characteristics of Keys

Keys include a name portion and zero or more subscripts. GT.M formats subscripts differently for string and numeric values.

Keys in the Directory Tree represent unsubscripted global variable names. Unlike Global Variable Tree keys, Directory Tree
keys never include subscripts.

Single null (ASCII 0) bytes separate the variable name and each of the subscripts. Two contiguous null bytes terminate keys.
GT.M encodes string subscripts and numeric subscripts differently.

GT.M Database Structure(GDS)

276

During a block split the system may generate index keys which include subscripts that are numeric in form but do not
correspond to legal numeric values. These keys serve in index processing because they fall in an appropriate place in the
collating sequence. When DSE represents these "illegal" numbers, it may display many zero digits for the subscript.

Global Variable Names

The portion of the key corresponding to the name of the global variable holds an ASCII representation of the variable name
excluding the caret symbol (^).

String Subscripts

GT.M stores string subscripts as a variable length sequence of 8-bit codes ranging from 0 to 255. With UTF-8 specified at
process startup, GT.M stores string subscripts as a variable length sequence of 8-bit codes with Unicode encoding.

To distinguish strings from numerics while preserving collation sequence, GT.M adds a byte containing hexadecimal FF to the
front of all string subscripts. The interpreted form of the global variable ^A("Name",1)="Brad" looks like the following:

Block 3 Size 24 Level 0 TN 1 V5

Rec:1 Blk 3 Off 10 Size 14 Cmpc 0 Key ^A("Name",1)
 10 : | 14 0 0 61 41 0 FF 4E 61 6D 65 0 BF 11 0 0 42 72 61 64|
 | . . . a A . . N a m e B r a d|

Note that hexadecimal FF is in front of the subscript "Name". GT.M permits the use of the full range of legal characters in keys.
Therefore, a null (ASCII 0) is an acceptable character in a string. GT.M handles strings with embedded nulls by mapping 0x00
to 0x0101 and 0x01 to 0x0102. GT.M treats 0x01 as an escape code. This resolves confusion when null is used in a key, and at
the same time, maintains proper collating sequence. The following rules apply to character representation:

All codes except 00 and 01 represent the corresponding ASCII value.

00 is a terminator.

01 is an indicator to translate the next code using the following:

Code Means ASCII

01 00 <NUL>

02 01 <SOH>

With UTF-8 character-set specified, the interpreted output displays a dot character for all graphic characters and malformed
characters. For example, the internal representation of the global variable ^DS=$CHAR($$FUNC^%HD("0905"))_
$ZCHAR(192) looks like the following:

Rec:1 Blk 3 Off 10 Size C Cmpc 0 Key ^DS
 10 : | C 0 0 0 44 53 0 0 E0 A4 85 C0 |
 | D S . . ? . |

Note that DSE displays the wellformed character ? for $CHAR($$FUNC^%HD("0905")) and a dot character for malformed
character $ZCHAR(192).

With M character-set specified, the interpreted output displays a dot character for all non-ASCII characters and malformed
characters.

GT.M Database Structure(GDS)

277

Numeric Subscripts

Numeric subscripts have the format:

[sign bit] [biased exponent] [normalized mantissa]

The sign bit and biased exponent together form the first byte of the numeric subscript. Bit seven (7) is the sign bit. Bits <6:0>
comprise the exponent. The remaining bytes preceding the subscript terminator of one null (ASCII 0) byte represent the
variable length mantissa. The following description shows a way of understanding how GT.M converts each numeric subscript
type to its internal format:

Zero (0) subscript (special case)

• Represents zero as a single byte with the hexadecimal value 80 and requires no other conversion.

Mantissa

• Normalizes by adjusting the exponent.

• Creates packed-decimal representation.

• If number has an odd number of digits, appends zero (0) to mantissa.

• Adds one (1) to each byte in mantissa.

Exponent

• Stores exponent in first byte of subscript.

• Biases exponent by adding hexadecimal 3F.

The resulting exponent falls in the hexadecimal range 3F to 7D if positive, and zero (0) to 3E if negative.

Sign

• Sets exponent sign bit <7> in preparation for sign handling.

• If mantissa is negative: converts each byte of the subscript (including the exponent) to its one's-complement and appends a
byte containing hexadecimal FF to the mantissa.

For example, the interpreted representation of the global ^NAME(.12,0,"STR",-34.56) looks like the following:

Rec:1 Blk 5 Off 10 Size 1A Cmpc 0 Key ^NAME(.12,0,"STR",-34.56)
 10 : | 1A 0 0 61 4E 41 4D 45 0 BE 13 0 80 0 FF 53 54 52 0 3F|
 | . . . a N A M E S T R . ?|
 24 : | CA A8 FF 0 0 31 |
 | 1 |

Note that CA A8 ones complement representation is 35 57 and then when you subtract one (1) from each byte in the mantissa
you get 34 56.

Similarly, the interpreted representation of ^NAME(.12,0,"STR",-34.567) looks like the following:

Rec:1 Blk 5 Off 10 Size 1B Cmpc 0 Key ^NAME(.12,0,"STR",-34.567)
 10 : | 1B 0 0 9 4E 41 4D 45 0 BE 13 0 80 0 FF 53 54 52 0 3F|

GT.M Database Structure(GDS)

278

 | N A M E S T R . ?|
 24 : | CA A8 8E FF 0 0 32 |
 | 2 |

Note that since there are odd number of digits, GT.M appends zero (0) to mantissa and one (1) to each byte in mantissa.

279

Chapter 10. Database Structure Editor

Revision History

Revision V6.0-003 27 January 2014 Updated the output of DSE FUMP -FILEHEADER
for V6.0-003.

Revision V6.0-001 27 February 2013 In CHange [287], added the description
of -ABANDONED_KILLS, -STRM_NUM, -
STRM_REG_SEQNO, and -KILL_IN_PROG.

Revision V6.0-000/1 21 November 2012 In CHange [287], added the description of -
QBDRUNDOWN and updated the description of
-CORRUPT_FILE qualifier for V6.0-000.

Revision V5.5-000/10 28 September 2012 In “ADD” [281], improved the description of -
DATA.

Revision V5.5-000/8 03 August 2012 Added the description of the GVSTAT qualifier.

Revision V5.5-000/4 6 June 2012 In “Qualifiers of FIND” [306], corrected the
description of -SIBLING and added an example.

Revision V5.5-000 27 February 2012 Added a caution note for changing the value of -
CORRUPT_FILE fileheader element.

Revision 4 13 January 2012 In “Operating in DSE” [279], improved the
description of the Change command.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Operating in DSE

The GT.M Database Structure Editor, DSE, is primarily a tool for authorized GT.M consultants to examine and, under unusual
circumstances, repair GT.M Database Structure (GDS) databases. With DSE, it is possible to see and change most of the
attributes of a GT.M database.

DSE gives all possible control over a database and therefore, it may cause irreparable damage when used without knowing
the consequences. Therefore, you unless you have extensive experience, you should always get guidance from FIS or an
equivalently knowledgeable support resource before running any DSE command that changes any attribute of any production
database or other database you value. However, you can use those DSE commands that let you see the attributes of your
database for collecting database metrics and monitoring status.

GT.M installation procedure places the DSE utility program in a directory specified by the environment variable gtm_dist.

Invoke DSE using the "dse" command at the shell prompt. If this does not work, consult your system manager to investigate
setup and file access issues.

Example:

$gtm_dist/dse
File/usr/name/mumps.dat

Database Structure Editor

280

Region DEFAULT
DSE>

DSE displays the DSE> prompt.

You may also specify a command when entering DSE.

By default, DSE starts with the region that stands first in the list of regions arranged in alphabetical order. In the above
example, the first region is DEFAULT.

You may also specify a command when entering DSE.

Example:

$gtm_dist/dse dump -fileheader

This command displays the fileheader of the region that stands first in the list of regions arranged in alphabetical order and
then returns to the shell prompt. To look at other regions, at the DSE prompt you must first issue a FIND -REGION=<desired-
region> command.

As previously mentioned, DSE provides control over most of the attributes of your database. With DSE, it is possible to examine
them and,with a few exceptions, change them.

All DSE commands are divided into two categories-Change commands and Inquiry commands. Change commands allow
you to modify the attribute of your database, in most cases without any warning or error. As the low level tool of last resort,
Change commands allow you to take certain actions that can cause extensive damage when undertaken without an extensive
understanding of the underlying data structures on disk and in memory and with an imperfect understanding of the commands
issued. Do not use the Change commands unless you know exactly what you are doing and have taken steps to protect yourself
against mistakes, both inadvertent and resulting from an incomplete understanding of the commands you issue. Change
commands are not required for normal operation, and are usually only used under the direction of FIS support to recover from
the unanticipated consequences of failures not adequately planned for (for example, you should configure GT.M applications
such that you never need a Change command to recover from a system crash).

Inquiry commands let you see the attributes of your database. You may frequently use the inquiry commands for collecting
your database metrics and status reporting.

The list of Change commands is as follows:

AD[D]
AL[L]
B[UFFER _FLUSH]
CH[ANGE]
CR[ITICAL]
REM[OVE]
RES[TORE]
SH[IFT]
W[CINIT]
OV[ERWRITE]
M[APS] -BU[SY] -F[REE] -M[ASTER] -R[ESTORE_ALL]

The list of Inquiry commands is as follows:

CL[OSE]
D[UMP]
EV[ALUATE]
EX[IT]
F[IND]

Database Structure Editor

281

H[ELP]
I[NTEGRIT]
M[APS] -BL[OCK]
OP[EN]
P[AGE]
RA[NGE]
SA[VE]
SP[AWN]

Although DSE can operate concurrently with other processes that access the same database file, FIS strongly recommends using
DSE in standalone mode when using Change commands. Some DSE operations can adversely impact the database when they
occur during active use of the database. Other DSE operations may be difficult to perform in a logically sound fashion because a
DSE operator works on a block at a time, while normal database operations update all related blocks almost simultaneously.

Caution

When DSE attaches to a database with a version that does not match the DSE version, DSE issues an
informational message and continues. At this point, you should exit DSE and find the version of DSE that
matches the database. You should continue after this warning if and only if you are certain that the DSE
is indeed from the GT.M version that has the database open (and hence the error results from a damaged
database file header or shared memory that you intend to repair, following instructions from FIS).

Use the DSE EXIT, or QUIT command to leave DSE.

DSE Commands and Qualifiers

The general format of DSE commands is:

command [-qualifier[...]] [object[,...]]

DSE interprets all numeric input as hexadecimal, except for time values, the values for the following qualifiers when used with
CHANGE -FILEHEADER: -BLK_SIZE=, DECLOCATION=, -KEY_MAX_SIZE=, -RECORD_MAX_SIZE, -REFERENCE_COUNT=,
-TIMERS_PENDING and -WRITES_PER_FLUSH, and the value for -VERSION= when used with the REMOVE and RESTORE
commands. These conventions correspond to the displays provided by DSE and by MUPIP INTEG.

ADD

Adds a record to a block. The format of the ADD command for blocks with a level greater than zero (0) is:

ADD [-B[LOCK]=[block] {-OFFSET=offset|-RECORD=record} -STAR -POINTER=block

or

ADD [-B[LOCK]=[block] {-OFFSET=offset|-RECORD=record} -KEY=key -POINTER=pointer

The format of the ADD command for level 0 blocks is:

ADD [-B[LOCK]=[block] {-OFFSET=offset|-RECORD=record} -KEY=key -DATA=string

The ADD command requires either the -OFFSET or -RECORD qualifier to position the record in the block, and either the -KEY
or the -STAR qualifier to define the key for the block.

The -STAR qualifier is invalid at level 0 (a data block). The ADD command requires the -DATA qualifier at level 0 or the -
POINTER qualifier at any other level to provide record content.

Database Structure Editor

282

Qualifiers of ADD

-B[LOCK]=block-number

Specifies the block to receive the new record.

On commands with no -BLOCK= qualifier, DSE uses the last block handled by a DSE operation. When no block has been
accessed, that is, on the first block-oriented command, DSE uses block one (1).

-D[ATA]=string

Specifies the data field for records added to a data block. Use quotation marks around the string and escape codes of the form
\a\b, where "a" and "b" are hexadecimal digits representing non-printing characters. \\ translates to a single backslash. \'\'
translates to a NULL value.

Incompatible with: -STAR,-POINTER

-K[EY]=key

Specifies the key of the new record. Enclose M-style global references, including the leading caret symbol (^), in quotation
marks (" ").

Incompatible with: -STAR

-O[FFSET]=offset

Adds the new record at the next record boundary after the specified offset.

Incompatible with: -RECORD, -STAR

-P[OINTER]=pointer

Specifies the block pointer field for records added to an index block. The -POINTER qualifier cannot be used at level 0. Note this
means that to add pointers at level 0 of the Directory Tree you must specify a string of bytes or temporarily change the block
level.

Incompatible with: -DATA

-R[ECORD]=record-number

Specifies a record number of the new record.

Incompatible with: -OFFSET,-STAR

-S[TAR]

Adds a star record (that is, a record that identifies the last record in an indexed block) at the end of the specified block. The -
STAR qualifier cannot be used at level 0.

Incompatible with: -DATA,-KEY,-OFFSET,-RECORD

Examples for ADD

DSE>add -block=6F -record=57 -key="^Capital(""Mongolia"")" -data="Ulan Bator"

Database Structure Editor

283

This command adds a new record with key ^Capital("Mongolia") at the specified location. Note that this command is applicable
to level 0 blocks only.

Example:

DSE>add -star -bl=59A3 -pointer=2

This command adds a star record in block 59A3. Note that this command is applicable to blocks > level 0.

Example:

DSE>add -block=3 -record=4 -key="^Fruits(4)" -data="Grapes"

Suppose your database has 3 global nodes -- ^Fruits(1)=”Apple”, ^Fruits(2)=”Banana”, and ^Fruits(3)=”Cherry”, then the above
command adds a new node ^Fruits(4)=”Grapes" at record 4. Note that this command is applicable to level 0 blocks only. The
interpreted output as a result of the above command looks like the following:

Block 3 Size 4B Level 0 TN 6 V5

Rec:1 Blk 3 Off 10 Size 14 Cmpc 0 Key ^Fruits(1)
 10 : | 14 0 0 0 46 72 75 69 74 73 0 BF 11 0 0 41 70 70 6C 65|
 | F r u i t s A p p l e|

Rec:2 Blk 3 Off 24 Size D Cmpc 8 Key ^Fruits(2)
 24 : | D 0 8 0 21 0 0 42 61 6E 61 6E 61 |
 | ! . . B a n a n a |

Rec:3 Blk 3 Off 31 Size D Cmpc 8 Key ^Fruits(3)
 31 : | D 0 8 0 31 0 0 43 68 65 72 72 79 |
 | 1 . . C h e r r y |

Rec:4 Blk 3 Off 3E Size D Cmpc 8 Key ^Fruits(4)
 3E : | D 0 8 8 41 0 0 47 72 61 70 65 73 |
 | A . . G r a p e s |

Example:

$dse add -star -bl=1 -pointer=2

This command adds a star record in block 1. Note that this command is applicable to blocks > Level 0.

Example:

$ dse add -block=4 -key="^Vegetables" -pointer=7 -offset=10

This command creates a block with key ^Vegetables pointing to block 7.

Example:

DSE> add -record=2 -key="^foo" -data=\'\'

This example adds a new node (set ^foo="") as the second record of the current database block.

ALL

Applies action(s) specified by a qualifier to all GDS regions defined by the current global directory.

Database Structure Editor

284

The format of the ALL command is:

AL[L] -B[UFFER_FLUSH]
-C[RITINIT]
-[NO]F[REEZE]
-O[VERRIDE]]
-REF[ERENCE]
-REL[EASE]
-REN[EW]
-S[EIZE]
-W[CINIT]

• This is a very powerful command; use it with caution.

• Be especially careful if you have an overlapping database structure (for example, overlapping regions accessed from separate
application global directories).

• If you use this type of database structure, you may need to construct special Global Directories that exclude overlapped
regions to use with DSE.

Qualifiers

 -BUFFER_FLUSH

Flushes to disk the file header and all pooled buffers for all regions of the current global directory.

Incompatible with: -RENEW

-C[RITINIT]

Initializes critical sections for all regions of the current directory.

Incompatible with: -RENEW, -RELEASE, -SIEZE

Caution

Never use CRITINIT while concurrent updates are in progress as doing so may damage the database.

-[NO]F[REEZE]

Freezes or prevents updates all regions of the current global directory.

• The FREEZE qualifier freezes all GDS regions except those previously frozen by another process . Regions frozen by a
particular process are associated with that process .

• A frozen region may be unfrozen for updates in one of two ways: The process which froze the region may unfreeze it with
the -NOFREEZE qualifier; or another process may override the freeze in conjunction with the -OVERRIDE qualifier.For more
information on a preferred method of manipulating FREEZE, refer to “FREEZE ” (page 86).

• By default, the -NOFREEZE qualifier unfreezes only those GDS regions that were previously frozen by a process . Once
a region is unfrozen, it may be updated by any process .To unfreeze all GDS regions of the Global Directory, use the -
OVERRIDE qualifier.

Database Structure Editor

285

• DSE releases any FREEZE it holds when it exits, therefore, use the same DSE invocation or SPAWN to perform operations
after executing the ALL -FREEZE command.

Incompatible with: -RENEW

-O[VERRIDE]

Overrides the ALL -FREEZE or ALL -NOFREEZE operation.

When used with -NOFREEZE, -OVERRIDE unfreezes all GDS regions, including those frozen by other users.

When used with -FREEZE, -OVERRIDE freezes all GDS regions, including those frozen by other processes associating all such
freezes with the current process. The current process must then use -NOFREEZE to unfreeze the database; any other process
attempting a -NOFREEZE should also have to include the -OVERRIDE qualifier.

Meaningful only with: [NO]FREEZE

-REF[ERENCE]

Resets the reference count field to 1 for all regions of the current global directory.

• A Reference count is a file header element field that tracks how many processes are accessing the database with read/write
permissions.

• This qualifier is intended for use when DSE is the only process attached to the databases of the curent global directory. Using
it when there are other users attached produces an incorrect value.

Incompatible with: -RENEW

-REL[EASE]

Releases critical sections for all regions of the current global directory.

Incompatible with: -CRITINIT, -RENEW, -SEIZE

-REN[EW]

Reinitializes the critical sections (-CRITICAL) and buffers (-WCINIT), resets reference counts (-REFERENCE_COUNT) to 1, and
clears freeze (-NOFREEZE) for all regions of the current global directory .

• -RENEW requires confirmation.

• The RENEW action will cause all current accessors of the affected database regions to receive a fatal error on their next
access attempt.

• This operation is dangerous, drastic, and a last resort if multiple database have hangs that have not yielded to other
resolution attempts; there is almost never a good reason to use this option.

-S[EIZE]

Seizes the critical section for all regions of the current global directory. The -SEIZE qualifier is useful when you encounter a
DSEBLKRDFAIL error, generated when DSE is unable to read a block from the database.

Database Structure Editor

286

Incompatible with: -RENEW, -RELEASE, -CRITINIT

-W[CINIT]

Reinitializes the buffers for all regions of the current global directory.

-WCINIT requires confirmation.

Caution

This operation is likely to cause database damage when used while concurrent updates are in progress.

Incompatible with: -RENEW

Examples of ADD

Example:

DSE> all flush -buffer_flush

This command flushes the file header and cache buffers to disk for all regions.

Example:

DSE> ALL -CRITINIT

This command initializes critical sections for all regions of the current directory.

Example:

DSE> ALL -FREEZE
DSE> SPAWN "mumps -dir"

The first command freezes all regions of the current global directory. The second command creates an child (shell) process and
executes the “mumps -dir" command. Then type S ^A=1 at GTM prompt. Notice that the command hangs because of the DSE
FREEZE in place.

Example:

DSE> ALL -NOFREEZE -OVERRIDE

This command removes the FREEZE on all current region including the FREEZE placed by other users.

Example:

DSE> ALL -REFERENCE

This command sets the reference count field in the file header(s) to 1.

Example:

DSE> ALL -RELEASE

This command releases critical sections owned by the current process for all regions of the current global directory.

Database Structure Editor

287

Example:

DSE> ALL -RENEW

This command reinitializes critical sections, buffers, resets the reference count to 1, and clears freeze for all regions of the
current global directory.

Example:

DSE> ALL -SEIZE

This command seizes all critical sections for all regions of the current global directory.

Example:

DSE> WCINIT

This command reinitializes the buffers for all regions of the current global directory.

Buffer_flush

Flushes the file header and the current region's buffers to disk.

The format of the BUFFER_FLUSH command is:

B[UFFER_FLUSH]

The BUFFER_FLUSH command has no qualifiers.

CHange

The CHANGE command changes fields of a block, file, or record header.

The format of the CHANGE command is:

CH[ANGE]

The CHANGE command either has a -FILEHEADER qualifier or an implicit or explicit -BLOCK qualifier, plus one or more of
their associated qualifiers, to define the target of the change.

-BL[OCK]=block-number and one or more of the following qualifiers:

-BS[IZ]=block-size
-L[EVEL]=level
-TN[=transaction-number]
-OF[FSET]=offset
-RE[CORD]=record-number
-CM[PC]=compression-count
-RS[IZ]=record-size

or

-F[ILEHEADER] and one or more of the following qualifiers:

-AB[ANDONED_KILLS]=value

Database Structure Editor

288

-AVG_BLKS_READ=Average-blocks-read
-B_B[YTESTREAM]=transaction-number
-B_C[OMPREHENSIVE]=transaction-number
-B_D[ATABASE]=transaction-number
-B_I[NCREMENTAL]=transaction-number
-B_R[ECORD]=transaction-number
-BLK_SIZE=block-size
-BLO[CKS_FREE]=free-blocks
-CU[RRENT_TN]=transaction-number
-COM[MITWAIT_SPIN_COUNT]=boolean
-DEC[LOCATION]=value
-DEF[_COLLATION]=value
-ENCRYPTION_HASH
-FL[USH_TIME][=delta-time]
-FR[EEZE]=value
-FU[LLY_UPGRADED]=boolean
-GV[STATSRESET]
-HARD_SPIN_CPUNT=Mutex-hard-spin-sount
-[HEXLOCATION]=value
-INT[ERRUPTED_RECOV]=boolean
-JNL_YIELD_LIMIT=journal-yeild-limit
-KE[Y_MAX_SIZE]=key-max-size
-KI[LL_IN_PROG]=value
-M[ACHINE_NAM]=value
-N[ULL_SUBSCRIPTS]=value
-NO[CRIT]
-OV[ERRIDE]
-Q[DBRUNDOWN]
-RC_SRV_COUNT
-RE_READ_TRIGGER=read-trigger
-REC[ORD_MAX_SIZE]=record-max-size
-REF[ERENCE_COUNT]=reference-count
-REG[_SEQNO]=sequence-number
-RESERVED_BYTES=reserved-bytes
-SLEEP_SPIN_COUNT=mutex-sleep-spin-count
-SPIN_SLEEP_TIME=mutex-sleep-time
-STRM_NUM=stream-number STRM_REG_SEQNO=hexa
-TIM[ERS_PENDING]=integer
-TO[TAL_BLKS]=total-blocks
-TR[IGGER_FLUSH]=trigger-flus
-UPD_RESERVED_AREA=reserved-area
-UPD_WRITER_TRIGGER_FACTOR=trigger-factor
-W[RITES_PER_FLUSH]=writes-per-flush
-WAIT_DISK=wait-disk
-Zqgblmod_S[EQNO]=sequence-number
-Zqgblmod_T[rans]=sequence-number

CHANGE -BLock Qualifiers

This section describes -BLOCK and all of its qualifiers.

 -BL[OCK]=block_number

Specifies the block to modify. The -BLOCK qualifier is incompatible with the -FILEHEADER qualifier and all qualifiers related
to -FILEHEADER.

Database Structure Editor

289

-BLOCK is the default qualifier. On commands with neither a -BLOCK nor a -FILEHEADER qualifier, DSE uses the last block
handled by a DSE operation. When no block has been accessed, that is, on the first block-oriented command, DSE uses block
one (1).

Incompatible with: -FILEHEADER and qualifiers used with -FILEHEADER

The following qualifiers operate on a block header.

-BS[IZ]=block_size

Changes the block size field of the specified block.

• block_size is in hexadecimal form.

• Decreasing the block size can result in loss of existing data.

Note

The block size must always be less than or equal to the block size in the file header.

Use only with: -BLOCK, -LEVEL, -TN

 -L[EVEL]=level

Changes the level field for the specified block.

Note

DSE lets you change the level of a bitmap block to -1 (the value of the level for a bitmap block) when the
bitmap level gets corrupted and takes on an arbitrary value. Note that you should specify -1 in hexadecimal
form, that is, FF.

Use only with: -BLOCK, -BSIZ, -TN

Example:

DSE >change -level=FF

 -TN[=transaction_number]

Changes the transaction number for the current block.

• When a CHANGE command does not include a -TN=, DSE sets the transaction number to the current transaction number.

• Manipulation of the block transaction number affects MUPIP BACKUP -BYTESTREAM, and -ONLINE.

Use only with: -BLOCK, -BSIZ, -LEVEL

 -OF[FSET]=offset

Specifies the offset, in bytes, of the target record within the block. If the offset does not point to the beginning of a record, DSE
rounds down to the last valid record start (for example, CHANGE -OFFSET=10 starts at -OFFSET=A, if that was the last record).

Use only with: -BLOCK, -CMPC, and -RSIZ.

Database Structure Editor

290

-RE[CORD]=record_number

Specifies the record number of the target record.

Use only with: -BLOCK, -CMPC, and -RSIZ.

-CM[PC]=compression_count

Change the compression count field of the specified record.

• The compression count specifies the number of bytes at the beginning of a key that are common to the previous key in the
same block.

• Because compression counts propagate from the "front" of the block, this can potentially change the keys of all records
following it in the block. If the goal is to change only a single record, it may be preferable to add a new record and remove
the old one.

Use only with: -BLOCK, -RECORD, -OFFSET, -RSIZE

-RS[IZ]=record_size

Changes the record size field of the specified record.

Caution

Changing -RSIZ impacts all records following it in the block.

Use only with: -BLOCK, -RECORD, -CMPC, -OFFSET

Example:

DSE> change -record=3 -rsiz=3B -block=2

This command changes the record size of record 3 block 2 to 59 (Hex: 3B) bytes.

CHANGE -FIleheader Qualifiers

This section describes the -FILEHEADER qualifier and the other qualifiers that operate on a file header.

-FI[LEHEADER]

Modifies a file header element that you specify with an associated qualifier.

Incompatible with: -BSIZ, -CMPC, -TN, -LEVEL, -OFFSET, -RECORD, -RSIZ

-AB[ANDONED_KILLS]=value

Changes the value of the Abandoned Kills field. The value can be "NONE" or a positive integer.

Use only with: -FILEHEADER; decimal

 -BLK[_SIZE]=block_size

Changes the decimal block size field of the current file.

Database Structure Editor

291

• DSE does not allow you to change the block size to any arbitrary value. It always rounds the block size to the next higher
multiple of 512.

• Use the CHANGE -BLK_SIZE qualifier only upon receiving instructions from FIS and only in conjunction with the -
FILEHEADER qualifier. This DSE command cannot change the working block size of a database and is useful only under very
limited and extrordinary circumstances. If you need to change the block size on a database file, unload the data with MUPIP
EXTRACT (or an appropriate alternative), change the global directory with GDE to specify the new block size, recreate the
database with MUPIP CREATE and reload the data with MUPIP LOAD (or appropriate alternative).

Use only with: -FILEHEADER

-BLO[CKS_FREE]=free blocks

Changes the free blocks field of the current file.

Use this to correct a value that MUPIP INTEG reports as needing a correction, but note that the "correct" value reported by
INTEG may go out-of-date with the next update. It may be necessary to calculate a delta value from the INTEG report, FREEZE
the region with DSE, DUMP the current -FILEHEADER value, then apply the delta and CHANGE the -BLOCKS_FREE, and
finally turn -OFF the FREEZE.

Use only with: -FILEHEADER

-B[YTESTREAM]=transaction_number

Changes the transaction number in the file header of the last incremental backup to the value specified. Use this qualifier only
in conjunction with the -FILEHEADER qualifier. For compatibility issues with priot versions, this can still be specified as -
B_COMPREHENSIVE.

 -D[ATABASE]=transaction_number

Changes the transaction number in the file header of the last comprehensive backup to the value specified. Use this qualifier
only in conjunction with the -FILEHEADER qualifier. For compatibility issues with prior versions, this can still be specified as -
B_COMPREHENSIVE.

-B_R[ECORD]=transaction_number

Changes the transaction number in the file header field that maintains this information about the last -RECORD backup.

 -CO[RRUPT_FILE]=boolean

Indicates whether or not a region completed a successful recovery with the MUPIP JOURNAL -RECOVER command. Possible
values are: T[RUE] or F[ALSE].

Changing this flag does not correct or cause database damage. When CORRUPT_FILE is set to TRUE, the DSE DUMP command
displays a message like the following:

%GTM-W-DBFLCORRP, /home/gtmnode1/mumps.dat Header indicates database file is corrupt

Caution
After a CHANGE -FILEHEADER -CORRUPT=TRUE, the file is unavailable to future GT.M access other than
DSE. Under normal conditions, there should never be a need to change this flag manually. A MUPIP SET -
PARTIAL_BYPASS_RECOV sets this flag to false.

Database Structure Editor

292

Use only with: -FILEHEADER

 -COM[MITWAIT_SPIN_COUNT]=value

Specifies the number of times a GT.M process waiting for control of a block to complete a block update should spin before
yielding the CPU when GT.M runs on SMP machines. When run on a uniprocessor system, GT.M ignores this parameter.
On SMP systems, when a process needs a critical section that another process has, if critical sections are short (as they are
by design in GT.M), spinning a little with the expectation that the process with the critical section will release it shortly
provides a way to enhance performance at the cost of increased CPU usage. Eventually, a process awaiting a critical section
yields the CPU if spinning for a little does not get it the needed critical section. Note that on heavily loaded systems,
increasing COMMITWAIT_SPIN_COUNT may not trade off CPU for throughput, but may instead degrade both. If you set the
COMMITWAIT_SPIN_COUNT to 0, the waiting process performs a sequence of small sleeps instead of the spins or yields.

The default value is 16.

Use only with: -FILEHEADER

-CU[RRENT_TN]=transaction_number

Changes the current transaction number for the current region.

• Raising the -CURRENT_TN can correct "block transaction number too large" errors

• This qualifier has implications for MUPIP BACKUP -INCREMENTAL and -ONLINE.

• Used with the -BLOCK qualifier, CURRENT_TN places a transaction number in a block header.

Use only with: -FILEHEADER

 -DECLOCATION

Specifies an offset with the file header. If -VALUE is specified, GT.M puts it at that location.

Use only with: -FILEHEADER; decimal

 -E[NCRYPTION_HASH]

Changes the hash of the password stored in the database file header if and when you change the hash library. For more
information on key management and reference implementation, refer to Chapter 12: “Database Encryption” (page 363).

Caution

An incorrect hash renders the database useless.

Use only with: -FILEHEADER

-FL[USH_TIME][=delta_time]

Changes the flush_time default interval (in delta_time).

• The time entered must be between zero and one hour. Input is interpreted as decimal.

• A -FLUSH_TIME with no value resets the -FLUSH_TIME to the default value (one second for BG and 30 seconds for MM).

Database Structure Editor

293

• The units of delta_time are hours:minutes:seconds:centi-seconds (hundredths of a second). For example, to change the flush
time interval to a second, delta_time would be 00:00:01:00. To change it to 30 minutes, delta_time would be 00:30:00:00. Valid
values for the qualifier are one centi-second to one hour.

Use only with: -FILEHEADER

 -FR[EEZE]=value

Sets availability of the region for update. Possible values are: T[RUE] or F[ALSE]. Use to "freeze" (disable database writes) or
"unfreeze" the database.

Use only with: -FILEHEADER

For information about a preferred method of manipulating FREEZE, refer to “FREEZE ” (page 86) of the General Database
Management chapter.

DSE releases -FREEZE when it EXITs. To hold the database(s), CHANGE -FILEHEADER -FREEZE=TRUE and then SPAWN to
perform other operations.

 -FU[LLY_UPGRADED]=boolean

Sets a flag that indicates whether or not the database was fully upgraded from V4 to V5 database format.. The value is either
T[RUE] or F[ALSE].

Use only with: -FILEHEADER

-GV[STATSRESET]

Resets all the database file header global access statistics to 0. Note that this erases all statistics previously accumulated in the
database file header.

Use only with: -FILEHEADER

-HEXLOCATION

Specifies an offset with the file header. If -VALUE is specified, GT.M puts it at that location.

Use only with: -FILEHEADER; hexadecimal

-INT[ERRUPTED_RECOV]=boolean

Sets a flag that indicates whether or not a recovery with the MUPIP JOURNAL -RECOVER command was interrupted. The
value is either T[RUE] or F[ALSE].

Use only with: -FILEHEADER

-K[EY_MAX_SIZE]=key_max_size

Changes the decimal value for the maximum allowable key size. Reducing KEY_MAX_SIZE can restrict access to existing data
and cause GT.M to report errors. Do not create incompatible key and record sizes.

Before permanently changing the key size using DSE, use GDE to check that the appropriate Global Directory contains the
same key size for the region. This prepares for future MUPIP CREATEs and performs a consistency check on the key and record
size values. For more information on key and record sizes, refer to Chapter 4: “Global Directory Editor” (page 32).

Database Structure Editor

294

Use only with: -FILEHEADER; decimal

-KI[LL_IN_PROG]=value

Changes the value of the KILLs in progress field. The value can be "NONE" or a positive integer.

Use only with: -FILEHEADER; decimal

-N[ULL_SUBSCRIPTS]=value

Controls whether GT.M accepts null subscripts in database keys.

• value can either be T[RUE], F[ALSE], ALWAYS, NEVER, or EXISTING. See GDE chapter for more information on these
values of null_subscript.

• Prohibiting null subscripts can restrict access to existing data and cause GT.M to report errors.

• The default value is never.

• DSE cannot change the null subscript collation order. Instead, use GDE to change the null subscript collation order, MUPIP
EXTRACT the current content, MUPIP CREATE the database file(s) with the updated collation and MUPIP LOAD the
content.

Use only with: -FILEHEADER

 -OV[ERRIDE]

Releases or "steals" a FREEZE owned by another process.

Use only with: -FREEZE

 -[NO]Q[DBRUNDOWN]

Sets a flag that indicates whether or not the database is enabled for quick rundown. The default value is -NOQDBRUNDOWN.

For more information, refer to “Region Qualifiers” (page 54).

 -REC[ORD_MAX_SIZE]=record_max_size

Changes the decimal value for the maximum allowable record size. Use the -RECORD_MAX_SIZE qualifier only in conjunction
with the -FILEHEADER qualifier. Reducing RECORD_MAX_SIZE can restrict access to existing data and cause GT.M to report
errors. Do not create incompatible key and record sizes.

Before making a permanent change to the records size using DSE, use GDE to check that the appropriate Global Directory
contains the same record size for the region. This prepares for future MUPIP CREATEs and performs a consistency check on the
key and record size values. For more information on key and record sizes, refer to Chapter 4: “Global Directory Editor” (page 32).

 -REF[ERENCE_COUNT]=reference_count

Sets a field that tracks how many processes are accessing the database with read/write permissions. MUPIP INTEG and DSE
use decimal numbers for -REFERENCE_COUNT. To accurately determine the proper reference count, restrict CHANGE -
FILEHEADER -REFERENCE_COUNT to the case where the process running DSE has exclusive (standalone) access to the
database file. When DSE has sole access to a database file the -REFERENCE_COUNT should be one (1). This is an informational
field and does not have any effect on processing.

Database Structure Editor

295

-REG[_SEQNO]=sequence-number

In an LMS environment, this sets the "Region Seqno" field. For more information, refer to Chapter 7: “Database
Replication” (page 173).

 -RESYNC_S[EQNO]=sequence-number

In an LMS environment, this sets the "Resync Seqno" field. For more information, refer to Chapter 7: “Database
Replication” (page 173).

 -RESYNC_T[N]=sequence-number

In an LMS environment, this sets the "Resync transaction" field. For more information, refer to Chapter 7: “Database
Replication” (page 173).

 -STRM_NUM=stream-number -STRM_R[EG_SEQNO]=str_num's_region_sequence_number

Changes the Stream and its Reg Seqno. Use -STRM_NUM and -STRM_REG_SEQNO together as part of the same CHANGE -
FILEHEADER command.

Use only with: -FILEHEADER; hexa

-TI[MERS_PENDING]=timers_pending

 -TI[MERS_PENDING]=timers_pending

Sets a field that tracks the number of processes considering a timed flush. Proper values are 0, 1, and 2.

Use the CHANGE -TIMERS_PENDING qualifier only upon receiving instructions from FIS.

Use only with: -FILEHEADER; decimal

-TO[TAL_BLKS]=total_blocks

Changes the total blocks field of the current file. Use only with: -FILEHEADER; decimal

Caution

The total blocks field should always reflect the actual size of the database. Change this field only if it no
longer reflects the database size.

-TR[IGGER_FLUSH]=trigger_flush

Sets the decimal value for the triggering threshold, in buffers, for flushing the cache-modified queue.

Use the CHANGE -TRIGGER_FLUSH qualifier only upon receiving instructions from FIS, and only in conjunction with the -
FILEHEADER qualifier.

-WR[ITES_PER_FLUSH]=writes_per_flush

Set the decimal number of block to write in each flush. The default value is 7.

Database Structure Editor

296

Use only with -FILEHEADER

Examples for CHANGE

Example:

DSE> change -block=3 -bsiz=400

This command changes the size of block 3 to 1024 bytes.

Example:

DSE> change -block=4 -tn=10000

This command changes sets the transaction number to 65536 (Hex: 10000) for block 4.

Example:

DSE> change -block=2 -record=4 -CMPC=10 -key="^CUS(""Jones,Vic"")"

This command changes the compression count of the key ^CUS(Jones,Vic) to 10. It is assumed that the key CUS(Jones,Tom)
already exists. The following table illustrates how GT.M calculates the value of CMPC in this case.

RECORD KEY COMPRESSION COUNT RESULTING KEY in Record

CUS(Jones,Tom) 0 CUS(Jones,Tom)

CUS(Jones,Vic) 10 Vic)

CUS(Jones,Sally) 10 Sally)

CUS(Smith,John) 4 Smith,John)

Example:

DSE> dump -fileheader

This command displays fields of the file header.

Example:

DSE> change -fileheader -blk_siz=2048

This command changes the block size field of the fileheader to 2048 bytes. The block field must always be a multiples of 512
bytes.

Example:

DSE> change -fileheader -blocks_free=5B

This command changes the blocks free fields of the file header to 91 (Hex: 5B). Example:

Example:

DSE> change -fileheader -b_record=FF

Database Structure Editor

297

This command sets the RECORD backup transaction to FF.

Example:

DSE> change -fileheader corrupt_file=FALSE

This command sets the CORRUPT_FILE field to false.

Example:

DSE> change -fileheader -current_tn=1001D1BF817

This command changes the current transaction number to 1100000000023 (Hex: 1001D1BF817). After you execute this
command, subsequent transaction numbers will be greater than 1001D1BF817.

Example:

DSE> change -fileheader -flush_time=00:00:02:00

This command changes the flush time field of the file header to 2 seconds.

Example:

DSE> change -fileheader -freeze=true

This command makes the default region unavailable for updates.

Example:

DSE> change -fileheader -key_max_size=20

This command changes the maximum key size to 20. Note that the default max key size is 64.

Example:

DSE> CHANGE -FILEHEADER -NULL_SUBSCRIPTS="EXISTING"

This command changes the Null Subscripts field of the file header to EXISTING. Note that DSE cannot change the null subscript
collation order. See GDE chapter for more information on changing the null subscript collation.

Example:

DSE> change -fileheader -reserved_bytes=8 -record_max_size=496

This command sets the maximum record size as 496 for the default region.

Example:

DSE> change -fileheader -reference_count=5

This command sets the reference count field of the file header to 5.

Example:

DSE> change -fileheader -timers_pending=2

Database Structure Editor

298

This command sets the timers pending field of the file header to 2.

Example:

DSE> change -fileheader -TOTAL_BLKS=64

This command sets the total size of the database to 100 (Hex: 64) blocks.

Example:

DSE> change -fileheader -trigger_flush=1000

This command sets the Flush Trigger field of the file header to 1000. Note the default value of Flush Trigger is 960.

Example:

DSE> change -fileheader -writes_per_flush=10

This command changes the number of writes/flush field of the file header to 10. Note that the default value for the number of
writes/flush is 7.

Example:

DSE> change -fileheader -zqgblmod_seqno=FF

This command changes the ZGBLMOD_SEQNO field to 255(Hex: FF).

CAche

Operates on the cache of a database having BG access method. The format of the CACHE command is:

CA[CHE] -ALL
-RE[COVER
-VE[RIFY]

Qualifiers of CACHE

-RE[COVER] [-ALL]

Resets the cache of a database having BG access method to a "clean" state.

• With -ALL specified, DSE includes all region of the current global directory for cache recovery.

• Attempt DSE -RECOVER only if a DSE CACHE -VERIFY commands reports the cache is "NOT clean".

 -VE[RIFY] [-ALL]

Verifies the integrity of the cache data structures as well as the internal consistency of any GDS blocks in the global buffers of
the current region.

• With -ALL specified, DSE performs cache verification on all regions of the current global directory.

Database Structure Editor

299

• It reports the time, the region and a boolean result indicating whether the cache is clean or NOT clean. If you see "NOT
clean" in report, execute DSE CACHE -RECOVER as soon as possible to reset the cache in a clean state.

Examples for CACHE

Example:

DSE> CACHE -VERIFY

This command checks the integrity of the cache data structures as well as the internal consistency of GDS blocks in the global
buffers of the current region.

Example:

DSE> CACHE -VERIFY -ALL
Time 26-FEB-2011 14:31:30 : Region DEFAULT : Cache verification is clean

Execute CACHE recover command if Cache verification is "NOT" clean.

This command reports the state of database cache for all regions.

Example:

DSE> CACHE -RECOVER

This command reinitializes the cache data structures of the current region and reverts the cache of a database having BG access
to “clean" state.

CLose

The CLOSE command closes the currently open output file.

The format of the CLOSE command is:

CL[OSE]

The CLOSE command has no qualifiers.

CRitical

Displays and/or modifies the status and contents of the critical section for the current region. The format of the CRITICAL
command is:

CR[ITICAL] -I[NIT]
-O[WNER]
-REL[EASE]
-REM[OVE]
-RES[ET]
-S[EIZE]

• The critical section field identifies, by its process identification number (PID), the process presently managing updates to
database.

Database Structure Editor

300

• Think of a critical section as a common segment of a train track. Just as a train moves through the common segment as
quickly as possible, the same way a process moves as quickly as possible through any critical section so that other processes
can use it.

• By default, the CRITICAL command assumes the -OWNER qualifier, which displays the status of the critical section.

Qualifiers of CRITICAL

-I[NIT]

Reinitializes the critical section.

• The -INIT and -RESET qualifiers together cause all GT.M processes actively accessing that database file to signal an error.

• FIS recommends against using -INIT without the -RESET parameter when other processes are actively accessing the region
because it risks damaging the database.

Use only with: -RESET

-O[WNER]

Displays the ID of the process at the head of the critical section. DSE displays a warning message when the current process
owns the critical section.

Use alone

Example:

DSE> critical -OWNER
Write critical section is currently unowned

-REL[EASE]

Releases the critical section if the process running DSE owns the section.

Use alone.

-REM[OVE]

Terminates any write ownership of the critical section. Use this when the critical section is owned by a process that is
nonexistent or is known to no longer be running a GT.M image.

Use alone.

Caution

Using CRITICAL -REMOVE when the write owner of a critical section is an active GT.M process may cause
structural database damage.

-RES[ET]

Displays the number of times the critical section has been through an online reinitialization.

Database Structure Editor

301

Using -RESET with -INIT causes an error for processes that are attempting to get the critical section of the region. Under the
guidance of FIS, use -RESET -INIT as a way to clear certain types of hangs.

Use only with: -INIT

-S[EIZE]

Seizes the critical section (if available).

• You can also use SEIZE to temporarily suspend database updates.

• Subsequently, execute CRITICAL -RELEASE command to restore normal operation.

Examples for CRITICAL

Example:

DSE> critical -OWNER Write critical section owner is process id 4220

This command displays the ID of the process holding the critical section. Note that on catching a process ID on a lightly loaded
(or unloaded) system (for example, text environment) is like catching lightening in a bottle. Therefore, you can artificially hold
a critical section using the DSE CRIT -SEIZE command in one session and view the owner using a different session.

Dump

Displays blocks, records, or file headers. DUMP is one of the primary DSE examination commands.

The format of the DUMP command is:

D[UMP] -A[LL]
-B[LOCK]=block_number
-C[OUNT]=count
-F[ILEHEADER]
-G[LO]
-G[VSTATS]
-[NO]C[RIT]
-[NO]H[EADER]
-O[FFSET]=offset
-R[ECORD]=record-number
-U[PDPROC]
-Z[WR]

Use the error messages reported by MUPIP INTEG to determine what to DUMP and examine in the database. DUMP also can
transfer records to a sequential file for future study and/or for input to MUPIP LOAD (see the section on OPEN). The DUMP
command requires specification of an object using either -BLOCK, -HEADER, -RECORD, or -FILEHEADER.

Qualifiers of DUMP

 -A[LL]

When used with -FILEHEADER, the -A[LL] qualifier displays additional information on the database most of which is useful
for FIS in diagnosing issues. A complete description of all the elements that show up with the DSE DUMP -FILEHEADER -ALL

Database Structure Editor

302

command are beyond the scope of this book. Use only with -FILEHEADER or -UPDPROC (which is actually redundant as -ALL
displays the UPDPROC information).

-B[LOCK]=block-number

Specifies the starting block of the dump. For commands without an object qualifier, DSE uses the last block handled by a DSE
operation. When no block has been accessed, (thatis, on the first block-oriented command), DSE uses block one (1).

Incompatible with: -ALL, -FILEHEADER and -UPDPROC.

 -C[OUNT]=count

Specifies the number of blocks, block headers, or records to DUMP.

Incompatible with: -ALL, -FILEHEADER and -UPDPROC.

-F[ILEHEADER]

Dumps file header information. A DSE dump of a database file header prints a 0x prefix for all fields printed in hexadecimal
format. Refer to the "Introduction" section for a description of the file header fields.

Use only with -ALL or -UPDPROC

-G[LO]

Dumps the specified record or blocks into the current output file in Global Output (GO) format. FIS strongly suggests using -
ZWR rather than -GLO as the ZWR format handles all possible content values, including some that are problematic with -GLO.

Incompatible with: -ALL, -FILEHEADER, -UPDPROC and -ZWR.

-G[VSTATS]

Displays the access statistics for global variables and database file(s).

-NO[CRIT]

Allows DSE DUMP to work even if another process is holding a critical section. Since results in this mode may be inconsistent,
it should only be used if the critical section mechanism is not operating normally.

-[NO]H[EADER]

Specifies whether the dump of the specified blocks or records is restricted to, or excludes, headers. -HEADER displays only the
header, -NOHEADER displays the block or record with the header suppressed. DUMP without the -[NO]HEADER qualifier
dumps both the block/record and the header.

By default, DUMP displays all information in a block or record.

Incompatible with: -ALL, -FILEHEADER, -GLO, -UPDPROC and -ZWR.

-O[FFSET]=offset

Specifies the offset, in bytes, of the starting record for the dump. If the offset does not point to the beginning of a record,
DSE rounds down to the last valid record start (e.g., DUMP -OFF=10 starts at -OFF=A if that was the beginning of the record
containing offset 10).

Database Structure Editor

303

Incompatible with: -ALL, -FILEHEADER, and -RECORD.

-R[ECORD]=record_number

Specifies the record number of the starting record of the dump. If you try to dump a record number that is larger than the last
actual record in the block, a DSE error message provides the number of the last record in the block.

Incompatible with: -ALL, -FILEHEADER, and -OFFSET.

-U[PDPROC]

Displays the helper process parameters with the fileheader elements.

Use only with -FILEHEADER.

-Z[WR]

Dumps the specified record or blocks into the current output file in ZWRITE (ZWR) format.

Incompatible with: -ALL, -GLO, -HEADER and -FILEHEADER.

Examples for DUMP

Example:

DSE> DUMP -FILEHEADER

This command displays an output like the following:

File /home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.dat
Region DEFAULT

File /home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.dat
Region DEFAULT
Date/Time 27-JAN-2014 03:13:40 [$H = 63214,11620]
 Access method BG Global Buffers 1024
 Reserved Bytes 0 Block size (in bytes) 1024
 Maximum record size 256 Starting VBN 513
 Maximum key size 64 Total blocks 0x000000C9
 Null subscripts NEVER Free blocks 0x00000056
 Standard Null Collation FALSE Free space 0x00000000
 Last Record Backup 0x0000000000000001 Extension Count 100
 Last Database Backup 0x0000000000000001 Number of local maps 1
 Last Bytestream Backup 0x0000000000000001 Lock space 0x00000028
 In critical section 0x00000000 Timers pending 0
 Cache freeze id 0x00000000 Flush timer 00:00:01:00
 Freeze match 0x00000000 Flush trigger 960
 Current transaction 0x0000000000002712 No. of writes/flush 7
 Maximum TN 0xFFFFFFFF83FFFFFF Certified for Upgrade to V6
 Maximum TN Warn 0xFFFFFFFD93FFFFFF Desired DB Format V6
 Master Bitmap Size 496 Blocks to Upgrade 0x00000000
 Create in progress FALSE Modified cache blocks 0
 Reference count 1 Wait Disk 0

Database Structure Editor

304

 Journal State [inactive] ON Journal Before imaging TRUE
 Journal Allocation 2048 Journal Extension 2048
 Journal Buffer Size 2308 Journal Alignsize 4096
 Journal AutoSwitchLimit 8386560 Journal Epoch Interval 30
 Journal Yield Limit 8 Journal Sync IO FALSE
 Journal File: /home/jdoe/.fis-gtm/V6.1-000_x86_64/g/gtm.mjl
 Mutex Hard Spin Count 128 Mutex Sleep Spin Count 128
 Mutex Queue Slots 1024 KILLs in progress 0
 Replication State OFF Region Seqno 0x0000000000000001
 Zqgblmod Seqno 0x0000000000000000 Zqgblmod Trans 0x0000000000000000
 Endian Format LITTLE Commit Wait Spin Count 16
 Database file encrypted FALSE Inst Freeze on Error FALSE
 Spanning Node Absent TRUE Maximum Key Size Assured TRUE

Note that the certain fileheader elements appear depending on the current state of database. For example, if Journaling is not
enabled in the database, DSE does not display Journal data element fields.

Example:

$ dse dump -fileheader -updproc

This command displays the fileheader elements along with the following helper process parameters:

Upd reserved area [% global buffers] 50 Avg blks read per 100 records 200
Pre read trigger factor [% upd rsrvd] 50 Upd writer trigger [%flshTrgr] 33

For more information, refer to the fileheader elements section in “GT.M Database Structure(GDS)” (page 265).

EValuate

Translates a hexadecimal number to decimal, and vice versa.

The format of the EVALUATE command is:

EV[ALUATE] -D[ECIMAL]
-H[EXADECIMAL]
-N[UMBER]=number

The -DECIMAL and -HEXADECIMAL qualifiers specify the input base for the number. The -NUMBER qualifier is mandatory.
By default, EVALUATE treats the number as having a hexadecimal base.

Qualifiers of Evaluate

 -D[ECIMAL]

Specifies that the input number has a decimal base.

Incompatible with: -HEXADECIMAL .

 -H[EXADECIMAL]

Specifies that the input number has a hexadecimal base.

Incompatible with: -DECIMAL

Database Structure Editor

305

-N[UMBER]=number

Specifies the number to evaluate. Required.

Examples for EVALUATE

Example:

DSE> evaluate -number=10 -decimal

Hex: A Dec: 10

This command displays the hexadecimal equivalent of decimal number 10.

Example:

DSE> evaluate -number=10 -hexadecimal

Hex: 10 Dec: 16

This command displays the decimal equivalent of hexadecimal 10.

Example:

$ dse evaluate -number=10

Hex: 10 Dec: 16

This command displays the decimal equivalent of Hexadecimal 10. Note that if you do not specify an qualifier with -NAME,
then EVALUATE assumes Hexadecimal input.

EXit

The EXIT command ends a DSE session.

The format of the EXIT command is:

EX[IT]

The EXIT command has no qualifiers.

Find

Locates a given block or region. The format of the FIND command is:

F[IND] -B[LOCK]=block-number
-E[XHAUSTIVE]
-F[REEBLOCK] /H[INT]
-K[EY]=key
-[NO]C[RIT]
-R[EGION][=region]
-S[IBLINGS]

• At the beginning of a DSE session, use the FIND -REGION command to select the target region.

Database Structure Editor

306

• The FIND command, except when used with the -FREEBLOCK and -REGION qualifiers, uses the index tree to locate blocks.
FIND can locate blocks only within the index tree structure. If you need to locate keys independent of their attachment to the
tree, use the RANGE command.

Qualifiers of FIND

-B[LOCK]=block_number

Specifies the block to find.

On commands without the -BLOCK= qualifier, DSE uses the last block handled by a DSE operation. When no block has been
accessed, that is, on the first block-oriented command, DSE uses block one (1).

Incompatible with: -KEY, -REGION

-E[XHAUSTIVE]

Searches the entire index structure for the desired path or siblings.

• FIND -EXHAUSTIVE locates blocks that are in the tree but not indexed correctly.

• FIND -EXHAUSTIVE locates all paths to a "doubly allocated" block.

Note

A doubly allocated block may cause inappropriate mingling of data. As long as no KILLs occur, double
allocation may not cause permanent loss of additional data. However, it may cause the application programs
to generate errors and/or inappropriate results. When a block is doubly allocated, a KILL may remove data
outside its proper scope. See “Maintaining Database Integrity Chapter" for more information on repairing
doubly allocated blocks.

Incompatible with: -KEY, -REGION, -FREEBLOCK

-F[REEBLOCK]

Finds the nearest free block to the block specified by -HINT.

• The -FREEBLOCK qualifier is incompatible with all other qualifiers except -BLOCK and -HINT.

• The -HINT qualifier is required with the -FREEBLOCK qualifier.

• FIND -FREEBLOCK relies on the bitmaps to locate its target, so be sure to fix any blocks incorrectly marked "FREE" before
using this command. See MAP -BUSY for more information on fixing incorrectly marked free errors.

Required with -HINT; compatible with -BLOCK and [NO]CRIT.

-H[INT]=block_number

Designates the starting point of a -FREEBLOCK search.

FIND -FREE -HINT locates the "closest" free block to the hint. This provides a tool for locating blocks to add to the B-tree, or to
hold block copies created with SAVE that would otherwise be lost when DSE exits. FIND -FREE relies on the bitmaps to locate
its target, so be sure to fix any blocks incorrectly marked "FREE" before using this command.

Database Structure Editor

307

Required with: -FREEBLOCK; compatible with -BLOCK and [NO]CRIT.

-K[EY]=key

Searches the database for the block containing the specified key or if the key does not exist, the block that would contain it, if it
existed.

• Enclose an M-style key in quotation marks (" "). FIND -KEY is useful in locating properly indexed keys. The -KEY qualifier is
incompatible with all other qualifiers.

• FIND -KEY= uses the index to locate the level zero (0) block , or data block, containing the key. If the key does not exist, it
uses the index to locate the block in which it would reside. Note that FIND only works with the index as currently composed.
In other words, it cannot FIND the "right" place, only the place pointed to by the index at the time the command is issued.
These two locations should be, and may well be, the same; however, remind yourself to search for, understand and take into
account all information describing any current database integrity issues.

Compatible only with [NO]CRIT.

-[NO]C[RIT]

Allows FIND to work even if another process is holding a critical section.

As results in this mode may be inconsistent, it should only be used if the critical section mechanism is not operating normally

-R[EGION][=region]

Switches to the named Global Directory region.

-REGION without a specified region, or -REGION="*", displays all existing regions in the database.

Use Alone.

-S[IBLINGS]

Displays the block number of the specified block and its logical siblings in hexadecimal format.

The logical siblings are the blocks, if any, that logically exist to the right and left of the given block in the database tree
structure.

Incompatible with: -FREEBLOCK, -HINT, -KEY, -REGION

Examples for FIND

Example:

DSE> find -exhaustive -block=180
Directory path
Path--blk:off
1:10 2:1E

Global paths
Path--blk:off
6:51 1A4:249 180

Database Structure Editor

308

This command locates block 180 by looking through the B-tree index for any pointer to the block. This command finds even
those blocks that are connected to the tree but the first key in the block does not match the index path.

Example:

DSE> find -free -hint=180

Next free block is D8F.

This command locates the "closest" free block to block 180.

You can use this command as a tool for locating blocks to add to the B-tree, or to hold block copies created with SAVE that
would otherwise be lost when DSE exits.

Example:

DSE>find -key="^biggbl(1)"

This command locates the key ^biggbl(1) in the database.

Example:

DSE> find -freeblock -hint=232

This commands starts to search for free block after block 232.

Example:

DSE> FIND -FREEBLOCK -HINT=232 -NOCRIT

This command searches for freeblocks after block 232 even if another process is holding a critical section.

Example:

DSE> find -sibling -block=10

This command operates like FIND -BLOCK; however it reports the numbers of the blocks that logically fall before and after
block 180 on the same level. This command produces an output like the following:

Left sibling Current block Right sibling
 0x0000000F 0x00000010 0x00000011

Help

The HELP command explains DSE commands. The format of the HELP command is:

-H[ELP] [help topic]

Integrit

Checks the internal consistency of a single non-bitmap block. INTEGRIT reports errors in hexadecimal notation.

The format of the INTEGRIT command is:

Database Structure Editor

309

I[NTEGRIT] -B[LOCK]=block-number

Note

Unlike MUPIP INTEG, this command only detects errors internal to a block and cannot detect errors such as
indices incorrectly pointing to another block. For information on the utility that checks multiple blocks, refer
to the “INTEG ” (page 88) of the General Database Management chapter.

Qualifiers of Integrit

-B[LOCK]=block_number

Specifies the block for DSE to check. On commands with no -BLOCK qualifier, DSE uses the last block handled by a DSE
operation. When no block has been accessed, that is, on the first block-oriented command, DSE uses block one (1).

-NO[CRIT]

Allows DSE INTEG to work even if another process is holding a critical section. Since results in this mode may be inconsistent,
it should only be used if the critical section mechanism is not operating normally.

Maps

Examines or updates bitmaps. The format of the MAPS command is:

M[APS] -BL[OCK]=block-number
-BU[SY]
-F[REE]
-M[ASTER]
-R[ESTORE_ALL]

MAPS can flag blocks as being either -BUSY or -FREE. The -MASTER qualifier reflects the current status of a local bitmap
back into the master map. The -RESTORE_ALL qualifier rebuilds all maps and should be used with caution since it can destroy
important information.

By default, MAPS shows the status of the bitmap for the specified block.

Qualifiers for MAP

-BL[OCK]=block_number

Specifies the target block for MAPS. The -BLOCK qualifier is incompatible with the -RESTORE_ALL qualifier.

On commands with no -BLOCK= or -RESTORE_ALL qualifier, DSE uses the last block handled by a DSE operation. When no
block has been accessed, that is, on the first block-oriented command, DSE uses block one (1).

Incompatible with: -RESTORE_ALL

-BU[SY]

Marks the current block as busy in the block's local map and appropriately updates the master bitmap.

Compatible only with: -BLOCK

Database Structure Editor

310

-F[REE]

Marks the current block as free in the block's local map and appropriately updates the master bitmap.

Compatible only with: -BLOCK

-M[ASTER]

Sets the bit in the master bitmap associated with the current block's local map according to whether or not that local map is full.

Use only with: -BLOCK.

-R[ESTORE_ALL]

Sets all local bitmaps and the master bitmap to reflect the blocks used in the database file.

Use -RESTORE_ALL only if the database contents are known to be correct, but a large number of the bitmaps require
correction.

Caution

The -RESTORE_ALL qualifier rebuilds all maps and should be used with a great deal of caution as it can
destroy important information.

Use alone.

Examples

Example:

DSE> MAPS -BLOCK=20 -FREE

This command flags block 20 as free. A sample DSE DUMP output block 0 is as follows:

Block 0 Size 90 Level -1 TN 10B76A V5 Master Status: Free Space
 Low order High order
Block 0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 20: | :XXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 40: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 60: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 80: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block A0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block C0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block E0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 100: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 120: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 140: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 160: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 180: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 1A0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 1C0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |
Block 1E0: | XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |

'X' == BUSY '.' == FREE ':' == REUSABLE '?' == CORRUPT

Database Structure Editor

311

Note that BLOCK 20 is marked as REUSABLE, which means FREE but in need of a before-image journal record.

Example:

DSE> maps -block=20 -busy

This command marks block 20 as busy. A sample DSE DUMP output of block 0 is as follows:

Block 0 Size 90 Level -1 TN 1 V5 Master Status: Free Space

 Low order High order
Block 0: | XXX..... |
Block 20: | X....... |
Block 40: | |
Block 60: | |
Block 80: | |
Block A0: | |
Block C0: | |
Block E0: | |
Block 100: | |
Block 120: | |
Block 140: | |
Block 160: | |
Block 180: | |
Block 1A0: | |
Block 1C0: | |
Block 1E0: | |

'X' == BUSY '.' == FREE ':' == REUSABLE '?' == CORRUPT

Note that the BLOCK 20 is marked as BUSY.

OPen

Use the OPEN command to open a file for sequential output of global variable data. The format of the OPEN command is:

OP[EN] F[ILE]=file

• OPEN a file to which you want to "dump" information.

• If an OPEN command does not have a -FILE qualifier, DSE reports the name of the current output file.

Qualifiers for OPEN

-F[ILE]=file-name

Specifies the file to open.

Examples for OPEN

Example:

DSE> OPEN

Database Structure Editor

312

Current output file: var.out

This command displays the current output file. In this case, the output file is var.out.

Example:

DSE> OPEN -FILE=var1.out

The command OPEN -FILE=var1.out sets the output file to var1.out.

OVerwrite

Overwrites the specified string on the given offset in the current block. Use extreme caution when using this command.

The format of the OVERWRITE command is:

OV[ERWRITE] -D[ATA]=string
-O[FFSET]=offset

Qualifiers for OVERWRITE

-B[LOCK]=block number

Directs DSE to OVERWRITE a specific block. If no block number is specified, the default is the current block.

-D[ATA]=string

Specifies the data to be written. Use quotation marks around the string and escape codes of the form \a or \ab, where "a" and "b"
are hexadecimal digits representing non-printing characters. \\ translates to a single backslash.

-O[FFSET]=offset

Specifies the offset in the current block where the overwrite should begin.

Examples for Overwrite

Example:

DSE>overwrite -block=31 -data="Malvern" -offset=CA

This command overwrites the data at the specified location.

Page

Sends one form feed to the output device. Use PAGE to add form feeds to a dump file, making the hard copy file easier to read.
If you plan to use the dump file with MUPIP LOAD, do not use PAGE.

The format of the PAGE command is:

P[AGE]

The PAGE command has no qualifiers.

Database Structure Editor

313

RAnge

The RANGE command finds all blocks in the database whose first key falls in the specified range of keys. The RANGE
command may take a very long time unless the range specified by -FROM and -TO is small. Use FIND -KEY and/or FIND -KEY -
EXHAUSTIVE first to quickly determine whether the key appears in the index tree.

The format of the RANGE command is:

RA[NGE] -F[ROM]=block-number
-T[O]=block-number
-I[NDEX]
-LOS[T]
-[NO]C[RIT]
-[NO]BU[SY]
-S[TAR]
-LOW[ER]=key
-U[PPER]=key

Qualifiers of RANGE

-F[ROM]=block_number

Specifies a starting block number for the range search.

By default, RANGE starts processing at the beginning of the file.

-T[O]=block-number

Specifies an ending block number for the range search. By default, RANGE stops processing at the end of the file.

-I[NDEX]

Restricts a search to index blocks.

-LOS[T]=block_number

Restricts a search to blocks not found by a FIND -BLOCK.

-LOW[ER]=key

Specifies the lower bound for the key range.

-[NO]BU[SY]=busy/free

Restricts a search to either BUSY or FREE blocks.

-[NO]C[RIT]

Allows DSE RANGE to work even if another process is holding a critical section. Since results in this mode may be inconsistent,
it should only be used if the critical section mechanism is not operating normally.

-S[TAR]

Includes index blocks that contain a single star key.

Database Structure Editor

314

-U[PPER]=key

Specifies the upper bound for the key range.

Examples for RANGE

Example:

DSE> range -lower="^abcdefgh" -upper="^abcdefghi" -from=A -to=CC

This command searches for a specified keys between block 10 and block 204. Note that the range (between FROM and TO) of
blocks must be valid blocks specified in hexadecimal.

Example:

DSE> range -lower="^abcdefgh" -upper="^abcdefghi" -from=A -to=CC -noindex

This command searches only data blocks for the specified keys between block 10 and block 204.

Example:

DSE> range -lower="^abcdefgh" -upper="^abcdefghi" -from=A -to=CC -index

This command searches only index blocks for the specified keys between block 10 and block 204.

Example:

DSE> range -lower="^abcdefgh" -upper="^abcdefghi" -lost

This command includes lost blocks while searching for the specified keys and reports only blocks which are not currently
indexed.

Example:

DSE> range -lower="^Fruits(15)" -upper="^Fruits(877)" -from=A -to=F

Blocks in the specified key range:
Block: 0000000A Level: 0
Block: 0000000B Level: 0
Block: 0000000C Level: 0
Block: 0000000D Level: 0
Block: 0000000E Level: 0
Block: 0000000F Level: 0

Found 6 blocks

This command search for keys between ^Fruits(15) and ^Fruits(877).

REMove

Removes one or more records or a save buffer.

The format of the REMOVE command is:

REM[OVE] -B[LOCK]=block-number

Database Structure Editor

315

-C[OUNT]=count
-O[FFSET]=offset
-R[ECORD]=record-number
-V[ERSION]=version-number

The version number is specified in decimal.

Qualifiers of REMOVE

-B[LOCK]=block_number

Specifies the block associated with the record or buffer being deleted.

On commands with no -BLOCK= qualifier, DSE uses the last block handled by a DSE operation. When no block has been
accessed, that is, on the first block-oriented command, DSE uses block one (1).

-C[OUNT]=count

Specifies the number of records to remove.

By default, REMOVE deletes a single record.

Incompatible with: -VERSION

-O[FFSET]=offset

Specifies the offset (in bytes) of the record to be removed. If the offset does not point to the beginning of a record, DSE rounds
down to the beginning of the record containing the offset (for example, REMOVE -OFF=10 starts at OFF=A if that was the last
prior record boundry).

Incompatible with: -VERSION, -RECORD

-R[ECORD]=record_number

Specifies the number that identifies the record to remove. The -RECORD qualifier is incompatible with the -OFFSET and -
VERSION qualifiers.

Incompatible with: -VERSION, -OFFSET

-V[ERSION]=version_number

Specifies the version number, in decimal, of the save buffer to remove. -VERSION is required to REMOVE a SAVE buffer. -
VERSION is incompatible with all qualifiers except -BLOCK.

Use only with: -BLOCK; decimal

REStore

The RESTORE command restores saved versions of blocks.

RES[TORE] B[LOCK]=block-number
F[ROM]=from

Database Structure Editor

316

R[EGION]=region
V[ERSION]=version-number

The version number is specified in decimal.

Qualifiers of RESTORE

-B[LOCK]=block_number

Specifies the block to restore.

For commands with no -BLOCK= qualifier, DSE uses the last block handled by a DSE operation. When no block has been
accessed, (i.e., on the first block-oriented command), DSE uses block one (1).

-F[ROM]=block_number

Specifies the block number of the SAVE buffer to restore.

DSE restores the block specified with -BLOCK qualifier with the block specified by the -FROM qualifier.

By default, RESTORE uses the target block number as the -FROM block number.

-R[EGION]=region

Specifies the region of the saved buffer to restore.

By default, RESTORE uses SAVE buffers from the current region.

-V[ERSION]=version_number

Specifies the decimal version number of the block to restore. The version number is required.

SAve

The SAVE command preserves versions of blocks, or displays a listing of saved versions for the current DSE session. Saved
information is lost when DSE EXITs.

Use with the RESTORE command to move SAVEd blocks to a permanent location, and as a safety feature use SAVE to retain
copies of database blocks before changing them.

The format of the SAVE command is:

SA[VE] -B[LOCK]=block-number
-C[OMMENT]=string
-L[IST]
-[NO]C[RIT]

Qualifiers of SAVE

-B[LOCK]=block_number

Specifies the block to restore.

Database Structure Editor

317

On commands with no -BLOCK= qualifier, DSE uses the last block handled by a DSE operation. When no block has been
accessed, that is, on the first block-oriented command, DSE uses block one (1).

-C[OMMENT]=string

Specifies a comment to save with the block. Enclose the comment in quotation marks (" ").

Incompatible with: -LIST

 -L[IST]

Lists saved versions of specified blocks. The -LIST qualifier is incompatible with the -COMMENT qualifier.

By default, SAVE -LIST provides a directory of all SAVEd blocks.

Incompatible with: -COMMENT

-[NO]C[RIT]

Allows DSE SAVE to work even if another process is holding a critical section. Since results in this mode may be inconsistent, it
should only be used if the critical section mechanism is not operating normally.

SHift

Use the SHIFT command to shift data in a block, filling the block with zeros, or shortening the block. The format of the SHIFT
command is:

SH[IFT] -B[ACKWARD]=b_shift
-F[ORWARD]=f_shift
-O[FFSET]=offset

b_shift must always be less than or equal to offset. This means that DSE SHIFT in the backward direction is restricted to the
maximum of OFFSET number of bytes. This ensures that the shift does not cross block boundaries, either intentionally or
unintentionally.

Qualifiers of SHIFT

-B[ACKWARD]=shift

Specifies the number of bytes to shift data in the direction of the block header.

Incompatible with: -FORWARD

-F[ORWARD]=shift

Specifies the number of bytes to shift data toward the end of the block.

Incompatible with: -BACKWARD

-O[FFSET]=offset

Specifies the starting offset, in bytes, of the portion of the block to shift.

Database Structure Editor

318

-SPawn

SPawn

Use the SPAWN command to fork a child process for access to the shell without terminating the current DSE environment.

The format of the SPAWN command is:

SP[AWN] [shell-command]

• The SPAWN command accepts an optional command string for execution by the spawned sub-process. If the SPAWN has no
command string parameter, the created sub-process issues a shell prompt and accepts any legal shell command. To terminate
the sub-process, use the shell logout command.

• The SPAWN command has no qualifiers.

• DSE SPAWN works with an argument. If the argument contains spaces, enclose it with quotes.

The SPAWN command has no qualifiers.

DSE SPAWN works with an argument. If the argument contains spaces, enclose it with quotes.

Examples of SPAWN

Example:

DSE> SPAWN "mumps -run ^GDE"

This command suspends a DSE session and executes the shell command mumps -run ^GDE.

Wcinit

Use the WCINIT command to reinitialize the global buffers of the current region. Because it cleans out the cache, the WCINIT
command should not be used except under the guidance of FIS.

Caution

A WCINIT command issued while normal database operations are in progress can cause catastrophic damage
to the database.

The format of the WCINIT command is:

W[CINIT]

• The WCINIT command has no qualifiers.

• When you issue the WCINIT command, DSE issues the CONFIRMATION: prompt. You must verify the WCINIT command
by responding with "YES."

If you do not confirm the WCINIT, DSE issues the message:

Database Structure Editor

319

 No action taken, enter yes at the CONFIRMATION prompt to initialize global buffers.

• WCINIT operations are more safely performed by MUPIP RUNDOWN. Use this command only under instructions from FIS.

DSE CommandSummary

COMMAND QUALIFIERS COMMENTS

AD[D] -B[LOCK]=block number -

- -D[ATA]=string Incompatible with -POINTER, -STAR

- -K[EY]=key Incompatible with -STAR

- -O[FFSET]=offset Incompatible with -RECORD, -STAR

- -P[OINTER]=pointer Incompatible with -DATA

- -R[ECORD]=record-number Incompatible with -OFFSET, -STAR

- -S[TAR] Incompatible with -DATA,-KEY, -OFFSET, -
RECORD

AL[L] -B[UFFER_FLUSH] Incompatible with -RENEW

- -C[RITINIT] Incompatible with -RENEW, -RELEASE, -
SEIZE

- -[NO]F[REEZE] Incompatible with -RENEW

- -O[VERRIDE] Meaningful only with -[NO]FREEZE

- -REF[ERENCE] Incompatible with -RENEW

- -REL[EASE] Incompatible with -CRITINIT, -RENEW,-
SEIZE

- -REN[EW] Use alone

- -S[EIZE] Incompatible with -RENEW, -RELEASE, -
CRITINIT

- -W[CINIT] Incompatible with -RENEW

B[UFFER _FLUSH] - -

CH[ANGE] -BL[OCK]=block number Incompatible with -FILEHEADER and
qualifiers used with -FILEHEADER

- -BS[IZ]=block-size Use only with -BLOCK, -LEVEL, -TN

- -L[EVEL]=level Use only with -BLOCK, -BSIZ, -TN

- -TN [=transaction number] Use only with -BLOCK, -BSIZ, -LEVEL

- -OF[FSET]=offset Use only with -BLOCK, -CMPC, -RSIZ

- -RE[CORD]=record number Use only with -BLOCK, -CMPC, -RSIZ

Database Structure Editor

320

COMMAND QUALIFIERS COMMENTS

- -CM[PC]= compression count Use only with -BLOCK, -RECORD, -OFFSET,
-RSIZ

- -RS[IZ]=record size Use only with -CMPC -OFFSET, -RECORD, -
BLOCK

- -F[ILEHEADER] Incompatible with -BSIZ, -CMPC, -TN, -
LEVEL, -OFFSET, -RECORD, -RSIZ

- AVG_BLKS_READ=Average blocks read -

- B_B[YTESTREAM]=transaction number -

- -B_C[OMPREHENSIVE]=transaction
number

Use only with -FILEHEADER; decimal

- B_D[ATABASE] = transaction number Use only with -FILEHEADER; decimal

- -B_I[NCREMENTAL] = transaction number Use only with -FILEHEADER; decimal

- -BLK[_SIZE]=block size Use only with -FILEHEADER; decimal

- -BLO[CKS_FREE]=free blocks Use only with -FILEHEADER; decimal

- -B_R[ECORD]=transaction number Use only with -FILEHEADER; decimal

- -CO[RRUPT_FILE]=value Use only with -FILEHEADER

- -CU[RRENT_TN]=transaction number Use only with -FILEHEADER

- DECL[OCATION]=value Use only with -FILHEADER; decimal

- DEF[_COLLATION]=value Use only with -FILEHEADER;

- -ENCRYPTION_HASH Use only with -FILEHEADER

- -FL[USH_TIME][=delta time] Use only with -FILEHEADER

- -FR[EEZE]=value Use only with -FILEHEADER

- -FU[LLY_UPGRADED]=boolean Use only with -FILEHEADER

- -GV[STATSRESET] Use only with -FILEHEADER

- -HARD_SPIN_CPUNT=Mutex hard spin
count

Use only with -FILEHEADER

-HEXL[OCATION]=value Use only with -FILEHEADER;hexa

- -INT[ERRUPTED_RECOV]=boolean

- -JNL_YIELD_LIMIT=journal yeild limit

- -K[EY_MAX_SIZE]=key_max_size Use only with -FILEHEADER; decimal

- -M[ACHINE_NAM]=value

- -N[ULL_SUBSCRIPTS]=value Use only with -FILEHEADER

- -NO[CRIT]

Database Structure Editor

321

COMMAND QUALIFIERS COMMENTS

- -OV[ERRIDE]

- -RC_SRV_COUNT

- -RE_READ_TRIGGER=read trigger

- -Q[UANTUM_INTERVAL] [=delta time] Use only with -FILEHEADER; decimal

- -REC[ORD_MAX_SIZE]=maximum record
size

Use only with -FILEHEADER; decimal

- -REF[ERENCE_COUNT]=reference count Use only with -FILEHEADER; decimal

- -REG[_SEQNO]=sequence number Use only with -FILEHEADER; hexa

- -RESERVED_BYTES=reserved bytes Use only with -FILEHEADER;decimal

- -[NO] RES[PONSE_INTERVAL] [=delta
time]

Use only with -FILEHEADER; decimal

- -SLEEP_SPIN_COUNT=mutex sleep spin
count

Use only with -FILEHEADER;

- -SPIN_SLEEP_TIME=mutex sleep time

- -[NO]S[TALENESS_TIMER] [=delta time] Use only with -FILEHEADER; decimal

- -TIC[K_INTERVAL] [=delta time] Use only with -FILEHEADER; decimal

- -TIM[ERS_PENDING]=timers pending Use only with -FILEHEADER; decimal

- -TO[TAL_BLKS]=total_blocks Use only with -FILEHEADER

- -TR[IGGER_FLUSH]=trigger flush Use only with -FILEHEADER

- -W[RITES_PER_FLUSH]=writes per flush Use only with -FILEHEADER; decimal

- -WAIT_DISK=wait disk -

- -Zqgblmod_S[EQNO] = sequence number Use only with -FILEHEADER;hexa

- -Zqgblmod_T[rans]=sequence_number Use only with -FILEHEADER;hexa

CL[OSE] - -

CR[ITICAL] -I[NIT] Use only with -RESET

- -O[WNER] Use alone

- -REL[EASE] Use alone

- -REM[OVE] Use alone

- -RES[ET] Use only with -INIT

- -S[EIZE] Use alone

D[UMP] -B[LOCK]=block_number Incompatible with -FILEHEADER

- -C[OUNT]=count Incompatible with -FILEHEADER

Database Structure Editor

322

COMMAND QUALIFIERS COMMENTS

- -F[ILEHEADER] Use alone

- -G[LO] Incompatible with -FILEHEADER, -HEADER

- -G[VSTATS] Use only with -FILEHEADER

- -[NO]H[EADER] Incompatible with -FILEHEADER, -GLO

- -O[FFSET]=offset Incompatible with -FILEHEADER, -RECORD

- -R[ECORD]=record_number Incompatible with -FILEHEADER, -OFFSET

EV[ALUATE] -D[ECIMAL] Incompatible with -HEXADECIMAL

- -H[EXADECIMAL] Incompatible with -DECIMAL

- -N[UMBER]=number Required

EX[IT] -

F[IND] -B[LOCK]=block_number Incompatible with -KEY, -REGION

- -E[XHAUSTIVE] Incompatible with -KEY, -REGION, -
FREEBLOCK

- -F[REEBLOCK] Required with -HINT; compatible with -
BLOCK

- -H[INT]=block_number Required with -FREEBLOCK

- -K[EY]=key Use alone

- -R[EGION][=region] Use alone

- -S[BLINGS] Incompatible with -FREEBLOCK, -HINT, -
KEY, -REGION

H[ELP] [help topic] -

I[NTEGRIT] -B[LOCK]=block_number -

M[APS] -BL[OCK]=block_number Incompatible with -RESTORE_ALL

- -BU[SY] Compatible only with -BLOCK

- -F[REE] -

- -M[ASTER] -

- -R[ESTORE_ALL] Use alone

OP[EN] -F[ILE]=file -

OV[ERWRITE] -B[LOCK]=block_number

-D[ATA]=string

-

- -O[FFSET]=offset -

P[AGE] - -

Database Structure Editor

323

COMMAND QUALIFIERS COMMENTS

RA[NGE] -F[ROM]=block_number -

- -T[O]=block_number -

- -I[NDEX]=block_number

-L[OST]=block_number

-[NOT]BUSY=busy/free

-S[TAR]=block_number

-L[OWER]=key

-

- -U[PPER]=key -

REM[OVE] -B[LOCK]=block-number -

- -C[OUNT]=count Incompatible with -VERSION

- -O[FFSET]=offset Incompatible with -VERSION, -RECORD

- -R[ECORD]=record-number Incompatible with -VERSION, -OFFSET

- -V[ERSION]=version-number Use only with -BLOCK; decimal

RES[TORE] -B[LOCK]=block-number -

- -F[ROM]=block-number -

- -R[EGION]=region -

- -V[ERSION]=version-number Required; decimal

SA[VE] -B[LOCK]=block-number -

- -C[OMMENT]=string Incompatible with -LIST

- -L[IST] Incompatible with -COMMENT

SH[IFT] -B[ACKWARD]=shift Incompatible with -FORWARD

- -F[ORWARD]=shift Incompatible with -BACKWARD

- -O[FFSET]=offset -

SP[AWN] [CLI command] -

W[CINIT] - -

* Use these qualifiers only with instructions from FIS.

324

Chapter 11. Maintaining Database Integrity

Revision History

Revision V5.5-000/10 28 September 2012 Added two new sections–“O5–Salvage of
a damaged spanning node” (page 354)
and “Recovering data from damaged binary
extracts” (page 331).

Revision V5.5-000/2 19 March 2012 In “O4–Salvage of Data Blocks with Lost
Indices” (page 352), fixed syntax errors in the
example.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

This chapter discusses GT.M methods for maintaining data availability and integrity.

A database that has GDS integrity may not be consistent from the application data point of view. That is, certain types of
failures that do not damage the GDS database structures may cause logical transactions (consisting of multiple database updates
within an application) to stop in an "illogical" state with some, but not all, of the updates in place. Transaction processing
and database journaling are good methods for maintaining application data consistency. For more information on transaction
processing, refer to the "General Language Features of M" and "Commands" chapters of the GT.M Programmer's Guide. For more
information on journaling, refer to the "GT.M Journaling" chapter of this manual.

Maintaining database integrity is integral to GT.M operation; you should seldom, if ever, need the material in this chapter,
especially if you use journaling. However, databases can be corrupted by unusual events such as hardware failures, sudden loss
of power, operating system failure, or improper operator action. All such events should be followed with database integrity
checks.

The chapter describes the following:

• Suggested times to use MUPIP INTEG for verifying database integrity

• Recommended methods for handling database problems

• General techniques and strategies for using DSE

• Instructions for identifying and repairing errors with DSE

Verifying Database Integrity

A consistent verification strategy expedites the process of rapid identification and correction of database damage, while
minimizing the overhead of integrity checking. In GT.M, this strategy is logically developed around MUPIP INTEG and its
numerous options for verifying GDS integrity. For detailed information on MUPIP INTEG, refer to the "MUPIP" chapter. The
following sections describe situations when executing MUPIP INTEG is the appropriate action.

GTMASSERT sends an operator log message in addition to the usual user message. Because these are potentially dangerous
conditions, all GTMASSERTs should be immediately reported to FIS. Check database integrity with the -FAST qualifier, if

http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Maintaining Database Integrity

325

appropriate, as soon as possible. GT.MCHECK is similar to GTMASSERT but less sophisticated. It does not send an operation
log message; however, it sends a message to the Principal Device.

Regularly Scheduled Verification

Schedule INTEGs at regular intervals to ensure that no unobserved or unreported events corrupt the database. These regular
checks minimize the occurrence of damaged pointers, which may cause updates to incorrect places in the file, likely resulting in
escalating damage.

Before or After Major Transfers

Because of the time they require, and their relative value to the total database organization, operations that move large amounts
of information into or out of a database should be accompanied by an INTEG. INTEG should precede output operations such as
MUPIP EXTRACT, and follow input operations such as MUPIP LOAD, RESTORE, and JOURNAL RECOVER.

One consistent occurrence of large information transfers occurs during database backups. In many cases, successful recovery
from catastrophic events depends on having a reliable backup copy of the database. Therefore, backup procedures should be
designed to complement database integrity verification. When the backup is to disk, the fastest method may be to INTEG the
backup copy immediately after making it. If the backup is not in GDS format, the INTEG should precede the backup.

Immediately after Catastrophic Events

Any catastrophic event, such as hardware or operating system failure, should be immediately followed by an INTEG. To
determine the cause of the failure, examine the system error messages, operator messages, and system log files, if available.

Immediately after Run-Time Database Errors

Check database integrity when the GT.M run-time system reports database access errors. The table in section R1 lists all run-
time errors that indicate system problems. Most of these errors should be followed by an INTEG, or by one of the appropriate
alternatives discussed in the section identified by the table.

Immediately After Database Repairs

Since the GT.M run-time system normally performs GDS maintenance, based on a fairly complex set of rules, DSE depends
on its operator to determine whatever subset of those rules apply to the repair. Even when you have skill and confidence, FIS
recommends you verify the result of all database repairs with a database integrity check.

Approaches to Database Recovery

If you experience database integrity problems, there are three strategies to consider when approaching the recovery:

• Recover with journaling

• Restore from backup and redo any lost work

• Repair the database

To achieve the intended result, correction of database errors requires careful planning. Each strategy differs from the others in
the scope of damage it can handle, in skills needed, and in database availability.

Maintaining Database Integrity

326

Recover from Journals

Journaling is generally the most attractive approach to recovery from integrity problems. It allows management of recovery
using logical rather than physical constructs, including suppression of updates based on time and/or source and preservation of
application-level logical transactions. Backward journal recovery is generally the fastest means of repair. The cost of journaling
is the added load it imposes on normal operation to make and store the journal files. For more information on journaling, refer
to the "GT.M Journaling" chapter.

Restore from Backup

Restoring the database from the backup is the least technically sophisticated approach to handling integrity problems. This
strategy is most beneficial when the data in the database is static or can be recomputed. In other cases, it requires operational
controls to identify, and people to reenter, the work performed between the backup and the failure. For more information on
MUPIP BACKUP, RESTORE, EXTRACT, and LOAD, refer to the "MUPIP" chapter. You may also use UNIX utilities such as tar,
dump, and restore.

Some database regions may be setup to hold only temporary data, typically only valid for the life of a GT.M process or even just
during some operation performed by a process. Rather than restoring such a region, it is generally more appropriate to delete it
and recreate it using MUPIP CREATE.

Repair with DSE

Database repair with DSE requires more skill, and potentially more time than the other approaches. Using DSE requires vigilant
attention to, and a clear understanding of, GDS. DSE can generally access and change almost any data in the database file.
When using DSE, you assume the responsibility that GT.M normally carries for ensuring the integrity of the database structure.
Because DSE may be used concurrently with other processes, updates by concurrent processes may interfere with repair
actions. When possible, prevent other users from accessing the region during repairs.

If you elect to repair the database, you may want to seek assistance from an available source of expertise such as FIS or your
GT.M Value Added Reseller (VAR). If your organization plans to perform repairs beyond straightforward corrections to the file
header, FIS strongly recommends that the responsible person(s) familiarize themselves with the material in the INTEG section
of the MUPIP chapter, the GDS and DSE chapters, and this chapter. FIS recommends using DSE on test files, in advance of any
work on production files.

Preventive Maintenance

Once you understand the cause of a database integrity problem, you can correct or improve the environment to prevent or
minimize future damage. These changes may include hardware reconfiguration, such as improving the quality of power;
changes to the operational procedures, such as implementing journaling; and/or changes to the Global Directories, such as
balancing data assignment into files of more manageable sizes.

Use the following tools to help determine the cause of a database integrity problem.

• Knowledge of the application and how it is used

• Context dumps produced by application programs

• Core dumps produced by application programs

• Core dumps produced by GT.M

• Interviews with users to discover their actions

Maintaining Database Integrity

327

• Review of all recent changes to hardware, UNIX, GT.M, the application, procedures, etc.

• Copies of damaged files

• The trail from DSE sessions in the form of notes, a script file recording the session, sequential files, and saved blocks.

Determining the Cause of the Problem

The following questions may help you understand the type of information required to determine the nature of a database
integrity problem.

• How seriously are operations affected?

• What level of urgency do you assign to getting the problem resolved?

• What were the circumstances under which the database became damaged or inaccessible?

• How was the problem first recognized?

Examine the accounting logs for information about recent process terminations. Capture information about what functions
were in use. Look for any information which might be helpful in establishing patterns in case the problem is repetitive.

• Has the system crashed recently? If so, what caused the crash?

• Is there database damage?

• What region(s) are affected? What globals?

• What are the error messages?

• What do you see when you examine the database?

• Are you comfortable with fixing the problem?

• What version of GT.M are you using? What version of UNIX? What UNIX platform are you running?

MUPIP Recovery

Bring down the damaged application using appropriate utilities, MUPIP RUNDOWN -REGION region or -FILE file-name
naming the problem database. Restart the application. Consider writing programs or procedures to partially automate shutting
down one or all applications; to reduce the chance of errors.

Follow-up

Make sure to transfer any relevant files or reports to FIS. Please also communicate any information regarding the circumstances
surrounding the problem, including the answers to the questions above. Consider the following:

• Has any hardware or software component of your system recently changed?

• Was anyone doing anything new or unusual?

• Was the problem preceded or followed by any other notable events?

• Did you have any unusual problems during the analysis or recovery?

Maintaining Database Integrity

328

• Do you have any suggestions about this procedure?

Repairing the Database with DSE

When doing repairs with DSE, understanding the nature of the information in the database provides a significant advantage in
choosing an appropriate and efficient repair design.

For example, if you know that certain data is purged weekly, and you find damage in some of this type of data that is already
five or six days old, you may be able to discard rather than repair it. Similarly, you might find damage to a small cross-index
global and have a program that can quickly rebuild it.

When you know what the data "looks" like, you are in a much better position to recognize anomalies and clues in both keys and
data. For example, if you understand the format of a particular type of node, you might recognize a case where two pieces of
data have been combined into a single GDS record.

Using the Proper Database File

Because DSE lets you perform arbitrary actions without imposing any logical constraints, you must ensure that they are applied
to the proper file.

First, verify that gtmgbldirnames an appropriate Global Directory. Check the definition with the printenv command . You
may create or use Global Directories that differ from the "normal" Global Directory. For instance, you might create a Global
Directory that mapped all global names except a normally unused name to a file with integrity problems, and map that unused
name to a new file. Then you could use MUPIP to CREATE the new file and use DSE to SAVE blocks from the damaged file and
RESTORE them to the new file for later analysis.

When you initiate DSE, it operates on the default region specified by the Global Directory. Once DSE is invoked, use FIND -
REGION to determine the available regions, and then to select the appropriate region. The technique of creating a temporary
Global Directory, with the target region for the repair as the default region, prevents accidental changes to the wrong region.

Locating Structures with DSE

DSE provides the FIND command and the RANGE command for locating information.

FIND -REGION=redirects DSE actions to a specified region.

FIND -BLOCK= locates a block by using the key in the first record of the block to try to look up that block through the B-tree
index. If the block is not part of the tree, or the indexing of the block is damaged, DSE reports that the search failed.

FIND -SIBLING -BLOCK= operates like FIND -BLOCK; however it reports the numbers of the blocks that logically fall before
and after the specified block on the same level.

FIND -EXHAUSTIVE -BLOCK= locates a block by looking through the B-tree index for any pointer to the block. This should
find the block in the case where the block is connected to the tree but the first key in the block does not match the index path.
FIND -EXHAUSTIVE is useful in locating all paths to a "doubly allocated" block.

FIND -KEY= uses the index to locate the level zero (0) block , or data block, containing the key. If the key does not exist, it
uses the index to locate the block in which it would reside. Note that FIND only works with the index as currently composed.
In other words, it cannot FIND the "right" place, only the place pointed to by the index at the time the command is issued.
These two locations should be, and may well be, the same; however, remind yourself to search for and take into account all
information describing the failure.

Maintaining Database Integrity

329

FIND -FREE -HINT locates the "closest" free block to the hint. This provides a tool for locating blocks to add to the B-tree, or to
hold block copies created with SAVE that would otherwise be lost when DSE exits. FIND -FREE relies on the bitmaps to locate
its target, so be sure to fix any blocks incorrectly marked "FREE" before using this command.

The RANGE command sifts through blocks looking for keys. RANGE checks blocks without regard to whether they are in the
B-tree, and without regard to whether they are marked free or busy in the bitmaps. RANGE provides a brute force way to find
a key if it exists and can be very time consuming in a large database. Note that RANGE may report blocks that were previously
used and were legitimately removed from the tree by an M KILL command.

Safety in Repairs

DSE is a powerful tool with few restrictions that places great responsibility on the user. Establishing the following habits can
greatly increase the safety margin.

• Plan your fallback strategy before starting repairs with DSE.

This will enable you to make the best choice between repair and restore and/or recovery strategies as your analysis proceeds.
In addition, you will be able to reasonably assess the potential risks of your decision.

• Determine, at least approximately, the extent of the damage, and how much work has been done since the last backup.

• Check the existence, dates, and sizes of all files; do not assume that everything is as it "should" be.

• Estimate the time required to restore and redo the work. Determine if there are special circumstances, such as imminent
deadlines.

• Consider whether you have the disk space to pursue two courses in parallel.

• Consider whether you should back up the damaged database for additional protection or for later analysis.

• Before changing any block in the database, always use the DSE SAVE command to make an in-memory copy of that block.

If a modification fails to accomplish its intended goal, you can use the DSE RESTORE command to get the block back to
its previous state. For instance, a CHANGE -BSIZ= that specifies a smaller block size causes DSE to discard all information
falling beyond the new size.

An important aspect of this strategy is recognizing that testing some modifications requires using other tools such as MUPIP
INTEG, but once you leave DSE to invoke MUPIP you lose anything saved in memory. To avoid this problem, use SPAWN to
access those tools.

To save a copy of the block for further analysis, SAVE it, and then RESTORE it to an empty block. The best place to put such
a copy, using RESTORE -REGION=, is in a special region created just to receive such blocks.

Alternatively, you can RESTORE it temporarily in a free block within the region, preferably near the end of the file. If
you RESTORE the block to the original database, it may be overlaid when normal operation requires more blocks. You
may prevent this overlay by using MAP -BUSY on the target block of the RESTORE. However this causes INTEG to report
"incorrectly marked busy" errors.

• After changing a block, always check the quality of the result by using the DSE INTEG command.

DSE INTEG does not check the placement of the block in the tree. It checks only the single block specified explicitly with
the -BLOCK= qualifier or implicitly (the current block) when -BLOCK= is omitted. If you need to verify the index structure
related to a block, SPAWN and use MUPIP INTEG -REGION -FAST, possibly with the -BLOCK or -SUBSCRIPT qualifiers.

Maintaining Database Integrity

330

Specifying -BLOCK= tends to avoid incorrect assumptions about which block DSE last handled. Not specifying -BLOCK=
tends to minimize typographical errors in identifying the block.

Discarding Data

When you must discard a block or a record, take steps to preserve or create structures that have integrity.

DSE has no single command that discards a block. You must locate the last block in its path with FIND [-BLOCK] or FIND -
EXHAUSTIVE and REMOVE the record that points to the block being discarded. Then MAP the deleted block -FREE.

When you discard the only record in any block you must MAP that block -FREE and REMOVE the record (up one level)
that points to the deleted block. The only exception is when it is the only block pointed to by the root block of the tree.
Leaving empty blocks (except as the data level of empty or undefined globals) violates standard operating assumptions of GDS
databases.

When you must discard the top block in a Global Variable Tree, you can alternatively use the method employed by GT.M when
it processes a KILL command. This method maintains a record of the global variable name. To use this method, use FIND -FREE
to locate a free block, and MAP the new block -BUSY. Next, CHANGE the new block -BSIZ=header-size (7/8) -LEVEL=0. Finally,
CHANGE the top level block -BSIZ=header-size (7/8) -LEVEL=1 and ADD -STAR -POINTER=the-new-block.

Never delete the only remaining record in block one (1). Block one (1) is the root block of the Directory Tree for the entire file.

Concurrent Repairs

DSE can operate concurrently with normal access by the GT.M run-time system. This lets you perform an investigation and
some types of repairs with minimal disruption.

Some repairs should only be undertaken by a process that has standalone access to the database, while other repairs present
no danger when performed with other users accessing the file. However, there is still some risk with the latter type of repairs,
depending on the "placement" of the error and the likelihood of concurrent access to that area of the database.

Unless availability is a critical problem, FIS recommends performing all repairs in standalone mode to ensure the safety of
data. For environments where availability is an issue, your knowledge of the application and how it is used are the best guides
in assessing the risk of performing concurrent repairs. To help you assess the amount of risk, the following sections identify
repairs that should only be undertaken with standalone access.

If you attempt concurrent repairs, plan the order of your updates carefully. Always REMOVE the index record that points to
a block before using MAP -FREE on that block. Always MAP a block -BUSY and assure that it meets GDS design criteria and
accomplishes the repair goal before using ADD to create an index record that points to that block.

Terminating Processes

In performing some types of repairs, you may have to stop one or more processes. You can choose from several methods.

• If the process' principal device is not available, or the process does not respond to pressing <CTRL-C>, use MUPIP STOP.
This allows GT.M to disengage the process from all shared resources, such as I/O devices and open database files.

• The DSE command CRITICAL -INITIALIZE -RESET causes GT.M to terminate all images that are actively accessing the
target database. This DSE command has a similar effect on processes to that of MUPIP STOP , except that it simultaneously
terminates all processes actively using a database.

Maintaining Database Integrity

331

• Finally, if the process does not respond to MUPIP STOP, use KILL-9. This terminates the process abruptly and may leave
database files improperly closed and require a MUPIP RUNDOWN. Since KILL-9 may cause database damage, it should be
followed by a MUPIP INTEG.

When processes have stopped or terminated abnormally, FIS recommends shutting down all GT.M processes, checking the
integrity of the database, then restarting the processes. First, use ps -af to determine the process IDs. Then use MUPIP STOP or
KILL-15 to terminate all the GT.M processes. Repeat the ps -af command to assure that all processes have terminated. If they
have not, use KILL-9 instead of KILL-15.

When you have terminated all processes, do a MUPIP RUNDOWN on all database files:

mupip rundown -file <name of database>

Use the UNIX ipcs utility to examine the states of message queues, shared memory, and semaphores. If any of these resources
are left from the processes that have just been killed, use the UNIX ipcrm utility to remove them. Refer to the "Appendix" for
more information.

Caution

Use ipcrm with extreme care, as removing the wrong resources can have disastrous results.

Example:

ipcs
IPC status from /dev/kmem as of Sat Feb 16 13:13:11 1999
T ID KEY MODE OWNER GROUP
Shared Memory:
m 1800 0x01021233 --rw-rw-rw- uuu dev
m 91 0x01021232 --rw-rw-rw- uuu dev
Semaphores:
s 1360 0x01021233 --ra-ra-ra- uuu dev
s 61 0x01021232 --ra-ra-ra- uuu dev

This shows the state of these resources with a user uuu working on two databases -m1800 -s1360 and -m91 -s61.

Check the integrity of the database:

mupip integ -file <name of database>

To preserve database integrity, always verify that all GT.M images have terminated and all GDS databases are RUNDOWN
before shutting down your system.

Terminating GT.M abnormally with KILL-9 can leave the terminal parameters improperly adjusted, making them unsuited for
interactive use. If you terminate GT.M with KILL-9 without terminating the job, logout to reset the terminal characteristics.

Recovering data from damaged binary extracts

CORRUPT Errors

You can recover the value of a corrupt global using the global variable name and the dump (in ZWRITE format) of rest of the
block from the point of corruption and then insert it into the database.

Maintaining Database Integrity

332

Because the ZWRITE format is used for reconstructing the value of the global, the part of the block after the point of corruption
may contain internal structures, for example, a record header and other globals. Therefore, always take extra precautions while
identifying the value portion of the global. In addition, ZWRITE format displays byte values as characters whenever it can. This
may not reflect the actual usage of those bytes, for example, for internal structures. If the extract is damaged, you might need to
do additional work to reconstruct the value.

After you reconstruct the value of a global, add it to the database using an M SET command. For very long values, build the
value may using successive SETs with the concatenation operator or SET $EXTRACT().

LDSPANGLOINCMP Errors

To fix an LDSPANGLOINCMP error, use the following to reconstruct the value of the global and insert it into the database.

1. The global variable name of the spanning node which has the LDSPANGLOINCMP error.

2. The ZWRITE dump of the partial value corresponding to that global variable name, that is, whatever was accumulated.

3. The global variable name found in the record.

4. ZWRITE dump(s) of the errant chunk(s) from the point of corruption.

The conditions that lead to an LDSPANGLOINCMP error are as follows:

Case SN1 - While loading a spanning node the next record contained a non-spanning node:
“Expected chunk number : ccccc but found a non-spanning node”

The partial value can be used as the basis for reconstructing the spanning node.

Case SN2 - While loading a spanning node the next record did contain the expected chunk:
“Expected chunk number : ccccc but found chunk number : ddddd”

Use the partial value and the errant chunk as the basis for reconstructing the spanning node. After encountering this error,
the binary load continues looking for the next global variable. If there are additional chunks from the damaged spanning node
in the binary extract file, there is a case SN3 error for each of them. Use the errant chunk dumps from them as part of the
reconstruction.

Case SN3 - Not loading a spanning node but found a record with a spanning node chunk:
“Not expecting a spanning node chunk but found chunk : ccccc”

This can be the result of an immediately prior case SN2 error (as described in prior paragraphs) or an isolated errant chunk.

Case SN4 - While loading a spanning node adding the next chunk caused the value to go over expected size:
“Global value too large: expected size : sssss actual size : tttttt chunk number : ccccc”

Adding the next chunk caused the value to go over the expected size. Examine the partial value and errant chunk dump.

Case SN5 - While loading a spanning node all of the chunks have been added but the value is not the expected size:

“Expected size : sssss actual size : ttttt

All of the chunks were found but the size of the value is not what was expected.

Example–Repairing an error in a binary extract

Here is an example for repairing an error in a binary extract.

Maintaining Database Integrity

333

1. Assume that during the load of a binary extract, you get the following error:

%GTM-E-LDSPANGLOINCMP, Incomplete spanning node found during load
 at File offset : [0x0000027E]
 Expected Spanning Global variable : ^mypoem
 Global variable from record: ^mypoem(#SPAN32)
 Expected chunk number : 3 but found chunk number : 32
 Partial Value :
"Half a league, half a league,Half a league onward,All in the valley of Death Rode the six hundred. Forward, the
 Light
 Brigade! Charge for the guns he said: Into the valley of Death Rode the six hundred. Forward, the Light
 Brigade! Was there a man dismayed? Not tho the soldiers knew Some one had blundered: Theirs not to make reply,
 Theirs not to reason why, Theirs but to do and die: Into the valley of Death Rode the six hundred. Cannon to
 right of them, Cannon to left of "

 Errant Chunk :
"them, Cannon in front of them Volleyed and thundered; Stormed at with shot and shell, Boldly they rode and
 well, Into
 the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed all their sabres bare, Flashed as
 they turned in air Sabring the gunners there, Charging an army while All the world wondered: Plunged in the
 battery-smoke Right thro the line they broke; Cossack and Russian Reeled from the sabre-stroke Shattered and
 sundered. Then they rode back, but no"

%GTM-E-LDSPANGLOINCMP, Incomplete spanning node found during load
 at File offset : [0x00000470]
 Global variable from record: ^mypoem(#SPAN4)
 Not expecting a spanning node chunk but found chunk : 4
 Errant Chunk :
"t Not the six hundred. Cannon to right of them, Cannon to left of them, Cannon behind them Volleyed and
 thundered;
 Stormed at with shot and shell, While horse and hero fell, They that had fought so well Came thro the jaws of
 Death, Back from the mouth of Hell, All that was left of them, Left of six hundred. When can their glory fade?
 O the wild charge they made! All the world wondered. Honour the charge they made! Honour the Light Brigade,
 Noble six hundred!"

Because the only issue in this case is that one of the chunk's keys has been damaged, put the value back together from the
partial value and the contents of the errant chunks.

2. Execute:

$ $gtm_dist/mumps -direct

From the first error message pick :

Expected Spanning Global variable : ^mypoem

3. Use it together with the partial value:

GTM>set ^mypoem="Half a league, half a league,Half a league onward,All in the valley of Death Rode the six
 hundred. Forward, the Light Brigade! Charge for the guns he said: Into the valley of Death Rode the six
 hundred. Forward, the Light Brigade! Was there a man dismayed? Not tho the soldiers knew Some one had
 blundered: Theirs not to make reply, Theirs not to reason why, Theirs but to do and die: Into the valley of
 Death Rode the six hundred. Cannon to right of them, Cannon to left of "

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX671.txt

Maintaining Database Integrity

334

4. Add in the chunk that has the bad internal subscript:

GTM>set ^mypoem=^mypoem_"them, Cannon in front of them Volleyed and thundered; Stormed at with shot and shell,
 Boldly they rode and well, Into the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed all
 their sabres bare, Flashed as they turned in air Sabring the gunners there, Charging an army while All the
 world wondered: Plunged in the battery-smoke Right thro the line they broke; Cossack and Russian Reeled from
 the sabre-stroke Shattered and sundered. Then they rode back, but no"

5. Finally, add the last chunk for that spanning node:

GTM>set ^mypoem=^mypoem_"t Not the six hundred. Cannon to right of them, Cannon to left of them, Cannon behind
 them Volleyed and thundered; Stormed at with shot and shell, While horse and hero fell, They that had fought
 so well Came thro the jaws of Death, Back from the mouth of Hell, All that was left of them, Left of six
 hundred. When can their glory fade? O the wild charge they made! All the world wondered. Honour the charge
 they made! Honour the Light Brigade, Noble six hundred!"

You have successfully reconstructed the global from the damaged binary load:

GTM>w ^mypoem
Half a league, half a league,Half a league onward,All in the valley of Death Rode the six hundred. Forward, the
 Light
 Brigade! Charge for the guns he said: Into the valley of Death Rode the six hundred. Forward, the Light
 Brigade! Was there a man dismayed? Not tho the soldiers knew Some one had blundered: Theirs not to make reply,
 Theirs not to reason why, Theirs but to do and die: Into the valley of Death Rode the six hundred. Cannon to
 right of them, Cannon to left of them, Cannon in front of them Volleyed and thundered; Stormed at with shot and
 shell, Boldly they rode and well, Into the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed
 all their sabres bare, Flashed as they turned in air Sabring the gunners there, Charging an army while All the
 world wondered: Plunged in the battery-smoke Right thro the line they broke; Cossack and Russian Reeled from
 the sabre-stroke Shattered and sundered. Then they rode back, but not Not the six hundred. Cannon to right of
 them, Cannon to left of them, Cannon behind them Volleyed and thundered; Stormed at with shot and shell, While
 horse and hero fell, They that had fought so well Came thro the jaws of Death, Back from the mouth of Hell,
 All that was left of them, Left of six hundred. When can their glory fade? O the wild charge they made! All the
 world wondered. Honour the charge they made! Honour the Light Brigade, Noble six hundred!

Finding and Fixing Database Errors

The rest of this chapter is arranged loosely in the form of a decision tree. The material covers a wide range of scenarios and
possible actions.

As you begin the decision-making process, follow these general guidelines from this point:

IF THE SYMPTOM IS A FAILURE TO PROCESS, refer to section H1.

IF THE SYMPTOM IS A MUPIP INTEG ERROR REPORT, refer to section I1. If you are investigating a particular error message,
refer to the "MUPIP INTEG errors" table.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX674.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX675.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX676.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX677.txt

Maintaining Database Integrity

335

IF THE SYMPTOM IS A GT.M RUN-TIME ERROR REPORT, refer to section R1. If you are investigating a particular error message,
refer to the"MUPIP INTEG errors" table.

To facilitate use of the material as a troubleshooting guide, the text in these sections refers to other sections with alphanumeric
designators. Each alphanumeric section describes suggested actions to employ in handling a particular situation.

C1–Possible Cache Control Problems

When a process detects that a normal cache operating principal has been violated, or that a cache operation is taking an
unexpectedly long time, that process triggers a cache verification and rebuild. Such events can be caused by abnormal process
termination, or by inappropriately configured or managed database storage subsystems.

When such an event occurs, GT.M sends a series of messages to the operator facility describing the results of the cache
verification. If the cache rebuild is successful, no further immediate action is required. If the cache rebuild fails, the database
administrator must close off access to the database and use DSE (CRIT and WCINIT) and MUPIP (INTEG) to reset the cache
manually and verify that the database is not damaged.

If such events are delivered to the operator facility, you should investigate whether it is appropriate to modify your procedures
to prevent abnormal termination, to reconfigure your disk subsystem, or to change the nature or schedule of disk activities so
that database access is not disrupted during key periods of operation.

H1–Process Hangs

The term "hang" refers to a failure to process. Processes may hang for a variety of reasons that have nothing to do with GT.M.
However, hanging GT.M processes may indicate that a database has become inaccessible. When you suspect a hang, first
determine the extent of the problem.

Your tools include:

• Knowledge of the application and how it is used

• Communication with users

• The ps command and other UNIX system utilities

WHEN MANY PROCESSES ON A SYSTEM ARE HANGING, determine if the hangs are confined to a particular application. If all
applications are affected or if processes not using GT.M databases are affected, the problem is not a database-specific problem,
but something more general, such as a UNIX problem. Refer to section H6.

WHEN ONLY ONE PROCESS IS HANGING, find out whether that process is the only one using a particular GT.M application. If
it is the only process, start some appropriate second process and determine whether the second process is also affected.

IF A PROCESS HANGS WHILE OTHER PROCESSES ACCESSING THE SAME DATABASE CONTINUE TO PROCESS, the problem is
not a database problem. Refer to section H2 and then to section H8.

WHEN ONLY GT.M PROCESSES RUNNING A PARTICULAR APPLICATION HANG,the problem may be a database problem. Refer
to section H2.

Is the system "hung?" If so, consider the following additional questions:

• Does LKE work? If not, then a database has problems (see below).

• Are there locks owned by a nonexistent process? Can they be cleared? What were the circumstances of a process leaving
locks?

Maintaining Database Integrity

336

• Are there locks which are not changing? What is the state of the owning process(es)? If not all processes are hung, can the
stalled process(es) be MUPIP STOPped?

• Does some region have a "persistent" owner of the critical section (crit)? Which one(s)?

• If there is a crit owner, what is its state? If it is a nonexistent process can it be -REMOVED?

• Does a CRIT -INIT -RESET free the section or just change who owns it?

• If CRIT -INIT -RESET doesn't free the problem, the cache is damaged.

The following is another way of testing the cache: If CRIT is cleared and DSE BUFFER hangs, the cache is not working. Use
MUPIP STOP and/or CRIT -INIT -RESET to get everyone out of the segment, then use DSE WCINIT. After a WCINIT, make
sure that you can successfully exit from DSE. Use MUPIP INTEG (-FAST) to check for damage which can be induced by
WCINIT.

H3–Database Access Problems

Use the following diagnostic steps and references to determine an appropriate course of action for database access problems.

• Determine if the disk volume is inaccessible.

Use the UNIX ls utility to display information retrieved from the volume. If the volume is not accessible to UNIX, the problem
is not a database problem. Refer to section H7.

• Determine whether UNIX can write to the disk.

Use a shell command such as mv or cp. If UNIX cannot write to the volume, the problem is not a database problem. Refer to
section H7.

• Determine whether any database file used by the application has "Cache Freeze" set.

Use DSE FIND -REGION=region and DUMP -FILEHEADER to verify that CACHE FREEZE is zero (00000000) for any hung
region(s).

If CACHE FREEZE shows a PID, that process used MUPIP or DSE to FREEZE the database. In this case, investigate whether
the process is currently producing the desired results. If the FREEZE is legitimate, do whatever is appropriate to speed up
the process using FREEZE. For example, use the NICE command. If the process still exists, but should not be running at
this time, stop it. If CACHE FREEZE is non-zero but not in use to protect the database, use DSE FIND -REGION=region and
CHANGE -FILEHEAD -FREEZE=FALSE to clear the FREEZE state.

Use the DSE commands FIND -REGION and DUMP -FILEHEADER. If any region is frozen, determine who initiated the
freeze, and whether the process should be terminated or allowed to complete. The following actions freeze databases:

• DSE CHANGE -FILEHEADER -FREEZE=TRUE

• DSE ALL -FREEZE

• MUPIP BACKUP -NOONLINE

• MUPIP FREEZE

• MUPIP INTEG -REGION

Maintaining Database Integrity

337

• MUPIP EXTRACT -FREEZE

DSE CHANGE -FILEHEADER -FREEZE=FALSE and MUPIP FREEZE -OFF clear a freeze. However, when used with -
OVERRIDE, these commands may cause damage to the results of the process that initiated the freeze. After the freeze is
cleared, re-examine the entire situation.

• Determine whether the database files used by the application are accessible for reading.

Use an M function such as $DATA() or $ORDER().

• Determine whether the database files used by the application are accessible for writing.

SET a node in each database equal to itself.

IF THE DATA CAN BE BOTH READ AND WRITTEN, the problem is not a database problem. Refer to section H8.

IF DATA CANNOT BE READ OR WRITTEN, some process is unable to release full ownership of the database critical section.
Determine the process identification number (PID) of the process using the DSE command CRITICAL. If the process exists,
refer to section H4. If the process is non-existent, use DSE CRITICAL -REMOVE to emulate a release and re-examine the entire
situation.

Example:

S reg=$V("GVNEXT",""),com="dbcheck.com" o m-* com:newv u com
W "$ DEFINE/USER SYS$OUTPUT dbcheck.lis",!,"$ DSE",!
F Q:reg="" D
. W "FIND /REGION=",reg,!,"DUMP /FILEHEADER",!
. S reg(reg)="",reg=$V("GVNEXT",reg)
W "$ SEARCH dbcheck.lis ""Cache freeze""",!
; CAUTION: in the above line, "Cache freeze"
; MUST be mixed-case as shown
W "$ DELETE dbcheck.lis.",!,"$ EXIT",!
C com ZSY "@dbcheck"
O com C com:delete
W !,"Attempting first access"
S g="^%" D:$D(^%) F S g=$O(@g) Q:g="" D
. S reg=$V("REGION",g) Q:$l(reg(reg))
. I $D(@g)'[0 S reg(reg)=g
. E S reg(reg)=$Q(@g)
. W !,"Successful Read in region: ",reg," of ",g
S reg="" F S reg=$O(reg(reg)) Q:reg="" D
W !,"Write to region: ",reg
S @(reg(reg)_"="_reg(reg)) W "�OK"
Q
S reg=$V("GVFIRST"),com="dbcheck" o com:newv u com
W "dse <<yz > dbcheck.lis",!
F Q:reg="" D
. W "find -region=",reg,!,"dump -fileheader",!
. S reg(reg)="",reg=$V("GVNEXT",reg)
W "yz",!,"cat dbcheck.lis | grep 'Cache freeze'"
; CAUTION: in the above line, "Cache freeze"
; MUST be mixed-case as shown
W "|awk '{print $1, $2, $3}'"
C com ZSY "/bin/csh -c ""source dbcheck"""
O com,dbcheck.lis C com:delete,dbcheck.lis:delete

Maintaining Database Integrity

338

W !,"Attempting first access"
S g="^%" D:$D(^%) F S g=$O(@g) Q:g="" D
. S reg=$V("REGION",g) Q:$l(reg(reg))
. I $D(@g)'[0 S reg(reg)=g
. E S reg(reg)=$Q(@g)
. W !,"Successful Read in region: ",reg," of ",g
S reg="" F S reg=$O(reg(reg)) Q:reg="" D
. W !,"Write to region: ",reg
. S @(reg(reg)_"="_reg(reg)) W "�OK"
Q

This routine provides a generalized approach to automating some of the tasks described in this section. It contains argumentless
DO commands primarily for typesetting reasons. The routine issues a report if any region is frozen, but does not report which
regions are in that state. It may hang reading or writing a database. However, unless the region(s) holding ^% and the next
global after ^% has a problem, it displays the name of the region that it is about to try. If this routine runs to completion, the
databases in the current Global Directory are completely accessible. The limitations of this routine can be overcome by writing
custom shell scripts and/or M programs that include embedded information about one or more Global Directories.

Note

If you have a Global Directory mapping globals to multiple files, you may create an alternative Global
Directory using different mappings to those same files. Such mapping prevents the test program(s) from
touching the "real" data.

Example:

Mapping Production region Test region

A to M
$DEFAULT SCRATCH
N to Z SCRATCH
$DEFAULT

H4–Database Cache Problems

To increase the access speed, GT.M buffers data exchanged between processes and database files in the shared memory cache. If
information in the memory cache is damaged, it can block the transfer of data to the disk.

IF A PROCESS HAS BEEN DETERMINED (FROM SECTION H3) TO NEVER RELEASE FULL OWNERSHIP OF THE DATABASE
CRITICAL SECTION, there may be a problem with the database cache. To determine where the problem is occurring terminate
the process. If this clears the hang, the problem was not in the database but in the process, which was somehow damaged. Refer
to section P1. Otherwise, another process showing the same symptoms takes the place of the terminated process. In this case,
the cache is damaged.

IF THE CACHE IS DAMAGED, it must be reinitialized. It is crucial to stop all other database activity during cache initialization.
Refer to section Q1 before continuing with this section.

To minimize database damage due to cache reinitialization, and to confirm that the problem is due to a damaged cache, use
the DSE command CRITICAL SEIZE followed by BUFFER_FLUSH. The DSE command BUFFER_FLUSH attempts to flush the
database cache which is a benign operation. Wait at least one minute for this operation to complete.

IF THE BUFFER_FLUSH DOES NOT HANG, the cache is not damaged, and you should review all previous steps starting with
section H1.

Maintaining Database Integrity

339

IF THE BUFFER_FLUSH DOES HANG, use the DSE command WCINIT to reinitialize the cache. This command requires
confirmation. Never use WCINIT on a properly operating database. After a WCINIT always perform at least a MUPIP INTEG
FAST to detect any induced damage that has a danger of spreading. If the WCINIT command hangs, clear the critical section as
described in section H5 and reissue the WCINIT.

H5–Critical Section Problems

The concurrency control mechanism allows only one process at a time to execute code within a "critical section." To gain access
to the database requires a process to first gain ownership of the critical section. The errors described in this section occur when
a problem occurs in ownership control of the critical section.

IF YOU HAVE DETERMINED WHICH PROCESS IS HOLDING THE CRITICAL SECTION (from section H2 using system utilities),
try terminating that process. If this corrects the problem, the damage was to the process, rather than the critical section. Refer
to section P1.

IF YOU CANNOT IDENTIFY THE PROCESS, or if terminating such a process causes other processes to exhibit the same
problem(s), the critical section is damaged and must be reinitialized. Restrict database activity during the reinitialization. Refer
to section Q1 before continuing with this section.

TO REINITIALIZE THE DATABASE CRITICAL SECTION: Reinitializing a critical section on an active database file carries some
risk of causing database damage. You can minimize this risk by restricting database activity during the reinitialization. Refer to
section Q1 before continuing with this section.

The DSE command CRITICAL INITIALIZE RESET re-establishes the database-critical section and induces errors for all
processes currently accessing the database in question. You can avoid the induced errors in other processes by dropping the
RESET qualifier. However, this technique may result in other processes attempting to use partially created critical section
structures, possibly corrupting them or the database contents.

After the CRITICAL INITIALIZE, use the DSE commands CRITICAL SEIZE and CRITICAL RELEASE to verify operation of the
critical section. Actions such as those described in section H3 test more thoroughly for proper operation.

H6–UNIX Problems

IF YOU HAVE DETERMINED THAT MANY PROCESSES IN THE UNIX ENVIRONMENT ARE PERFORMING BADLY, some
processes may be using priorities to "hijack" the system. If this is the case, review why priorities are being adjusted and take
appropriate action. Otherwise, you may have a UNIX-related problem.

H7–Disk Hardware Problems

IF YOU HAVE DETERMINED THAT A DISK VOLUME IS INACCESSIBLE TO OPENVMS FOR READ AND/OR WRITE,use the
DCL command SHOW DEVICE /FULL to check that the correct volume is properly mounted. If the volume cannot be written,
examine the physical device to see whether write lock switches or plugs have been disturbed.

IF YOU HAVE DETERMINED THAT A DISK VOLUME IS INACCESSIBLE TO UNIX FOR READ AND/OR WRITE, use the df
command to check that the correct volume is properly mounted. If the volume cannot be written, examine the physical device
to see whether write lock switches or plugs have been disturbed.

IF YOU CANNOT LOCATE THE PROBLEM, run disk diagnostics. Be aware that many disk diagnostics are destructive (i.e.,
destroy your files). Avoid these diagnostics until you have exhausted all other avenues. If you have to run destructive disk
diagnostics, or you determine that a disk spindle must be replaced, start planning for the recovery immediately.

Maintaining Database Integrity

340

H8–Application Problems

Application problems may be caused by conflicting M LOCKs or OPEN commands in more than one process, or by a process
waiting for completion of M READ or JOB command, which is dependent on an asynchronous event.

First, determine if processes are waiting, without relief, for M LOCKs using the LKE command SHOW ALL WAITING. M
routines use LOCK commands to create mutual exclusion semaphores.

IF THE SHOW COMMAND HANGS, you have a cache or critical section problem. Restart your evaluation in section H5.

IF THE SHOW COMMAND DISPLAYS NO LOCKS WAITING, the problem is not a LOCK problem. If repeated use of SHOW does
not display the one or more LOCKs that persist every time, the problem is not a LOCK problem. However, even if the problem
is not a lock problem, continue with this section because it discusses the M commands JOB, OPEN, and READ, which may also
produce hangs.

A LOCK identified as belonging to a non-existent process results from an abnormal process termination. GT.M automatically
clears such LOCKs when some other process requests a conflicting LOCK.

Persistent LOCKs

Persistent LOCKs belonging to currently existing processes are best released by terminating those processes. Using the
LKE command CLEAR with various qualifiers can clear LOCKs, but may cause the routines using the LOCKs to produce
inappropriate results. For more information on LKE, refer to the "M LOCK Utility" chapter.

The two most common reasons for persistent LOCKs are deadlocks and LOCKS held during operations that take indeterminate
amounts of time.

Deadlocks

Deadlocks occur when two or more processes own resources and are trying to add ownership of an additional resource already
owned by another of the deadlocked processes.

Example:

Process 1 Process 2
--------- ---------
LOCK ^A LOCK ^B
LOCK +^B LOCK +^A

This shows a sequence in which Process 1 owns ^A and Process 2 owns ^B. Each process is trying to get the resource owned by
the other, while "refusing" to release the resource it owns.

Example:

Process 1 Process 2 Process 3
--------- --------- ---------
LOCK ^A LOCK ^B LOCK ^C
LOCK +^B LOCK +^C LOCK +^A

This is similar to the previous example, except that it involves three processes. When an application uses LOCKs in a complex
fashion, deadlocks may involve many processes.

Maintaining Database Integrity

341

Preventing Deadlocks

You can prevent deadlocks by using timeouts on the LOCK commands. Timeouts allow the program to recognize a deadlock.
Once a routine detects a deadlock, it should release its LOCKs and restart execution from the beginning of the code that
accumulates LOCKs. Without timeouts, there is no way in M to break a deadlock. You must use outside intervention to
terminate at least one deadlocked process, or use LKE to strip a LOCK from such a process.

Example:

 for quit:$$NEW
 quit
NEW() lock ^X(0)
 set ^X(0)=^X(0)+1
 quit $$STORE(^X(0))
STORE(x)
 lock +^X(x):10 if set ^X(x)=name_"^"_bal
 lock
 quit $TEST

This uses a timeout on the LOCK of ^X(x) to cause a retry of NEW.

In addition to the LOCK command, the M JOB, OPEN, and READ commands can contribute to deadlocks.

Example:

Process 1 Process 2
--------- ---------
LOCK ^A
 OPEN "MSA0:"
 OPEN "/dev/nrst0"
OPEN "MSA0:"
OPEN "/dev/nrst0"
 LOCK +^A

This shows a sequence in which Process 1 owns ^A and Process 2 owns device /dev/nrst0. Again, each is trying to get the
resource held by the other. Notice that the LOCK commands could be replaced by OPEN commands specifying some non-
shared device other than /dev/nrst0.

An application may combine the technique of timeouts on "long" commands to protect the current process, with the technique
of minimizing LOCK and OPEN durations, to minimize conflicts with other processes.

Another type of application hanging occurs when a process acquires ownership of a resource and then starts an operation that
does not complete for a long period of time. Other processes that need the unavailable resource(s) then hang.

Example:

Process 1 Process 2
--------- ---------
LOCK ^A
READ x
 LOCK ^A

If the READ by Process 1 is to an interactive terminal, and the operator has abandoned that device, the READ may take what
seems, at least to Process 2, forever. The M commands OPEN and JOB, as well as READ, can produce this problem. When this
situation arises, take action to get long-running commands completed or to terminate the process performing those commands.

Maintaining Database Integrity

342

There are two programming solutions that help avoid these situations. You can either limit the duration of those commands
with timeouts, or defer resource ownership until any long operations are complete.

Example:

 for quit:$$UPD
 quit
UPD() set x=^ACCT(acct)
 do EDITACCT
 lock ^ACCT(acct)
 if x=^ACCT(acct) set ^ACCT(acct)=y
 else write !,"Update conflict�Please Reenter"
 lock
 QUIT $TEST

This stores the contents of ^ACCT(acct) in local variable x, before the interactive editing performed by sub-routine EDITACCT
(not shown). When the interaction is complete, it LOCKs the resource name and tests whether ^ACCT(acct) has been changed
by some other process. If not, it updates the global variable. Otherwise, it informs the user and restarts UPD. This technique
eliminates the "open update" problem, but it introduces the possibility the user may have to re-enter work. An application
that needs to minimize the possibility of re-entry may extend this technique by testing individual fields (pieces) for conflicting
changes.

I1–MUPIP INTEG Errors

Database errors reported by MUPIP INTEG differ in impact and severity. Some require an immediate action to prevent
extending the damage. Action on other less severe errors may be delayed.

The next section provides general guidelines for determining your next course of action and a table with information related to
the error messages you may encounter.

Evaluating the Danger Level of a Database Problem

If you encounter an anomaly in your database or its operations, the following list may offer some help in determining your next
course of action. The heading of each section indicates the level of urgency FIS attributes to those items listed below it.

Requires Immediate Attention

• Block incorrectly marked free errors are very serious and lead to accelerating damage. They degenerate into block doubly-
allocated errors, which are also very dangerous. A database with these errors should be closed immediately for repairs.

• Any (structural) error in an index block is dangerous and should be repaired as soon as possible.

Repairs for such errors should also be performed on a database that has been closed to normal activity. The need for both
of these actions occurring quickly arises from the likelihood of the bad index being used. Only if your knowledge of the
application allows you to predict that a damaged area is used exclusively by restricted functions which are not active (e.g.,
monthly processing or purges) should you defer repairs.

Can Be Deferred

• Any (structural) error in a data block (level 0) does not pose a threat of accelerating damage. However, level 0 errors may
cause errors or unreliable behavior in the application.

Maintaining Database Integrity

343

• Block "incorrectly marked busy" errors only result in database space becoming unavailable until the errors are corrected. An
index block error generates incorrectly marked busy errors, because INTEG cannot process the descendants of the damaged
index. Therefore, incorrectly marked busy errors should be corrected only after all other errors, except for bitmap errors, are
corrected.

• Any bitmap errors flag not only the incorrectly marked block, but also the associated bitmap, and sometimes the master map.
Therefore, local and master map errors should be corrected only after all bitmap marked busy or free errors are corrected.

• Transaction number errors usually impact only incremental and online backups.

• File size errors can misdirect MUPIP but do not cause the GT.M run-time system to generate further errors. An exception is
auto-extend, which may not work properly if there are file size errors.

• Reference count errors and free block errors are informational only.

The following list of INTEG messages classifies error severity using the following codes, and refers you to a section identifying
appropriate follow-up action.

A Access: prevents database access
B Benign: presents no risk of additional damage and has little or no effect on database performance
D Dangerous: presents a high risk that continuing updates may cause significant additional damage
I Index: if the block is an index block, continuing updates will be quite dangerous: treat as a D; if the block is a data block,
continuing updates can only cause limited additional damage
T Transient: usually cleared by an update to the database

Repair Dangerous and Access errors immediately. You may assess the benefits of deferring correction of less severe errors until
normally scheduled down-time.

MUPIP INTEG Error Messages

SEVERITY ERROR MESSAGE SECTION

I

I

D

D

D

D

D

Bad key name.

Bad numeric subscript.

Bad pointer value in directory.

Bitmap block number as pointer.

Block at incorrect level.

Block busy/free status unknown (local bitmap corrupted).

Block doubly allocated.

K1

K1

K4

K4

01

M1

K3

B

D

I

D

D

Block incorrectly marked busy.

Block incorrectly marked free.

Block larger than file block size.

Block pointer larger than file maximum.

Block pointer negative.

M1

M1

O1

K4

K4

A Block size equals zero. I3

Maintaining Database Integrity

344

MUPIP INTEG Error Messages

SEVERITY ERROR MESSAGE SECTION

A

A

I

T

Block size is greater than 64K.

Block size not a multiple of 512 bytes.

Block too small.

Block transaction number too large.

I3

I3

01

I6

D

D

D

B

T

Blocks per local map is less than 512.

Blocks per local map is greater than 2K.

Blocks per local map is not a multiple of 512.

Cannot INTEG region across network.

Cannot determine access method;trying with BG.

I3

I3

I3

I5

I6

I

T

A

T

B

Compression count not maximal.

Current tn and early tn are not equal.

Database for region rrr is already frozen, not INTEGing

Database requires flushing.

File size larger than block count would indicate.

K6

I6

I6

I7

I4

D

A

I

B

A

File size smaller than block count would indicate.

File smaller than database header.

First record of block has nonzero compression count.

Free blocks counter in file header: nnn is incorrect, should be mmm.

Header indicates file creation did not complete.

I4

I3

O1

I3

I3

A

A

D

A

D

Header indicates file is corrupt.

Header size not valid for database.

Block xxxx doubly allocated in index block.

Incorrect version of GT.M database.

Invalid mixing of global names.

I8

I3

K3

I2

K3

I

I

I

I

I

Key greater than index key.

Key larger than database maximum.

Key larger than maximum allowed length.

Key too long.

Key too short.

K2

K7

K1

K1

K1

Maintaining Database Integrity

345

MUPIP INTEG Error Messages

SEVERITY ERROR MESSAGE SECTION

I

I

I

D

B

Keys less than sibling's index key.

Keys out of order.

Last record of block has invalid size.

Last record of block has nonzero compression count.

Local bitmap incorrect.

K2

K2

K5

K5

M1

B

B

B

T

B

Local map block level incorrect.

Map block too large.

Map block too small.

Map block transaction number too large.

Master bitmap incorrectly asserts this local map has free space.

M2

M2

M2

I6

M1

B

B

B

B

B

Master bitmap incorrectly marks this local map full.

Master bitmap shows this map full, agreeing with disk local map.

Master bitmap shows this map full, agreeing with MUPIP INTEG.

Master bitmap shows this map full, in disagreement with both disk and mu_int result.

Master bitmap shows this map has space, agreeing with disk local map.

M1

M1

M1

M1

M1

B

D

I

..

I

Master bitmap shows this map has space, agreeing with MUPIP INTEG.

Read error on bitmap.

Record has too large compression count.

Record too large.

Record too small.

M1

H7

O2

O2

O2

D

D

D

D

D

Reference count should be zero, is nnn.

Root block number greater than last block number in file.

Root block number is a local bitmap number.

Root block number negative.

Root level higher than maximum.

I6

K4

K4

K4

O1

D

A

A

Root level less than one.

Start VBN smaller than possible.

Total blocks equals zero.

O1

I3

I4

Maintaining Database Integrity

346

MUPIP INTEG Error Messages

SEVERITY ERROR MESSAGE SECTION

A Unable to verify that this is a database file. I3

I2–GT.M Version Mismatch

GT.M databases and Global Directories may change with new releases of the product.

IF YOU GET AN ERROR INDICATING A VERSION MISMATCH, first identify the GT.M version using the M command WRITE
$ZVERSION from Direct Mode.

Then refer to the installation procedures for your new release. If you are running more than one release of GT.M investigate
the environment variables that define the environments, and take appropriate action.

I3–File Header Errors

These errors indicate damage to the control or reference information in the file header.

"Start VBN smaller than possible" indicates that INTEG cannot locate the database structure. "Header indicates that file
creation did not complete" indicates a MUPIP CREATE problem. In these cases, the database has effectively been lost. DSE
cannot correct these problems. If you determine that the costs of recovering from a backup, hopefully with journal files, are
prohibitive, consider consulting with FIS.

To correct the other errors of this type use the DSE CHANGE FILEHEADER command with the BLK_SIZE=, BLOCKS_FREE=,
and TOTAL_BLKS qualifiers.

"Free blocks counter ..." indicates that the count of free blocks in the file header is not correct. This error only affects
$VIEW("FREECNT",region) and DUMP FILEHEADER which return the information.

I4–File Size Errors

File size errors can misdirect MUPIP, but do not cause the GT.M run-time system to generate further errors. Auto-extend is the
exception and may not function properly if there are file size errors. One possible symptom of an auto-extend problem would
be incorrectly marked busy errors from a partial bitmap at the "old" end of the database which had previously been incorrectly
initialized.

These errors indicate that the total blocks count does not agree with the file size. Get the starting VBN and the block size for the
file by using DSE DUMP FILEHEADER. Then calculate the correct total blocks value with the following formula:

((file size - starting VBN + 1) / (block size / 512))

A decimal number results from this formula. Convert this decimal to a hexadecimal number, then change the total block count
to this hexadecimal value using DSE CHANGE FILEHEADER TOTAL_BLKS= . You may also need to adjust the free blocks
count with BLOCKS_FREE=. MUPIP INTEG informs you if this is necessary and gives the correct values.

I5–More Database Access Problems

These error messages reflect failures to find, open, or access a database file. Examine any secondary error messages to obtain
additional information about the problem.

Maintaining Database Integrity

347

Use printenv to check gtmgbldir or use the M command WRITE $ZGBLDIR to verify that the "pointer" identifies the proper
Global Directory. If the pointer is not appropriate, reset gtmgbldir or use the M command SET $ZGBLDIR= to name the proper
file.

Examine the Global Directory using GDE. If the Global Directory is not appropriate, correct or recreate it with GDE. For more
information on the use of GDE, refer to the "Global Directory Editor" chapter.

IF THE GLOBAL DIRECTORY IS DAMAGED BUT ACCESSIBLE WITH GDE, investigate who may have used GDE to perform
the modifications. If the Global Directory is damaged and not accessible with GDE, investigate what program, other than GT.M
and its utilities, might have written to the file. Except for GDE, all GT.M components treat the Global Directory as static and
read-only.

IF THE GLOBAL DIRECTORY APPEARS CORRECT, use the DCL command SHOW LOGICAL to verify that any logical names
it uses are properly defined for the process experiencing the problem. If the process has an environment to which you do not
have access, you may have to carefully read the command procedures used to establish that environment.

IF THE GLOBAL DIRECTORY APPEARS CORRECT, use printenv to verify that any environment variables that it uses are
properly defined for the process experiencing the problem. If the process has an environment to which you do not have access,
you may have to carefully read the shell scripts used to establish that environment.

IF THE ENVIRONMENT VARIABLES APPEAR CORRECT, use the ls -l to examine the file protection. Remember to examine
not only the file, but also all directories accessed in locating the file.

IF THE FILES APPEAR TO BE PROPERLY MAPPED by the Global Directory, correctly placed given all logical names, and
correctly protected to permit appropriate access, use one of the DCL commands TYPE or DUMP to verify access to the files,
independent of GT.M.

IF THE FILES APPEAR TO BE PROPERLY MAPPED by the Global Directory, properly placed given all environment variables,
and properly protected to permit appropriate access, use the od or cat utility to verify access to the files, independent of GT.M.

IF YOU SUSPECT A VERSION MISMATCH PROBLEM, refer to section I2.

IF YOU SUSPECT A DISK HARDWARE PROBLEM, refer to section H7.

I6–Transient Errors

GT.M corrects certain errors automatically. If you find that any of these errors persist, contact your GT.M support channel.

"Block transaction number too large" indicates that the file header has a smaller transaction number than the database block.

If you are not running TP or incremental backup this is a benign error (from the database's point of view; application data
consistency should be verified). GT.M automatically self-corrects these errors as soon as it performs sufficient updates to get
the current transaction number of the database higher than any block's transaction number. If this error persists, perform the
following steps:

• Run the MUPIP INTEG command on your database and look for the following output:

"Largest transaction number found in database was HHHHHHH"

• Run the following command:

dse change -fileheader -current_tn=<HHHHHHH+1>

Maintaining Database Integrity

348

Where <HHHHHHH+1> is the largest transaction number + 1. This command sets the current transaction number to one
more than the largest transaction number found in the database. Note that HHHHHHH is in hexadecimal form.

"Current tn and early tn are not equal" indicates that the critical section has been damaged. "Reference count is not zero"
indicates an improper file close. The first access that references a questionable database should correct these errors. Generally,
these errors indicate that the file was not closed normally. This problem is typically caused by an unscheduled shutdown of the
system. Review your institution's shutdown procedures to ensure a controlled shutdown.

"Cannot determine access method..." indicates that the fileheader has been damaged. When INTEG detects this error, it forces
the access method to BG and continues. If there is no other damage to the file header, no other action may be required.

However, if the access method should be MM, use MUPIP SET ACCESS_METHOD= to correct the database.

I7–Database Rundown Problem

A MUPIP INTEG may be performed without write access to the file. However, in the case where the file was improperly closed,
it must be RUNDOWN prior to being INTEGed. To do this, MUPIP requires write access to the file, so either increase the
privileges for the process, change the protection on the file, or use a more privileged process and repeat the MUPIP INTEG.

I8–Repair-Induced Problems

These error messages are created by operator actions performed with DSE.

The DSE commands CRITICAL INITIALIZE RESET, ALL RESET, and ALL RENEW induce CRITRESET errors in all processes
attempting to access the target database(s).

Any process attempting to access a database that has its "corrupt" flag set to TRUE receives a DBCRPT error.

Caution

Using the DSE command CHANGE FILEHEADER CORRUPT=TRUE is very dangerous. If the DSE session
EXITs before issuing a CHANGE FILEHEADER CORRUPT=FALSE, the database becomes entirely useless.

K1–Bad Key

This section describes appropriate actions when the error message indicates a damaged key. GDS transforms subscripted or
unsubscripted global variable names into keys, which are part of the database record used to index the corresponding global
variable data values. The keys are stored in a compressed form which omits that part of the prefix held in common with the
previous key in the block. The compression count is the number of common characters. Except in the Directory Tree, all
records after the first one have a non-zero count. The first record in a block always has a compression count of zero (0).

IF THE BLOCK IS A DATA BLOCK, that is, level zero (0), refer to section O3.

IF THE BLOCK HAS A LEVEL GREATER THAN ZERO (0), examine the record with the DSE command DUMP BLOCK=
OFFSET where the block and offset values are provided by the INTEG error report. If the record appears to have a valid block
pointer, note the pointer. Otherwise, refer to section O2.

After noting the pointer, SPAWN and use MUPIP INTEG BLOCK=pointer (if you have time constraints, you may use the FAST
qualifier) to check the structure.

Maintaining Database Integrity

349

IF THE SUB-TREE IS INVALID, according to the MUPIP INTEG, DSE REMOVE the record containing the reported bad key,
INTEG, and refer to section O4.

Otherwise use the DSE command DUMP BLOCK= RECORD=9999 to find the last record in the block and examine it using the
DUMP RECORD= command. Continue using DSE to follow the pointer(s) down to level 0, always choosing the right-hand
branch. Note the largest key at the data level. REMOVE the record containing the reported bad key. Determine the proper
placement for the noted key using FIND KEY= and ADD KEY= POINTER where the key and the pointer are those noted in the
preceding actions.

K2–Keys Misplaced

When the error is a misplaced key, the keys are not in proper collating sequence.

IF THE BLOCK IS A DATA BLOCK, that is, level zero (0), DUMP it GLO, REMOVE the records that point to it, MAP it FREE,
and MUPIP LOAD the output of the DUMP GLO.

IF THE BLOCK HAS A LEVEL GREATER THAN ZERO (0), you may choose to reposition the record in its proper place or use
the salvage strategy discussed in section O4. In general, the salvage strategy is less demanding and less dangerous. However,
it may be time consuming if the index block holding the record has a level much greater than one (1). If you decide against the
salvage strategy, note the contents of the damaged record. In either case, REMOVE the record. If using salvage, refer to section
O4. If not, determine the proper location for the record using FIND KEY= to display the closest existing path, then follow the
procedure outlined in the last paragraph of K1.

K3–Block Doubly Allocated

A doubly allocated block is dangerous because it causes data to be inappropriately mingled. As long as no KILLs occur, double
allocation does not cause permanent loss of additional data. However, it may cause the application programs to generate errors
and/or inappropriate results. When a block is doubly allocated, a KILL may remove data outside its proper scope.

A doubly allocated index block may also cause increasing numbers of blocks to become corrupted. Use the following process to
correct the problem.

First, identify all pointers to the block, using FIND EXHAUSTIVE and/or information reported by MUPIP INTEG. If the error
report identifies the block as containing inappropriate keys or a bad level, INTEG has identified all paths that include the block.
In that case, INTEG reports all paths after the first with the doubly allocated error, and the first path with some other, for
example, "Keys out of order" error.

IF THE INTEG REPORT DOES NOT MENTION THE BLOCK PRIOR TO THE DOUBLY ALLOCATED ERROR, use FIND
EXHAUSTIVE to identify all pointers to that block.

IF THE BLOCK IS A DATA BLOCK, that is, level zero (0), DUMP it GLO, REMOVE the records that point to it, MAP it FREE,
and MUPIP LOAD the output of the DUMP GLO.

IF THE BLOCK HAS A LEVEL GREATER THAN ZERO (0), you may sort through the block and its descendants to disentangle
intermixed data. If the block has a level of more than one (1), this may be worth a try. The salvage strategy (discussed in section
O4) may be time consuming and there may be only one misplaced node. However, in general, the salvage strategy is less
demanding and less dangerous.

IF YOU CHOOSE THE SALVAGE STRATEGY, REMOVE the records that point to the block, MAP it FREE, and refer to section
O4.

IF YOU DECIDE TO WORK WITH THE BLOCK, choose the path to retain, REMOVE the other pointer record, and relocate any
misplaced descendants with DSE ADD and REMOVE.

Maintaining Database Integrity

350

K4–Pointer Problems

Each index block is made up of records that contain keys and corresponding pointers. In the case where database damage is
a symptom of an incorrect key paired with a valid pointer, the repair strategy, which may be implemented with a number of
tactics, is to use the pointer to locate the data and reconstruct the key.

While they occur very infrequently, invalid pointers do not permit the same strategy. If there is an invalid pointer, always
eliminate the record containing the bad pointer using the DSE REMOVE command. Since no data can be stored under an invalid
pointer, either the pointer error was discovered on the first attempt to use it and no data has been lost, or the pointer was
damaged during use. If the pointer was damaged during use, the lost data should be located by examining "Block incorrectly
marked busy" errors and generally be recovered as described in section O4.

IF MUCH DATA IS LOST, it may be worthwhile attempting to reconstruct the bad record as follows. Before removing the
record containing the bad pointer, use the DUMP command to note the key in the record. Using the error reports and/or the
DSE RANGE command, locate the block to which the key should point. Then use DSE ADD to replace the previously deleted
record with a new record that has the correct key and pointer in place.

K5–Star Key Problems

The last record in every index block must be a star-key record that points to a block that continues the path to all data not
covered by the preceding records in the block. Star-key records have a unique format with a size of seven (7), or eight (8),
depending on the platform, and a compression count of zero (0). The errors discussed in this section indicate a missing or
damaged star-key and may be attacked with two strategies.

In general, you should turn the last existing record into a star-key. This works well as long as the block holds at least one valid
record. If you choose this strategy, locate the last record using DUMP RECORD=9999. Then DUMP the last record and note its
pointer. Next, REMOVE the last record. Finally, ADD STAR POINTER= to the key you noted.

If the star-key is the only record in a root block, you should add a new empty level 0 descendent. If you choose this strategy,
add a new star-key using FIND FREEBLOCK HINT=this-block to locate a nearby block. Next, MAP the new block BUSY and
CHANGE LEVEL= 0 and BSIZ=7(or 8, if your platform dictates). If the new block has a level of zero (0), return to the damaged
block and ADD STAR POINTER=the-first-new-block.

K6–Compression Count Error

"Compression count not maximal" indicates that the compression count that is used to save space in key storage is not correct.

IF THE BLOCK IS A DATA BLOCK, that is, level zero (0), DUMP it GLO, REMOVE the records that point to it, MAP it FREE,
and MUPIP LOAD the output of the DUMP GLO.

IF THE BLOCK HAS A LEVEL GREATER THAN ZERO (0), REMOVE the record and ADD it back in the same location with the
same KEY=, and POINTER= or STAR.

You may also adjust the compression count using CHANGE CMPC=. Because this changes the value of all subsequent keys in
the block (except the star-key), you should try this alternative only if those keys also appear incorrect.

K7–Key Warning

"Key too large for database maximum" indicates that the database holds a key that is legal to GT.M but exceeds the
KEY_MAX_SIZE for the database.

Maintaining Database Integrity

351

Use the DSE command CHANGE FILEHEADER KEY_MAX_SIZE= to adjust the file limitation. Alternatively, you may remove
the record, using the M command KILL on an ancestor node. If any user attempts to modify or replace the record in the
database while the key is over-length, GT.M will reject the SET with an error.

M1–Bitmap Errors

Every block in the file has a corresponding bit in a bitmap. All blocks with valid data are marked busy in their maps; all blocks
that are unused or no longer hold data are marked free. GDS uses bitmaps to locate free blocks efficiently. The errors discussed
in this section indicate problems with bitmaps.

"Block incorrectly marked free" is the only potentially dangerous bitmap error. This error means that the block is within
the B-tree structure, but that the bitmap shows it available for use (i.e., it is a "Block doubly allocated" waiting to happen).
Immediately use DSE to MAP such blocks BUSY.

Bitmap information is redundant (i.e., bitmaps can be recreated by scanning the B-tree); however, the majority of bitmap errors
reflect secondary errors emanating from flaws in the B-tree, which are often reported as key or data errors by MUPIP INTEG.

When INTEG encounters an error, it stops processing that leaf of the tree. When it subsequently compares its generated
bitmaps to those in the database, it reports the blocks belonging in the tree that it could not find as "Block incorrectly marked
busy." This error type can be viewed as a flag, marking the location of a block of lost data whose index is disrupted.

INTEG reports each block that it concludes is incorrectly marked, and also the local map that holds the "bad" bits. Furthermore,
if the local map "errors" affect whether the local map should be marked full or not full in the master map, INTEG also reports
the (potential) problem with the master map. Therefore, a single error in a level one (1) index block will generate, in addition
to itself, one or more "Block incorrectly marked busy", one or more "Local bitmap incorrect", and possibly one or more "Master
bitmap shows..." Errors in higher level index blocks can induce very large numbers of bitmap error reports.

Because bitmap errors are typically secondary to other errors, correcting the primary errors usually also cures the bitmap
errors. For this reason and, more importantly, because bitmap errors tend to locate "lost" data, they should always be corrected
at, or close to, the end of a repair session.

The DSE command MAP provides a way to switch bits in local maps with FREE and BUSY, propagate the status of a local map
to the master map with MASTER, and completely rebuild all maps from the B-tree with RESTORE. Never use MAP MASTER
until all non-bitmap errors have been resolved.

M2–Bitmap Header Problems

Bitmaps are stored in blocks that have a unique header format with a level of minus one (-1) and a block size of 87 or 88
depending on the Euclidian ordering of the platform. The errors discussed in this section indicate a bitmap block header that
violates that format.

Use the DSE command CHANGE with the BSIZ=87 or 88 (depending on platform) and LEVEL=-1FF qualifiers to correct the
problem. If the block size is too small, the bitmap will have to be reconstructed using MAP RESTORE or manually from INTEG
error reports using MAP FREE. If there are other errors, defer any MAP RESTORE until after they have been repaired.

O1–Bad Block

GDS organizes the B-tree into logical blocks, each of which GT.M handles discretely. A block consists of a block header and
a lexically increasing sequence of records. Blocks starting with the root block up to the data blocks are index blocks. The last
block in any complete path is a data block. The errors discussed in this section indicate a damaged block.

Maintaining Database Integrity

352

Determine if the block has other problems by using the DSE command INTEGRIT. Examine the contents of the block using the
DSE command DUMP. You may also examine the block preceding this block in the path and/or blocks pointed to by records in
this block. If you can determine an appropriate action, use CHANGE with the BSIZ= and/or LEVEL= qualifiers. If you cannot
quickly repair the block, examine its level with DUMP HEADER. If the block is a data block, that is, level zero (0), refer to
section O3. If the block has a level greater than zero (0), REMOVE the record that points to the block and refer to section O4.

O2–Record Errors

GDS organizes keys with pointers or data to form records. A record has a header, which holds the record size, and a
compression count, which identifies how much of the preceding key is held in common by this record. Records in the block are
ordered by the values of their keys. The errors discussed in this section indicate damage to a record. Record errors present an
added challenge, in that they potentially prevent GT.M from correctly interpreting subsequent records in the same block.

IF THE BLOCK IS A DATA BLOCK, that is, level zero (0), refer to section O3.

IF THE BLOCK IS AN INDEX BLOCK, that is, has a level greater than zero (0), the best option is generally to use the salvage
strategy discussed in section O4. REMOVE the damaged record and INTEG the block. If the block is still corrupt, repeat the last
step, REMOVE the pointer to it, and MAP it FREE. In any case, refer to section O4.

O3–Data Block Errors

The errors described in this section include damage to the header, the records, or the keys.

IF THE BLOCK IS LEVEL ZERO (0), use DSE DUMP to examine the contents of the block. Note any information that might
allow you to correct the problem or might help to identify and recreate the endangered data. If you are familiar with GDS and
hexadecimal representations, you may be able to recognize data that DSE cannot recognize because of misalignment.

IF THE BEGINNING OF THE BLOCK IS VALID, DUMP GLO may be able to capture its contents up to the point where it is
damaged. In the worst case, REMOVE the record that points to the block, MAP it FREE, and lose its entire contents. The extent
and importance of the damage depends on the size of the block and what it should be holding. In a similar but not quite as
drastic case, REMOVE the record with the problem and lose the contents of that record.

O4–Salvage of Data Blocks with Lost Indices

This strategy uses bitmap errors to locate data blocks containing information that belongs in the B-tree, but are no longer
indexed because of errors and/or repairs to defective indices.

The algorithm is based on the fact that most bitmap errors are secondary to index errors. Therefore, it is optimistic about
bitmaps and pessimistic about indices, and tends to error on the side of restoring more rather than less data to the B-tree.
After using this technique, you should always check to see if obsolete, deleted data was restored. If data was restored, and GDS
integrity has been restored, you can safely KILL the "extra" data.

IF THE INDICES HAVE BEEN DAMAGED FOR SOME TIME AND THE DAMAGE CAUSED DUPLICATE KEYS TO BE
CREATED, this strategy raises the issue of which value is the "correct" value. Because most applications either form new nodes
or update existing nodes rather than simply overlaying them, this issue seldom arises. Usually the application will fail in an
attempt to update any "misplaced" node. If the problem does arise, the issue may not be determining the "correct" value, but the
best available value.

IF THE DUPLICATE NODE PROBLEM COULD BE AN APPLICATION ISSUE, you can load the sequential file produced in DSE
with an M program that detects and reports duplicate nodes. You can also use the block transaction numbers as clues to the

Maintaining Database Integrity

353

order in which blocks were updated. However, remember that you generally cannot know which record was modified on the
last update, and that DSE repair actions modify the block transaction number.

If the duplicate node problem poses a significant problem, you should probably not use DSE to repair the database, but instead,
use journals to recover or restore from backups.

This strategy works well when the missing indices are level one (1). However, the time required increases dramatically as the
level of the missing index increases. If you have a problem with a level four (4) or level five (5) index, and you have developed
skill with DSE, you may wish to try the more technically demanding approach of repairing the indices.

Once you have corrected all errors except bitmap errors, SPAWN and use MUPIP INTEG FAST REGION NOMAP to get a list
of all remaining bitmap errors. If the report includes any "Blocks incorrectly marked free", MAP them BUSY. Then use DUMP
HEADER BLOCK= to examine each "Block incorrectly marked busy." If the level is one (1), DUMP the block GLO. In any case,
MAP it FREE. Once all blocks have been collected in a sequential file in this fashion, use MUPIP LOAD to reclaim the data from
the sequential file.

Example:

salvage;
 read !,"SET REGION to <DEFAULT>: ",r s:r="" r="DEFAULT"
 write !
 set in="db_integ.log",x="mupip integ -fast -nomap -region"
 set teg="/bin/csh -c """_x_" "_r_" > "_in_""""
 zsystem teg
 set out="db_drive",skip=$char(32,10,13)
 set prefix="map -bl=",old="",lenold=0,blk=0
 open in:(read:exc="goto done"),out:newv
 use out
 write "dse <<yz",!,"find -region=",r,!,"open -file=","db.go",!
 use in
 for read x if x["marked" use out do out use in
 ; CAUTION: in the above line, "marked" MUST be in lower-case
 ;
done
 use out
 write "close",!,"exit",!
 write "yz",!
 write "mupip load db.go",!
; comment out the line above if you wish to examine
; db.go and initiate the load separately
 close in,out
 zsystem "/usr/local/bin/tcsh -c ""source db_drive"""
 quit
out
 for j=1:1:$length(x) quit:skip'[$extract(x,j)
 set blk=$piece($piece($extract(x,j,999)," ",1),":",1)
 set state=$select($extract(x,42)="f":" -busy",1:" -free")
 ; CAUTION: in the above line, "f" MUST be in lower-case
 if state=" -free" write "dump -glo -bl=",blk,!
 ; CAUTION: in the above line " -free" MUST match the
 ; case in the $select above
 ; comment out the above line (starting with "i state")
 ; if you wish to eliminate, rather than save,
 ; the contents of loose busy blocks
 write prefix,blk,state,!

Maintaining Database Integrity

354

 quit

This routine provides a basic example of automating the technique described in this section. It must be run from an appropriate
directory with a properly defined gtmgbldir, but can be extended to be more user friendly.

O5–Salvage of a damaged spanning node

The following example shows how to salvage a damaged spanning node in ^mypoem.

1. Run MUPIP INTEG to find the location of the damaged spanning node. A MUPIP INTEG report of a region that has damaged
spanning nodes might look something like the following:

Integ of region DEFAULT

Block:Offset Level
%GTM-E-DBSPANGLOINCMP,
 7:10 0 Spanning node is missing. Block no 3 of spanning node is missing
 Directory Path: 1:10, 2:10
 Path: 4:31, 7:10
Spanning Node ^mypoem(#SPAN1) is suspect.
%GTM-E-DBKEYGTIND,
 7:10 0 Key greater than index key
 Directory Path: 1:10, 2:10
 Path: 4:31, 7:10
Keys from ^mypoem(#SPAN48) to ^mypoem(#SPAN3*) are suspect.
%GTM-E-DBSPANCHUNKORD,
 3:10 0 Chunk of 1 blocks is out of order
 Directory Path: 1:10, 2:10
 Path: 4:3D, 3:10
Spanning Node Chunk ^mypoem(#SPAN4) is suspect.

Total error count from integ: 3

Type Blocks Records % Used Adjacent

Directory 2 2 5.468 NA
Index 1 4 13.476 1
Data 4 5 76.562 4
Free 93 NA NA NA
Total 100 11 NA 5
[Spanning Nodes:2 ; Blocks:3]
%GTM-E-INTEGERRS, Database integrity errors

Notice the lines that contain: "Block no 3 of spanning node is missing", "Key greater than index key", and
^mypoem(#SPAN48) and there is an extra chunk that is not connected to ^mypoem(#SPAN4).

2. Confirm whether you have determined the spanning range of the node:

• Is ^mypoem(#SPAN48) the last node (block number 3)?

• Is ^mypoem(#SPAN4) the last node?

Clearly, GT.M did not find block 3 and ^mypoem(#SPAN4) terminated the spanning node, so ^mypoem(#SPAN4) might be
the last node. So, the parts of a spanning node that contain the value are ^mypoem(#SPAN2) through ^mypoem(#SPAN4).

Maintaining Database Integrity

355

3. Use DSE to find the spanned nodes:

DSE> find -key=^mypoem(#SPAN2)

Key found in block 6.
 Directory path
 Path--blk:off
 1:10, 2:10,
 Global tree path
 Path--blk:off
 4:25, 6:10,
DSE> find -key=^mypoem(#SPAN3)

Key not found, would be in block 7.
 Directory path
 Path--blk:off
 1:10, 2:10,
 Global tree path
 Path--blk:off
 4:31, 7:10,
DSE> find -key=^mypoem(#SPAN4)

Key found in block 3.
 Directory path
 Path--blk:off
 1:10, 2:10,
 Global tree path
 Path--blk:off
 4:3D, 3:10,
DSE> f -k=^mypoem(#SPAN5)

Key not found, would be in block 3.
 Directory path
 Path--blk:off
 1:10, 2:10,
 Global tree path
 Path--blk:off
 4:3D, 3:10,

Notice that there is #SPAN2 and #SPAN4 but no #SPAN5. Therefore, #SPAN4 is the last piece. #SPAN3 was not found and is
most likely the damaged node.

4. Dump all the blocks in ZWRITE format to see what can be salvaged.

DSE> open -file=mypoem.txt
DSE> dump -block=6 -zwr

1 ZWR records written.

DSE> dump -block=7 -zwr

1 ZWR records written.

DSE> dump -block=3 -zwr

1 ZWR records written.

Maintaining Database Integrity

356

DSE> close
Closing output file: mypoem.txt

$ cat mypoem.txt
; DSE EXTRACT
; ZWR
$ze(^mypoem,0,480)="Half a league, half a league,Half a league onward,All in the valley of Death Rode the six
 hundred. Forward, the Light Brigade! Charge for the guns he said: Into the valley of Death Rode the six
 hundred. Forward, the Light Brigade! Was there a man dismayed? Not tho the soldiers knew Some one had
 blundered: Theirs not to make reply, Theirs not to reason why, Theirs but to do and die: Into the valley of
 Death Rode the six hundred. Cannon to right of them, Cannon to left of "
$ze(^mypoem,22080,480)="them, Cannon in front of them Volleyed and thundered; Stormed at with shot and shell,
 Boldly
 they rode and well, Into the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed all their
 sabres bare, Flashed as they turned in air Sabring the gunners there, Charging an army while All the world
 wondered: Plunged in the battery-smoke Right thro the line they broke; Cossack and Russian Reeled from the
 sabre-stroke Shattered and sundered. Then they rode back, but no"
$ze(^mypoem,960,468)="t Not the six hundred. Cannon to right of them, Cannon to left of them, Cannon behind
 them
 Volleyed and thundered; Stormed at with shot and shell, While horse and hero fell, They that had fought so
 well Came thro the jaws of Death, Back from the mouth of Hell, All that was left of them, Left of six hundred.
 When can their glory fade? O the wild charge they made! All the world wondered. Honour the charge they made!
 Honour the Light Brigade, Noble six hundred!"

Notice that block 3 (which is the second block above (because you started with block 2)) has the correct value but its internal
subscript must have been damaged.

5. Fix the starting position in the $ZEXTRACT statement:

$ze(^mypoem,480,480)="them, Cannon in front of them Volleyed and thundered; Stormed at with shot and shell,
 Boldly they
 rode and well, Into the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed all their sabres
 bare, Flashed as they turned in air Sabring the gunners there, Charging an army while All the world wondered:
 Plunged in the battery-smoke Right thro the line they broke; Cossack and Russian Reeled from the sabre-stroke
 Shattered and sundered. Then they rode back, but no"

Verify the value for correctness if you have the knowledge of the type of data in this global. This completes data recovery
(whatever was possible).

6. Kill the existing global:

GTM>kill ^mypoem

GTM>write ^mypoem
%GTM-E-GVUNDEF, Global variable undefined: ^mypoem

7. Load the salvaged global:

$ mupip load -format=zwr mypoem.txt

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX711.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX712.txt

Maintaining Database Integrity

357

; DSE EXTRACT
; ZWR
Beginning LOAD at record number: 3

LOAD TOTAL Key Cnt: 3 Max Subsc Len: 8 Max Data Len: 480
Last LOAD record number: 5

$ gtm

GTM>w ^mypoem
Half a league, half a league,Half a league onward,All in the valley of Death Rode the six hundred. Forward, the
 Light
 Brigade! Charge for the guns he said: Into the valley of Death Rode the six hundred. Forward, the Light
 Brigade! Was there a man dismayed? Not tho the soldiers knew Some one had blundered: Theirs not to make reply,
 Theirs not to reason why, Theirs but to do and die: Into the valley of Death Rode the six hundred. Cannon to
 right of them, Cannon to left of them, Cannon in front of them Volleyed and thundered; Stormed at with shot and
 shell, Boldly they rode and well, Into the jaws of Death, Into the mouth of Hell Rode the six hundred. Flashed
 all their sabres bare, Flashed as they turned in air Sabring the gunners there, Charging an army while All the
 world wondered: Plunged in the battery-smoke Right thro the line they broke; Cossack and Russian Reeled from
 the sabre-stroke Shattered and sundered. Then they rode back, but not Not the six hundred. Cannon to right of
 them, Cannon to left of them, Cannon behind them Volleyed and thundered; Stormed at with shot and shell, While
 horse and hero fell, They that had fought so well Came thro the jaws of Death, Back from the mouth of Hell, All
 that was left of them, Left of six hundred. When can their glory fade? O the wild charge they made! All the
 world wondered. Honour the charge they made! Honour the Light Brigade, Noble six hundred!

P1–Process Damage

A damaged process is one that has become internally "confused" and is executing in a pathological way not caused by
circumstances in the external environment.

IF YOU HAVE DISCOVERED THAT A PROCESS WAS DAMAGED, carefully review all events related to that process leading to
the discovery of the problem. It may be possible that the process had an elevated priority and was not hanging, but rather was
"hogging" system resources. It is also possible that the problem is an application loop problem, missed by not performing the
steps in section H3 with enough rigor.

Check for evidence of any hardware problem that might damage a process.

Q1–Restricting Database Access

Prevent new users from attempting to access the database by taking steps such as bringing the system to the single-user state
or removing execute access to GT.M components for an appropriate class or users. Also, terminate or suspend all processes
accessing the database in question, using the UNIX ps -af utility to find such processes. Because the DSE command CRITICAL -
INITIALIZE -RESET generates errors for all processes accessing a database file, it provides a quick way to stop such processes.

R1–GT.M Run-Time Errors

GT.M processes may detect errors at run-time. These errors trigger the GT.M error handling mechanism, which generally
places the process in direct mode, or triggers the application programs to transcribe an error context to a sequential file or to a
global. For more information on error handling, refer to the "Error Processing" chapter of the GT.M Programmer's Guide.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX714.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Maintaining Database Integrity

358

Most run-time errors are related to the application and its environment. However, some errors reflect the inability of a process
to properly deal with a database. Some errors of this type are also, or only, generated by the GT.M utility programs.

For descriptions of individual errors, refer to the GT.M Message and Recovery Procedure Reference Manual.

IF YOU CANNOT REPRODUCE SUCH ERRORS WITH ANOTHER PROCESS PERFORMING THE SAME TASK, or with an
appropriately directed MUPIP INTEG, they were most likely reported by a damaged process. In this case, refer to section P1.

The following table lists run-time errors, alphabetically by mnemonic, each with a section reference for further information.

Run-Time Error Messages Identifying Potential System Problems

ERROR
MNEMONIC

ERROR MESSAGE TEXT SECTION

BADDVER

BITMAPSBAD

BTFAIL

CCPINTQUE

CRITRESET

Incorrect database version vvv

Database bitmaps are incorrect

The database block table is corrupt

Interlock failure accessing Cluster Control Program queue

The critical section crash count for rrr region has been incremented

I2

M1

R3

R7

I8

DBCCERR

DBCRPT

DBFILERR

DBNOFILEP

DBNOTGDS

Interlock instruction failure in critical mechanism for region rrr

Database is flagged corrupt

Error with database file

No database file has been successfully opened

Unrecognized database file format

R7

I8

I5

I5

I5

DBOPNERR

DBRDERR

FORCEDHALT

GBLDIRACC

GBLOFLOW

Error opening database file

Cannot read database file after opening

Image HALTed by MUPIP STOP

Global Directory access failed, cannot perform database functions

Database segment is full

I5

I5

R4

I5

R5

GVKILLFAIL

GVORDERFAIL

GVPUTFAIL

GVQUERYFAIL

GVRUNDOWN

Global variable KILL failed. Failure code: cccc

Global variable $ORDER or $NEXT function failed. Failure code: cccc

Global variable put failed. Failure code: cccc

Global variable $QUERY function failed. Failure code: cccc

Error during global database rundown

R2

R2

R2

R2

I5

GDINVALID

GTMCHECK

GVDATAFAIL

Unrecognized Global Directory format: fff

Internal GT.M error–report to FIS

Global variable $DATA function failed. Failure code: cccc

I5

R6

R2

Maintaining Database Integrity

359

Run-Time Error Messages Identifying Potential System Problems

ERROR
MNEMONIC

ERROR MESSAGE TEXT SECTION

GVDIRECT

GVGETFAIL

Global variable name could not be found in global directory

Global variable retrieval failed. Failure code: cccc

I5

R2

GVZPREVFAIL

MUFILRNDWNFL

UNKNOWNFOREX

TOTALBLKMAX

WCFAIL

Global variable $ZPREVIOUS function failed. Failure code: cccc

File rundown failed

Process halted by a forced exit from a source other than MUPIP

Extension exceeds maximum total blocks, not extending

The database cache is corrupt

R2

I5

R4

R5

R3

R2–Structural Database Integrity Errors

These run-time errors indicate that the process detected an integrity error within the body of the database.

Verify the error using the MUPIP command INTEG SUBSCRIPT=, specifying an immediate ancestor node of the global variable
displayed in the error message. Alternatively, you may try the access by running the same routine in another process or
by using Direct Mode to perform the same actions as those performed by the M line that triggered the error. If you cannot
reproduce the error, refer to section P1.

Most of these errors terminate with a four-character failure code. Each character in the code represents the failure type for an
attempt to perform the database access. In cases where the letters are not all the same, the last code is the most critical, because
it reflects what happened when the process made its last retry. Earlier tries show error codes that are important to establishing
the context of the last error.

The following table lists the failure codes, whether or not they require a MUPIP INTEG, a brief description of the code's
meaning, and a section reference for locating more information.

Run-Time Database Failure Codes

FAIL
CODE

RUn
INTEG

DESCRIPTION SECTION

A

B

C

D

E

x

x

x

x

Special case of code C.

Key too large to be correct.

Record unaligned: properly formatted record header did not appear where expected.

Record too small to be correct.

History overrun prevents validation of a block.

O2

K1

O2

O2

R3

G

H*

-

x

Cache record modified while in use by the transaction.

Development of a new version of a block encountered an out of design condition.

R3

P1

* Indicates a process problem

Maintaining Database Integrity

360

Run-Time Database Failure Codes

FAIL
CODE

RUn
INTEG

DESCRIPTION SECTION

J

K

L

Level on a child does not show it to be a direct descendent of its parent.

Cache control problem encountered or suspected.

Conflicting update of a block took priority.

O1

C1

R3

M

N

O

P

Q

x

x

Error during commit that the database logic does not handle.

A primitive such as a file or queue operation failed.

Before image was lost prior to its transfer to the journal buffer.

Multi-block update aborted - database damage likely.

Shared memory interlock failed.

P1

R7

R3

I5

R7

R

S

U

V

X

x Critical section reset (probably by DSE).

Attempt to increase the level beyond current maximum.

Cache record unstable while in use by the transaction.

Read-only process could not find room to work.

Bitmap block header invalid.

R5

R8

R3

R9

M2

Y

Z

a

b

c

x

x

Record offset outside of block bounds.

Block did not contain record predicted by the index.

Predicted bitmap preempted by another update.

History overrun prevents validation of a bitmap.

Bitmap cache record modified while in use by the transaction.

02

02

R3

R3

R3

d

e

f

g

x Not currently used.

Attempt to read a block outside the bounds of the database.

Conflicting update took priority on a non-isolated global and a block split requires a TP_RESTART.

The number of conflicting updates on non-isolated global nodes exceed an acceptable level and
requires a TP_RESTART.

-

02

R3

R3

* Indicates a process problem

R3–Run-time Database Cache Problems

These messages indicate probable process damage or database cache corruption. Retry the action with another process. If the
second process also fails, refer to section H4; otherwise, refer to section P1.

Maintaining Database Integrity

361

R4–Stopped Processes

These errors indicate the process received a message from a kill system service requesting that the image terminate.

The MUPIP STOP command uses kill with a distinguished code. The code provided by MUPIP STOP allows the process to
include the source of the stop directive in the error message.

R5–No More Room in the File

IF THE DATABASE FILLS UP AND CANNOT EXPAND, processes that try to add new information to the database experience
run-time errors. The following conditions prevent automatic database expansion.

• Using the MM access method

• Using a file extension of zero (0)

• Inadequate free blocks available on the volume to handle the specified extension

You can handle the first two cases by using the MUPIP EXTEND command. MUPIP EXTEND may also help in dealing with
the third case by permitting an extension smaller than that specified in the file header. Note that the extension size in the file
header, or /BLOCKS= qualifier to MUPIP EXTEND, is in GDS blocks and does not include overhead for bitmaps.

IF THERE IS NO MORE SPACE ON A VOLUME, you may use the M command KILL to delete data from the database. To KILL
an entire global, the database file must contain one free GDS block. You may acquire these by KILLing a series of subscripted
nodes or by doing a small extension.

You may also use UNIX utilities such as tar, cp, and lprm to remove files from the volume and place them on another volume.

Finally, you may create or add to a bound volume set with the MOUNT utility invoked by the DCL command MOUNT. If
you change the RMS placement of the files, be sure to adjust the Global Directory and/or the logical names to match the new
environment.

You can also add a new disk. If you change the placement of the files, be sure to also adjust the Global Directory and/or the
environment variables to match the new environment.

R6–GTMASSERT and GTMCHECK Errors

GTMASSERT and GTMCHECK errors indicate that a process has detected some sort of logical inconsistency. Consult with FIS
after gathering all information about the circumstances surrounding the error.

R7–Interlocked Queue Hardware Problems

These messages indicate possible problems with multiple processor synchronization. Initiate running of hardware diagnostics.
If the diagnostics do not locate a problem, consider consulting with FIS after gathering all information about the circumstances
of the error.

R8–Database Tree Maximum Level Exceeded

An attempt has been made to create a tree in the database that contains seven or more levels. The legal levels for a tree are zero
to seven. You can add new levels to the global either by killing some of the existing subscripts, or by extracting the global and
reloading it into a database with a larger block size, so it does not require as large a tree.

Maintaining Database Integrity

362

R9–Read-only Process Blocked

While it is unlikely in normal operation, there is a possibility that a process that has read-only access to a database file may
fail because it cannot acquire enough cache space to do its work. Because it does not have authority to write to the database,
such a process cannot flush modified cache records to disk: it must rely on updating processes to keep the number of modified
records down to a point that permits read-only access to the database to proceed successfully. However, if updating processes
exit in a fashion that does not permit them to flush out modified records, the read-only process (particularly one doing a
large transaction) may fail because the cache cannot supply enough blocks. This condition can be cleared by a DSE BUFFER
command in the affected region(s).

363

Chapter 12. Database Encryption

Revision History

Revision V990 D990 In “Special note - Gnu Privacy Guard version
2” (page 389), specified that GT.M versions
prior to V5.4-001 are not compatible with GPG
2.x.

Revision V6.0-001 27 February 2013 Updated “Tested Reference Implementations
” (page 387), “Installation ” (page 390), and
“Plugin Architecture & Interface ” (page 394)
for V6.0-001.

Revision V5.5-000/11 05 October 2012 In “Special note - Gnu Privacy Guard
version 2” (page 389), added information
about setting the environment variable
GTMXC_gpgagent.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Introduction

Overview

GT.M on selected platforms can encrypt data in database and journal files. Encryption protects data at rest (DAR), that is it
protects against unauthorized access to data by an unauthorized process that is able to access disk files.

A plug-in architecture allows you to use your choice of encryption package. The characteristics of encryption are entirely
determined by the package you choose - for example, GT.M implements no "back doors" or "key recovery", and if you want
such functionality, you need to choose or construct an encryption package that provides the features you want.

FIS distributes the source and object code for the reference implementation of a plug-in that uses popular, widely available,
encryption libraries. If the reference implementation plug-in meets your needs, you are welcome to use it as distributed, but
please read and understand the section “Disclaimer ” (page 363). You can also use it as a base to implement your own plug-in.

In the reference implementation, GT.M uses a symmetric cipher to encrypt data. The reference implementation encrypts the
key for the symmetric cipher with an asymmetric cipher using public and private keys. The private keys are stored in a key ring
on disk locked with a password (or passphrase - the terms are used interchangeably).

Disclaimer

Database encryption is only useful as one component of a comprehensive security plan and is insufficient as the sole means of
securing data. The use of database encryption should follow from a good security plan. This document describes implementing
encrypted GT.M databases; it does not discuss security plans.

Proper security protocol never places an unencrypted password, even in obfuscated form and/or in an obscure location, on disk.
With GT.M database encryption, unencrypted passwords exist in the address space of processes accessing the database, which

Database Encryption

364

means that unencrypted passwords can theoretically be written to swap files when process memory is paged out. To be secure,
an installation must handle this by means such as: using encrypted swap devices or files, ensuring that GT.M processes are
not paged out, or some other means to ensure that information in swap files is available only to the running process. In other
words, even with respect to encryption, GT.M database encryption is only part of a complete security infrastructure.

Our expertise is in GT.M, not in encryption. Encryption needs vary. Furthermore, the use of encryption may be restricted
- or required - by regulations applicable to your location and circumstances. Therefore, our approach is to create a plug-in
architecture where you can choose your preferred encryption software. In the course of development, we tested it primarily
with GNU Privacy Guard, the widely available implementation of Pretty Good Privacy (see "PGP: Pretty Good Privacy" by
Simson Garfinkel). Ensure that you have confidence in (and confidence in the support for) whichever encryption software
you choose, because failure of the encryption software is likely to leave your data unrecoverable. GT.M itself performs no
encryption, and encryption is performed exclusively by software that you install and configure. FIS neither endorses nor
supports any specific encryption algorithm or library.

Furthermore, just as GT.M allows for the use of your choice of encryption libraries, encryption libraries in turn require keys
that must be managed. In its simplest form, key management requires both that only those who need a key have that key, and
also that keys are not lost. Key management is two steps removed from GT.M's implementation of database encryption, but is
important to the successful use of encrypted databases. It must be part of your operations policies and procedures. FIS strongly
recommends that you understand in detail how to implement the infrastructure for whichever specific encryption you choose.

Limitations of GT.M Database Encryption

Elements of your security infrastructure and management processes outside of GT.M database encryption need to manage
issues discussed in the following sections.

Data Not At Rest Not Protected

GT.M database encryption is designed to protect data at rest. Applications execute business logic to manipulate and produce
unencrypted data. Unencrypted data must exist within application processes, and can be accessed by any process with access
rights to the virtual address space of a process containing unencrypted data. Also, data in transit between systems and between
processes is not protected by GT.M database encryption.

1. Before creating a core dump, GT.M attempts to clear any keys that it is aware of within the process address space. The
reference implementation also uses the encryption libraries so as to minimize the probability of keys appearing in core
dumps. Since it is not possible to guarantee that keys will not appear in a process core dump, depending on your security
policy, FIS recommends that you consider whether to disable the creation of core dumps by GT.M processes accessing
encrypted databases, or use other means to limit access to core dumps. Note also that the use of random byte sequences as
keys makes it harder to discern them in a core dump1.

Keys in the Process Address Space / Environment

This is a corollary of the fact that data not at rest is not protected by GT.M database encryption.

In order to encrypt and decrypt databases, keys must exist in the address space / environment of GT.M processes. Furthermore,
with the reference implementation, processes also need to have access to the user's private key, and to get access to the private
key, they need access to the passphrase of the user's GPG keyring. In order to pass encryption to child processes, the passphrase
also exists in the process environment, even if obfuscated. This means that any process that can access the address space or
environment of a GT.M process accessing encrypted databases has access to the passphrases and keys.

1. If an application provides some or all users access to a shell prompt or a GT.M direct mode prompt, or allows that user to
specify arbitrary code that can be XECUTE'd, those users can find ways to view and capture keys and passphrases. Note

http://gnupg.org/

Database Encryption

365

that, if a key or passphrase can be captured, it can be misused - for example, a captured GPG keyring passphrase is captured,
it can be used to change the passphrase. You must therefore ensure that your application does not provide such access to
users who should not view keys and passphrases.

2. This limitation makes it all the more important that those who have access to shell prompts, GT.M direct mode prompts,
etc. not leave sessions unlocked, even briefly, if it is at all possible for someone who should not have knowledge of keys and
passphrases to access the sessions during that time.

Long Lived Keys

A database file has an extended life. In typical operation, only a minuscule fraction of the data within a database changes each
day. As changing an encryption key requires re-encrypting all the data, this means encryption keys for files have long lives.
Since long-lived keys are security risks - for example, they cannot be changed when an employee leaves - key management
must therefore be part of the overall security plan. At a minimum, long lived keys require two stage key management - a
database key with a long life, not normally accessed or viewed by a human, stored in a form encrypted by another key that can
be changed more easily.

Furthermore, a key must be retained at least as long as any backup encrypted with that key; otherwise the backup becomes
useless. You must have appropriate procedures to retain and manage old keys. Since successful data recovery requires both keys
and algorithms, the retention processes must also preserve the encryption algorithm.

Voluminous Samples of Encrypted Data

Database and journal files are large (GB to hundreds of GB). This large volume makes database encryption more amenable to
attack than a small encrypted message because having many samples of encrypted material makes it easier to break a key.

Encryption Algorithms Neither Endorsed Nor Supported by FIS

FIS neither endorses nor supports any specific encryption algorithm.

The selection of an encryption algorithm is determined by many factors, including but not limited to, organizational
preferences, legal requirements, industry standards, computational performance, robustness, the availability of encryption
hardware, etc. No algorithm meets all needs.

Therefore, GT.M provides a "plug-in" architecture for encryption algorithms, which allows you to integrate your preferred
encryption software with GT.M. In the GT.M development environment, we created variations on a reference implementation
using popular encryption packages for our validation. We tested each reference implementation variation on at least one
computing platform, and one reference implementation variation on each computing platform. This document lists which
encryption package we tested on which platform.

You take all responsibility for the selection and use of a specific encryption package. Please be aware that:

1. All encryption libraries that run within the address space of a GT.M process must conform to the rules of any functions for
GT.M, as documented, including but not limited to being single threaded, not altering GT.M's signal handlers, restricting the
use of timers to the API provided by GT.M, etc.2

2. Malfunction of encryption software or hardware can render your data irrecoverable. As part of your comprehensive
organizational risk management strategy, please consider the use of logical multi-site application configurations, possibly
with different encryption packages and certainly with different encryption keys.

3. The cipher used for database encryption must not change the length of the encrypted sequence of bytes. In other words, if
the cleartext string is n bytes, the encrypted string must also be n bytes.

Database Encryption

366

No Key Recovery

The reference implementation of GT.M database encryption has no "back door" or other means to recover lost keys. We are also
not aware of back doors in any of the packages used by the reference implementation.

Lost keys make your data indistinguishable from random ones and zeros. While FIS recommends implementing a documented
key management process including techniques such as key escrow, ultimately, you take all responsibility for managing your
keys.

Human Intervention Required

At some point in the process invocation chain, the reference implementation requires a human being to provide a password
that is placed (in obfuscated form) in the process environment where child processes can inherit it. If you want to be able to
access encrypted databases without any human interaction, you must modify the reference implementation, or create your own
implementation.

For example, if you have a GT.M based application server process that is started by xinetd in response to an incoming
connection request from a client, you may want to consider an approach where the client sends in a key that is used to extract
an encrypted password for the master key ring from the local disk, obfuscates it, and places it in the environment of the server
process started by xinetd. If the application protocol cannot be modified to allow the client to provide an additional password,
xinetd can be started with the $gtm_passwd obfuscated password in its environment, and the xinetd passenv parameter used to
pass $gtm_passwd from the xinetd process to the spawned server process.

MM Databases

GT.M database encryption is only supported for the Buffered Global (BG) access method. It is not supported for the Mapped
Memory (MM) access method. See “Alternatives to Database Encryption ” [366], for other options.

Alternatives to Database Encryption

On some platforms, you may be able to use disk drives with built-in encryption, or encrypted file systems to protect data at
rest. These may or may not be as secure as GT.M database encryption: for example, once an encrypted file system is mounted,
files thereon can be accessed by any process that has appropriate permissions; with GT.M database encryption each process
accessing a database file must individually have access to the keys for that database file.

Device IO

The built-in interface to encryption is implemented only for data in database, journal, backup and certain formats of extract
files. To encrypt IO (say for sequential disk files), you can use IO to PIPE devices. Alternatively, you can call encryption
routines from GT.M using the external call interface.

Replication and GT.CM

GT.M encrypts neither the replication stream nor GT.CM (GNP/OMI) network traffic. When needed, there are excellent
third party products for implementing secure TCP/IP connections: software solutions as well as hardware solutions such as
encrypting routers.

As with any GT.M process that accesses databases, the Update Process, helper processes and GT.CM server all require
provisioning with keys to enable their access to encrypted databases.

http://xinetd.org/

Database Encryption

367

When a GT.CM server has a key for an encrypted database, any client connecting to the server can access encrypted records in
that database.

FIPS Mode

For database encryption, the plugin reference implementation also provides an option to use libgcrypt (from GnuPG) and
libcrypto (OpenSSL) in "FIPS mode" removing a need to modify the plugin for sites that require certification for compliance
with FIPS 140-2. When the environment variable $gtmcrypt_FIPS is set to 1 (or evaluates to a non-zero integer, or any case-
independent string or leading substring of "TRUE" or "YES"), the plugin reference implementation attempts to use either
OpenSSL or Libgcrypt to provide database encryption that complies with FIPS 140-2. The supported platforms are as follows:

Platform Libgcrypt OpenSSL OpenSSL FIPS

Linux x86_64 1.4.5 1.0.0 1.0.1e

Linux x86 1.4.5 1.0.0 1.0.1e

AIX RS600 1.5.1 1.0.0e 1.0.1e

SunOS SPARC 1.5.1 1.0.0j 1.0.1e

HP-UX IA64 1.4.1 1.0.1e 1.0.1e

Before using FIPS mode on these platforms, ensure that you have a configuration a valid FIPS 140-2 implementation an
OpenSSL or Libgcrypt installation.

Note

Achieving FIPS 140-2 certification requires actions and controls well beyond the purview of GT.M, including
underlying cryptographic libraries that are certifiably FIPS compliant, administrative controls, and so on. FIS
neither provides cryptographic libraries with GT.M nor recommends the use of any specific library.

Theory of Operation

This section describes the operation of GT.M database encryption with the reference implementation. A subsequent section
describes the functions of the reference implementation which can be reworked or rewritten to use different encryption
packages.

Definition of Terms

Terms Description

Cipher An encryption algorithm or the implementation of an encryption
algorithm, for example, the symmetric cipher AES 256 CFB.

Hash (or Fingerprint) A signature algorithmically derived from an object which is certain
to a very impressive probability that uniquely identifies an object
within a set of similar objects.

Key length The number of bits comprising a key. Longer key lengths may
result in stronger encryption (more difficult to break) but require
more computation.

Database Encryption

368

Terms Description

Key management The generation, distribution, and access of keys. The reference
implementation of database encryption uses:

1. symmetric keys to encrypt data and index records.

2. public keys to encrypt symmetric keys (so they can be placed on
disk).

3. private keys to decrypt symmetric keys.

4. passwords to encrypt private keys (so they can be placed on
disk).

Master key file This file contains pairs of entries indicating which symmetric key is
used to encrypt/decrypt database records. Database records can be
found in database, journal, extract and backup files.

Obfuscation A technique used to make data difficult to discern on casual
observation. A common example is "pig Latin". Since the password
used for the GPG keyring exists in the process' environment
with the reference implementation, GT.M obfuscates it to reduce
the chance that visual access to process information (say during
debugging) inadvertently exposes the password.

Password (or Passphrase) A secret word or phrase used in the reference implementation to
protect a private key on disk (a password should never be on disk
in the clear, which is the electronic equivalent of taping it to your
monitor with a sticky note).

Public key / Private key (or Asymmetric keys) A pair of keys used so what one key encrypts the other can
decrypt. The private key is sometimes referred to as the "secret"
key (because it is not shared as opposed to the public key which
is; the private key should never be on disk in the clear). In the
reference implementation, asymmetric keys are used to encrypt
the symmetric database key. This allows a master to encrypt a
symmetric database key with a user's public key (so only the user
can decrypt it with their private key).

Encryption using a public key / private key pair is referred to as
"public key encryption". The reference implementation uses GNU
Privacy Guard with associated libraries libgpgme and libgpg-error
for asymmetric key encryption.

Symmetric key The same key used to both encrypt and decrypt. Symmetric ciphers
are faster than asymmetric ciphers. Encryption using a symmetric
key is referred to as "symmetric key encryption". Depending on the
platform, the reference implementation uses either GNU Privacy
Guard's libgcrypt, or libcrypto from OpenSSL, for symmetric key
encryption.

http://openssl.org/

Database Encryption

369

Overview

Warning

GT.M implements database encryption with a plug-in architecture that allows for your choice of cipher. Any code statically
or dynamically linked in to a GT.M process must meet the requirements of code used for external calls. The GT.M distribution
includes a reference implementation that interfaces to several common packages and libraries. You are free to use the reference
implementations as is, but remember that the choice of cipher and package is yours, and FIS neither recommends nor supports
any specific package.

Note

In any given instance, you must use the same encryption libraries for all databases accessed by the processes
of an application instance, but each database file can have its own key. Of course, all processes accessing a
database or journal file must use the same encryption algorithm and key.

Data in Database and Journal Files

A GT.M database file contains several parts:

1. A file header containing information pertaining to the database file itself.

2. Global and local bit maps, which together specify which blocks in the file are in use and which blocks are free.

3. Data blocks containing the actual data, as well as index blocks containing structural information providing paths to the
actual data (there is a directory tree, and one or more global variable trees). Each data or index block consists of a block
header, and one or more data records.

In an encrypted database, GT.M encrypts only the index and data records in a database. The file header, bit maps, and
block headers are not encrypted, i.e., information relating to database structure is not encrypted. This means some system
administration operations such as turning journaling on and off, do not require the encryption key for a database file. Others,
such as MUPIP EXTRACT, do.

Journal files contain data records, such as before image records, update records, and after image records, as well as structural
information such as transaction markers, process records, etc. Again, only records that contain data - before image records,
update records and after image records - are encrypted. Records that contain structural information remain in cleartext.

Records subject to encryption are collectively referred to in the document as data records.

Symmetric and Asymmetric Ciphers

For performance, a symmetric cipher is used to encrypt and decrypt data records. Asymmetric ciphers are used by the
reference implementation to secure the symmetric cipher keys stored on disk. A password is used to secure the private key
which is stored on a key ring on disk. The following illustration is an overview of GT.M database encryption in the reference
implementation using GNU Privacy Guard (GPG) to provide the ciphers.

Database Encryption

370

Key Ring on Disk

In the reference implementation, a password protected key ring on disk contains the private key of the asymmetric cipher. A
password is required to access the key ring on disk and obtain the private key. Password acquisition happens in one of three
ways:

Database Encryption

371

1. When the environment variable $gtm_passwd is not set, before a GT.M mumps process needs to open an encrypted
database file, the application calls a program such as GETPASS.m to prompt for and obtain a password for the key ring on
disk.

2. When the environment variable $gtm_passwd is set to the null string, at process startup, GT.M implicitly calls the program
GETPASS.m to prompt for and obtain a password. The environment variable, $gtm_passwd is then set to an obfuscated
version of the password required to unlock the key ring on disk.

3. The environment variable $gtm_passwd contains an obfuscated version of the password required to unlock the key ring
on disk to obtain the private key. The environment variable can be passed in to GT.M, or it can be prompted for and set, as
described below.

Some graphical user interfaces, e.g., GNOME or KDE, may detect when you are being prompted for the GPG keyring password
and use a graphical interface instead of the terminal interface. You may be able to disable this behavior if you unset the
$DISPLAY environment variable, or use an ssh connection to localhost that disables X forwarding. Consult your graphical user
interface documentation.

In order to enable the Job command, the password for the key ring on disk exists in the environment of the process in
environment variable $gtm_passwd where it can be passed from a parent process to a child. In order to prevent inadvertent
disclosure of the password, for example, in a dump of the environment submitted to FIS for product support purposes, the
password in the environment is obfuscated using information available to processes on the system on which the process is
running, but not available on other systems.

$gtm_passwd is the only way for a child process to receive a password from a parent. In the event that the parent process does
not pass $gtm_passwd to the child, or passes an incorrect password, there is little a child without access to an input device can
do except log an error and terminate.

An obfuscated password in the environment is the only way that other GT.M processes (MUPIP and DSE) can be provided with
a password. If they encounter an encrypted database or journal file, and do not have an obfuscated password to the key ring
on disk in the environment, they terminate with the error message "GTM-E-CRYPTINIT, Error initializing encryption library.
Environment variable gtm_passwd set to empty string. Password prompting not allowed for utilities". There are (at least) two
ways to provide MUPIP and DSE processes with obfuscated passwords in $gtm_passwd:

1. maskpass is a stand-alone program that prompts the user for the password to the key ring on disk, and returns an
obfuscated password to which $gtm_passwd can be set. The environment variable $gtm_passwd should be not set, set to
a null value, or set to a value produced by maskpass. Setting $gtm_passwd to an incorrect non-null value without using
maskpass could result in undefined behavior of the encryption library. You can use maskpass in shell scripts. For example:

$ echo -n "Enter Password: ";export gtm_passwd=`$gtm_dist/plugin/gtmcrypt/maskpass|cut -f 3 -d " "`
Enter Password:
$

2. Create a one line GT.M program as follows:

zcmd ZSYstem $ZCMdline Quit

and use it invoke the MUPIP or DSE command. For example:

$ gtm_passwd="" mumps -run zcmd mupip backup -region \"*\"

The empty string value of $gtm_passwd causes the MUMPS process to prompt for and set an obfuscated password in its
environment which it then passes to the MUPIP program. Shell quote processing requires the use of escapes to pass the
quotes from the ZSYstem command to the shell.

Database Encryption

372

The environment variable $gtm_passwd should be one of the following:

• not set

• set to a null value

• set to a value corresponding to an obfuscated password (e.g., produced by maskpass)

The following schematic illustrates acquisition of the password for the key ring on disk. Note that an error (for example from
the entry of an incorrect password) may not be triggered immediately - for example, DSE does not need an encryption key until
you attempt to access data (since the file header is not encrypted, access to it does not require a key).

Database Encryption

373

Master Key File and Key Files

The reference implementation uses a master key file for each user to obtain the symmetric keys for each database or journal
file. The environment variable $gtm_dbkeys specifies the master key file. If $gtm_dbkeys points to a file, it is the master key
file. If it points to a directory, the file .gtm_dbkeys in that directory is the master key file (that is: $gtm_dbkeys/.gtm_dbkeys).

Database Encryption

374

If the environment variable is not defined, the functions look for a key file ~/.gtm_dbkeys (i.e., in the home directory of the
process' userid). The master key file contains sections as follows:

dat database_filename

key key_filename

where database_filename is the name of a database file, for example, /var/xyzapp/gbls/accounts.dat and key_filename
is the name of a key file containing a symmetric key encrypted with a public key, for example: /home/sylvia/dbkeys/
accounts.key.

Key files are text files which can even be faxed or e-mailed: since they are secured with asymmetric encryption, you can
transmit them over an insecure channel. As discussed below, the same database_filename can occur multiple times in a master
key file.

Memory Key Ring

For each key_filename, the GT.M process (MUMPS, MUPIP or DSE) builds a memory key ring from the key ring on disk and the
master key file. The memory key ring contains a list of elements where each element consists of a filename, a symmetric cipher
key, and a cryptographic hash of that symmetric cipher key. Using the private key obtained from the key ring on disk, GT.M
obtains the symmetric keys from key files pointed to by the master key file.

Database and journal file headers include a cryptographic hash of the encryption key and algorithm used for that file. When
opening a file, GT.M uses the key in the memory key ring whose hash matches that in the header - the database_filename in the
key ring is ignored. Older keys need not be deleted until they are no longer required (for example, an older key may be required
to access a restored backup copy of a database). Permitting the same database_filename to occur multiple times in a master key
file also enables one master key file to be used for multiple instances of an application. This ensures that the correct key for
a file is always used, even if the file has been renamed, copied from another location, etc. - the correct key must of course be
available in the memory key ring; if no such key exists, GT.M triggers a CRYPTKEYFETCHFAILED error.

Only for MUPIP CREATE does GT.M rely on the database_filename in the key ring. MUPIP CREATE computes the
cryptographic hash for the correct key to place in the database file header. If the same database_filename occurs more than
once in the master key file (and hence in the memory key ring), MUPIP CREATE uses the key_filename associated with the last
occurrence of that database_filename in the master key file.

This is illustrated by the following illustration:

Database Encryption

375

Key Validation and Hashing

As discussed earlier, a process uses that key in its memory key ring whose hash matches the hash in the database or journal file
header; the file name is not checked. MUPIP CREATE computes the hash value for the key at database creation time, and writes
it to the database file header. When GT.M creates a new journal file for an encrypted database file, it copies the hash from the

Database Encryption

376

database file header into the journal file header. Similarly, MUPIP EXTRACT -FORMAT=BINARY, places the database file hash
in the extract, which is encrypted; indeed, since an extract can come from multiple database files, extract places the hash from
the file header of each encrypted database in the extract. When processing each section in the extract, MUPIP LOAD uses that
key in its memory key ring that matches the hash for each section of the extract.

Database Operation

On disk, database and journal files are always encrypted - GT.M never writes unencrypted data to an encrypted database or
journal file. GT.M uses decryption when reading data records from disk, and encryption when it writes data records to disk.

With encrypted databases, the number of global buffers allocated is automatically doubled, for example, if the database file
header specifies 2000 global buffers, when the file is opened, GT.M automatically allocates 4000 global buffers. Global buffers
are used in pairs: one global buffer has a copy of the encrypted database block as it exists on disk and the other has a copy of
the unencrypted version. There is no change to the size of the control structures (including lock space and journal buffers)
in shared memory. So, when using encrypted databases, you need to adjust your calculations of memory and shared memory
usage accordingly: for each open database file, the shared memory usage will increase by the number of global buffers times the
block size. For example, if the block size of a database file is 4KB, with 2048 global buffers, and the shared memory segment for
that database file occupies 9MB when unencrypted, it occupies 17MB when the file is encrypted. Depending on your operating
system you may need to change system configuration and tuning parameters. Other than global buffers, there is no change to
memory usage with encryption.

Encrypted databases consume additional CPU resources for encryption and decryption. Without detailed knowledge of the
chosen algorithms, the application patterns and hardware configuration, it is not possible to predict whether this will be
appreciable, and whether application throughput will be affected. As far as possible, FIS has attempted to engineer GT.M
database encryption so that the additional CPU resources are consumed outside software critical sections. The intention is
to minimize the impact of encryption on application throughput, at least on computer systems that are not starved of CPU
resources. You should determine the actual impact of encryption on your application when it runs on your system, preferably
using a test environment that exactly reflects your production environment.

Examples of use

The commands here are all line oriented to illustrate that they can be automated by being called from GT.M or from a shell
script. For interactive use, there are many graphical user interfaces (GUIs) usable with GPG. Although these examples were
generated on Linux, usage on other UNIX systems should be virtually identical.

Key Management

This is an example of key management using GPG and the reference implementation.

Helen Keymaster (helen@gt.m) is the master of keys, and provides a database key to Phil Keyuser (phil@gt.m). Helen does not
manage the database. Phil is the database manager, but he is not the master of keys.In order to communicate securely, Helen
and Phil each set up a GPG keyring, generate a public / private key pair, and exchange & authenticate each other's public keys.
This permits a secure transfer of the key for the symmetric cipher used for the database.Warning: If you attempt key generation
on a virtual machine, or other computer system that does not have a good supply of entropy, the gen_key_pair.sh script could
take a very, very long time. Similarly, a key quality of 2 for the gen_sym_key.sh script on a machine without a plentiful supply
of entropy can also tax your patience. Use a physical computer system with a lot of entropy. If you are able to, use an entropy
gathering daemon such as egd (http://egd.sourceforge.net), or consider acquiring an entropy source such as the Entropy Key
(http://www.entropykey.co.uk) that you can use to distribute entropy to your virtual machines.

 The workflow is as follows:

http://egd.sourceforge.net/
http://www.entropykey.co.uk/

Database Encryption

377

1. Helen and Phil each create a new GPG keyring and a new public-private key pair3. In the gen_keypair.sh script GPG
generates the key pair4, putting public and private keys in the key ring; the latter locked with a passphrase. The public key
is also exported to a text file, and its fingerprint is displayed in the terminal session. Each of them e-mails (or otherwise
sends) her/his public key text file to the other5. This is illustrated below; first Helen, then Phil (if the GNUPGHOME
environment variable is not set, it will default to $HOME/.gnupg).

Database Encryption

378

2. Helen e-mails helen@gt.m_pubkey.txt the file containing her exported public key to Phil, and Phil sends
phil@gt.m_pubkey.txt, his exported public key to Helen. To protect against "man in the middle" attacks, they speak on
the phone to exchange keyfingerprints, or send each other the fingerprints by text message,or facsimile - a different
communication channel than that used to exchange the keys. Phil does likewise with Helen's key. They use the
import_and_sign_key.sh shell script. After importing and signing each other's public keys, Phil and Helen can communicate
securely with each other, even in the presence of eavesdroppers. Helen's keyring with Phil's imported key is shown below:

Database Encryption

379

3. Using the gen_sym_key.sh script, Helen generates a symmetric cipher key for Phil to use in encrypting a new database
file cust.dat. With a key strength of 2, a symmetric key is suitable for use in production and in the example is stored in file
helen_cust_dat.txt encrypted with Helen's public key so that only she can decrypt it. The gen_sym_key.sh script never
displays the symmetric cipher key; the key in the text file on disk can only be decrypted with Helen's private key.

4. With the encrypt_sign_db_key.sh script, Helen uses her private key to decrypt the symmetric cipher key in
helen_cust_dat.txt, encrypts it with Phi's public key, and signs it with her private key, creating a file called phil_cust_dat.txt.
She sends this file to Phil, either as an e-mail attachment, or putting it in a mutually agreed upon location on disk. As before,
even though the key is on disk, it can be decrypted only with Phil's private key. Note that from this point on, even if Helen
is hit by a truck, or resigns, Phil has access to the key and can use the same encrypt_sign_db_key.sh script to provide the
key to, say, Xavier, Helen's successor. Helen preparing the key for Phil is shown below.

Database Encryption

380

Database Encryption

381

5. With the add_db_key.sh script, Phil now adds the key to his GT.M master key file. He can then create the encrypted
database file with mupip create, load it with data and use it. Until the database is created and loaded with data, the key has
no value and can be discarded at will. Once the database is created and loaded with the data, the key must be retained as
long as access to the database - or even a backup thereof - is ever required. The entire process is illustrated below:

6. As a final check to make sure that the database was created with the correct symmetric cipher key and the correct cipher,
Helen can use the gen_sym_hash.sh script to compute a hash from the key in helen_cust_dat.txt while Phil uses GT.M's dse
dump -fileheader -all command to print the key from the file header of the database file he creates. If the hashes match, the
database file has been correctly created.

Below are scripts of the key management example above.

Helen creates a new GPG keyring with a public and private key pair:

helen$ export GNUPGHOME=$PWD/.helengnupg
helen$ $gtm_dist/plugin/gtmcrypt/gen_keypair.sh helen@gt.m Helen Keymaster
Passphrase for new keyring:
Verify passphrase:
Key ring will be created in /home/helen/.helengnupg

Database Encryption

382

Key generation might take some time. Do something that will create entropy, like moving the mouse or typing in
 another
 session.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
/home/helen/.helengnupg/pubring.gpg

pub 1024D/BC4D0739 2010-05-07
Key fingerprint = B38B 2427 5921 FFFA 5278 8A91 1F90 4A46 BC4D 0739
uid Helen Keymaster <helen@gt.m>
sub 2048R/A2E8A8E8 2010-05-07
Key pair created and public key exported in ASCII to helen@gt.m_pubkey.txt
helen$

Phil creates a new GPG keyring with a public and private key pair:

phil$ export GNUPGHOME=$PWD/.philgnupg
phil$ $gtm_dist/plugin/gtmcrypt/gen_keypair.sh phil@gt.m Phil Keyuser
Passphrase for new keyring:
Verify passphrase:
Key ring will be created in /home/phil/.philgnupg
Key generation might take some time. Do something that will create entropy, like moving the mouse or typing in
 another
 session.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
/home/phil/.philgnupg/pubring.gpg

pub 1024D/A5719A99 2010-05-07
Key fingerprint = 886A BAFC E156 A9AD 7EA9 06EA 8B8B 9FAC A571 9A99
uid Phil Keyuser <phil@gt.m>
sub 2048R/AD37D5A0 2010-05-07
Key pair created and public key exported in ASCII to phil@gt.m_pubkey.txt
phil$

Then Helen sends Phil the file helen@gt.m_pubkey.txt and Phil sends Helen the file phil@gt.m_pubkey.txt.

Helen imports Phil's public key into her keyring, verifying the fingerprint when she imports it, and signing it to confirm that
she has verified the fingerprint:

helen$ $gtm_dist/plugin/gtmcrypt/import_and_sign_key.sh phil@gt.m_pubkey.txt phil@gt.m
gpg: key A5719A99: public key "Phil Keyuser <phil@gt.m>" imported
gpg: Total number processed: 1
gpg: imported: 1
###
pub 1024D/A5719A99 2010-05-07
Key fingerprint = 886A BAFC E156 A9AD 7EA9 06EA 8B8B 9FAC A571 9A99
uid Phil Keyuser <phil@gt.m>
sub 2048R/AD37D5A0 2010-05-07
###

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX719.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX720.txt

Database Encryption

383

Please confirm validity of the fingerprint above (y/n/[?]): y
Passphrase for keyring:
Successfully signed public key for phil@gt.m received in phil@gt.m_pubkey.txt
helen$

Phil likewise imports, verifies and sign's Helen's public key:

phil$ $gtm_dist/plugin/gtmcrypt/import_and_sign_key.sh helen@gt.m_pubkey.txt helen@gt.m
gpg: key BC4D0739: public key "Helen Keymaster <helen@gt.m>" imported
gpg: Total number processed: 1
gpg: imported: 1
###
pub 1024D/BC4D0739 2010-05-07
Key fingerprint = B38B 2427 5921 FFFA 5278 8A91 1F90 4A46 BC4D 0739 uid Helen Keymaster <helen@gt.m>
sub 2048R/A2E8A8E8 2010-05-07
###
Please confirm validity of the fingerprint above (y/n/[?]): y
Passphrase for keyring:
Successfully signed public key for helen@gt.m received in helen@gt.m_pubkey.txt
phil$

Helen and Phil can now securely exchange information.

Helen generates a symmetric cipher key for the new database file cust.dat:

helen$ $gtm_dist/plugin/gtmcrypt/gen_sym_key.sh 2 helen_cust_dat.txt
helen$

Then she encrypts the symmetric cipher key with Phil's public key, signs it, and produces a file phil_cust_dat.txt that she can
send Phil:

helen$ $gtm_dist/plugin/gtmcrypt/encrypt_sign_db_key.sh helen_cust_dat.txt phil_cust_dat.txt phil@gt.m
Passphrase for keyring:
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 1 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 1 signed: 0 trust: 1-, 0q, 0n, 0m, 0f, 0u
helen$

Phil adds the key in phil_cust_dat.txt to his master key file $HOME/.gtm_dbkeys:

phil$ export gtm_dbkeys=$HOME/.gtm_dbkeysphil$ $gtm_dist/plugin/gtmcrypt/add_db_key.sh $PWD/gtm.dat
phil_cust_dat.txt $gtm_dbkeys
phil$

Phil creates a global directory, where he changes the configuration parameter for the database file cust.dat specifying that it be
encrypted the next time it is created. (Remember that except for mapping from global variable names to database file names,
configuration parameters in the global directory are used only when MUPIP creates new database files.) He then creates the
database file, runs a DSE dump fileheader to extract the hash (highlighted in the output), and sends it to Helen for verification
(notice that MUPIP CREATE generates an error for the mumps.dat file that exists already, but creates a new encrypted cust.dat
file):

phil$ export gtmgbldir=gtm.gld
phil$ export gtm_passwd=""
phil$ $gtm_dist/mumps -dir
Enter Passphrase:
GTM>zsystem "$gtm_dist/mumps -run GDE"
%GDE-I-LOADGD, Loading Global Directory file

Database Encryption

384

/var/myApp/databases/gtm.gld
%GDE-I-VERIFY, Verification OK
GDE> change -segment DEFAULT -encryption
GDE> exit
%GDE-I-VERIFY, Verification OK
%GDE-I-GDUPDATE, Updating Global Directory file
/var/myApp/databases/gtm.gld

GTM>zsystem "$gtm_dist/mupip create"
Created file /var/myApp/databases/gtm.dat
Error opening file /var/myMpp/databases/mumps.dat

: File exists

%GTM-F-DBNOCRE, Not all specified database files, or their associated journal files were created

GTM>zsystem "dse"

File /var/myApp/databases/cust.dat
Region CUST

DSE> dump -fileheader -all

File /var/myApp/databases/cust.dat
Region CUST
Date/Time 04-MAY-2010 11:24:10 [$H = 61850,41050]
 Access method BG Global Buffers 1024
 Reserved Bytes 0 Block size (in bytes) 1024
 Maximum record size 256 Starting VBN 129
 Maximum key size 64 Total blocks 0x00000065
 Null subscripts NEVER Free blocks 0x00000062
 Standard Null Collation FALSE Free space 0x00000000
 Last Record Backup 0x0000000000000001 Extension Count 100
 Last Database Backup 0x0000000000000001 Number of local maps 1
 Last Bytestream Backup 0x0000000000000001 Lock space 0x00000028
 In critical section 0x00000000 Timers pending 0
 Cache freeze id 0x00000000 Flush timer 00:00:01:00
 Freeze match 0x00000000 Flush trigger 960
 Current transaction 0x0000000000000001 No. of writes/flush 7
 Maximum TN 0xFFFFFFFFE3FFFFFF Certified for Upgrade to V5
 Maximum TN Warn 0xFFFFFFFF73FFFFFF Desired DB Format V5
 Master Bitmap Size 112 Blocks to Upgrade 0x00000000
 Create in progress FALSE Modified cache blocks 0
 Reference count 1 Wait Disk 0
 Journal State DISABLED
 Mutex Hard Spin Count 128 Mutex Sleep Spin Count 128
 Mutex Spin Sleep Time 2048 KILLs in progress 0
 Replication State OFF Region Seqno 0x0000000000000001
 Zqgblmod Seqno 0x0000000000000000 Zqgblmod Trans 0x0000000000000000
 Endian Format LITTLE Commit Wait Spin Count 16
 Database file encrypted TRUE

 Dualsite Resync Seqno 0x0000000000000001 DB Current Minor Version 8
 Blks Last Record Backup 0x00000000 Last GT.M Minor Version 8
 Blks Last Stream Backup 0x00000000 DB Creation Version V5
 Blks Last Comprehensive Backup 0x00000000 DB Creation Minor Version 8

 Total Global Buffers 0x00000400 Phase2 commit pid count 0x00000000
 Dirty Global Buffers 0x00000000 Write cache timer count 0xFFFFFFFF
 Free Global Buffers 0x00000400 wcs_wtstart pid count 0x00000000
 Write Cache is Blocked FALSE wcs_wtstart intent cnt 0x00000000

Database Encryption

385

 Actual kills in progress 0 Abandoned Kills 0
 Process(es) inhibiting KILLs 0

 DB Trigger cycle of ^#t 0

 MM defer_time 0
 Database file encryption hash 12D119C93E28BBA9389C6A7FD53C2373CFF7181DF48FEF
 213523B7B38199EF18B4BADB232D30CBDA2DBFC5F85D97D7A5C4A3E3D13276DCBB63B30EBDAA6B5
 DD7

 Full Block Writes OFF Full Block Write Len 0

 TP blkmod nomod 0
 TP blkmod gvcst_srch 0
 TP blkmod t_qread 0
 TP blkmod tp_tend 0
 TP blkmod tp_hist 0

 Free blocks 992 Backup blocks 0
 Reformat blocks 0 Total blocks 992
 Shmpool blocked FALSE File Offset 0x0000000000000000
 Shmpool crit holder 0 Backup_errno 0
 Backup Process ID 0 Backup TN 0x0000000000000000
 Inc Backup TN 0x0000000000000000 Process Failed 0
 Allocs since check 0 Backup Image Count 0
 Temp File:

 Database is Fully Upgraded : TRUE
 Database WAS ONCE Fully Upgraded from V4 : TRUE
 Blocks to Upgrade subzero(negative) error : 0x00000000
 TN when Blocks to Upgrade last became 0 : 0x0000000000000000
 TN when Desired DB Format last changed : 0x0000000000000000
 TN when REORG upgrd/dwngrd changed dbfmt : 0x0000000000000000

 Block Number REORG upgrd/dwngrd will restart from : 0x00000000

 Upd reserved area [% global buffers] 50 Avg blks read per 100 records 200
 Pre read trigger factor [% upd rsrvd] 50 Upd writer trigger [%flshTrgr] 33

 Snapshot in progress FALSE Number of active snapshots 0
 Snapshot cycle 0 Active snapshot PID 0
 Snapshot TN 0 Total blocks 0
 Free blocks 0 Process failed 0
 Failure errno 0 Snapshot shared memory identifier -1
 Snapshot file name

DSE> exit

GTM>halt
$

Phil calls Helen with the hash, texts her mobile, or sends e-mail. Helen ensures that the hash of the key she generated matches
the hash of the database file created by Phil, and communicates her approval to Phil. Phil can now use the database. Either
Phil or Helen can provide the key to other users who are authorized to access the database and with whom they have securely
exchanged keys.

helen$ $gtm_dist/plugin/gtmcrypt/gen_sym_hash.sh helen_cust_dat.txt

Passphrase for keyring:gpg: encrypted with 2048-bit RSA key, ID A2E8A8E8, created 2010-05-07"

Database Encryption

386

Helen Keymaster <helen@gt.m>"178E55E32DAD6BFF761BF917412EF31904C...
helen$

The encrypted database file cust.dat is now ready for use. That file, all journal files, backups, and binary extracts will all have
the same symmetric encryption cipher and key, which means that software libraries that provide that cipher and copies of the
key (encrypted with the public keys of all those who are authorized to access them) must be retained as long as there may be
any need to access data in that database file, its journal files, extracts and backups.

The following command sequence diagram illustrates how Helen and Phil operate with one another.

Database Encryption

387

Tested Reference Implementations

GT.M database encryption comes with a reference implementation that should work "out of the box" with selected encryption
packages. You can use this for your initial development and testing with GT.M database encryption. There are many encryption
packages. As discussed earlier, FIS neither endorses nor supports any specific cipher or package. For your production use, you

Database Encryption

388

take responsibility for choosing, implementing and procuring support for your preferred package. Please remember that a
malfunction in your chosen encryption package may result in unrecoverable data and FIS will be unable to help you.

The Plugin Architecture and Interface section below details the reference implementation, which is provided with full source
code that you can freely modify for your own use.

For each platform on which GT.M supports encryption, the following table lists the encryption packages and versions against
which FIS tested GT.M. Note that FIS tested GT.M for operation against these packages; FIS did not test the robustness of the
encryption packages themselves.

OS (HW) libgpgme libgpg-error libgcrypt / libcrypto GPG

Ubuntu 12.04 LTS
(x86_64)

1.2.0-1.2 1.6-1 libgcrypt 1.4.4-5

RHEL 6 (x86_64) 1.1.6 1.4-2 libgcrypt 1.4.4-5

RHEL 6 (x86) 1.1.6 1.4-2 libgcrypt 1.4.4-5

AIX 6.1 and 7.1 1.1.8 + fix 1.7 libcrypto from OpenSSL -
(version >= 1.5)

AES256CFB as
implemented by OpenSSL
- (version >= 0.9.8)

Sun SPARC Solaris 10
(Update 6 and above)

1.1.4 + fix 1.6 libgcrypt 1.4.1

HP-UX 11V3 (11.31) 1.1.8 + fix 1.7 libgcrypt 1.4.1

SLES 11 (x86_64) 1.1.6-25.30 1.6-8.6 libgcrypt 1.4.4-2.2

Where the table lists a package version number followed by "+ fix" it means that in the process of testing, we identified issues
with the package that we fixed. We have provided the source code for our fixes to the upstream package maintainers. If you
have a support agreement with FIS, we will share that source code with you, upon request.

The reference implementation uses:

• The key ring on disk implemented by GPG.

• For public key encryption including the generation of public/private key pairs: RSA as implemented by GPG.

• For the cryptographic hash: SHA-512.

• For a programmatic interface to GPG: libgpgme.

• To provide error messages for GPG: libgpg-error.

• For symmetric encryption: AES256CFB implemented by libgcrypt on all platforms.

When GT.M database encryption was first released with V5.3-004, the reference implementation for AIX was Blowfish CFB. At
that time, there were certain limitations in libgcrypt as a consequence of the port of libgcrypt to the 64-bit environment being
less mature than its port to the 32-bit environment (GT.M on AIX is a 64-bit application). Also, Blowfish was used because the
implementation of AES on libcrypto from OpenSSL at that time required data to be in chunks that are multiples of 16 bytes. If
you wish to continue using Blowfish CFB with V6.0-001 via the reference implementation of the plugin, you need to change a
symbolic link post-installation, or define the environment variable gtm_crypt_plugin as follows:

Database Encryption

389

• If the environment variable gtm_crypt_plugin is defined and provides the path to a shared library relative to $gtm_dist/
plugin, GT.M uses $gtm_dist/plugin/$gtm_crypt_plugin as the shared library providing the plugin.

• If $gtm_crypt_plugin is not defined, GT.M expects $gtm_dist/plugin/libgtmcrypt.so to be a symbolic link to a shared library
providing the plugin. The expected name of the actual shared library is libgtmcrypt_cryptlib_CIPHER.so (depending on your
platform, the actual extension may differ from .so), for example, libgtmcrypt_openssl_AESCFB. GT.M cannot and does not
ensure that the cipher is actually AES CFB as implemented by OpenSSL - GT.M uses CIPHER as salt for the hashed key in the
database file header, and cryptlib is for your convenience, for example, for troubleshooting. Installing the GT.M distribution
creates a default symbolic link.

Note

To migrate databases from Blowfish CFB to AES CFB requires that the data be extracted and loaded into
newly created database files. To minimize the time your application is unavailable, you can deploy your
application in a Logical Multi-Site (LMS) configuration, and migrate using a rolling upgrade technique Refer
to the Chapter 7: “Database Replication” (page 173) for more complete documentation.

When a GT.M process first opens a shared library providing an encryption plugin, it ensures that the library resides in
$gtm_dist/plugin or a subdirectory thereof. This ensures that any library implementing an encryption plugin requires the same
permissions to install, and is protected by the same access controls, as the GT.M installation itself.

On all platforms on which GT.M supports encryption, the distribution includes three reference implementations of the
plugin, provided by the shared libraries libgtmcrypt_gcrypt_AES256CFB.so, libgtmcrypt_openssl_AES256CFB.so and
libgtmcrypt_openssl_BLOWFISHCFB.so. On installation, platforms other than AIX, libgtmcrypt.so is a symbolic link to
libgtmcrypt_gcrypt_AES256CFB.so; on AIX symbolic link is to libgtmcrypt_openssl_AESCFB.so. To use Blowfish CFB as the
default, you should change the symbolic link after installing GT.M. To use AES CFB as the default, but retain Blowfish CFB
for databases migrated from V6.0-000, you can set gtm_crypt_plugin when using those databases. For scripts intended to be
portable between V6.0-000 and V6.0-001, you can safely set a value for gtm_crypt_plugin, which V6.0-000 ignores.

Note

• Encrypted database files are compatible between different endian platforms as long as they use the same
key and the same cipher.

• The sample shell scripts in the reference implementation use the standard shell (/bin/sh).

Caution

During development, in a core dump, FIS noticed a decrypted symmetric database key in buffer released
by libgpgme despite the fact that GT.M made an appropriate call to the library to destroy the key. We have
communicated this to the upstream developers. This emphasizes again the desirability of strong random
numbers as database keys as well as the disabling of core dumps except when required. These strong keys
can be created using the gen_sym_key.sh script described in the “Key Management ” (page 376) section.

Special note - Gnu Privacy Guard version 2

For the most part GPG version 2 is upward compatible with GPG version 1. An important difference between the two is that
when GPG v2 invoked via GPGME (such as for example with a JOB command or a command such as ZSYSTEM "mupip create"),

Database Encryption

390

there is not a convenient way to avoid invoking an "agent" (by default in /usr/bin/pinentry) that obtains the passphrase for
the keyring from the user. When the reference implementation has placed an obfuscated password in the environment, the
password should be derived from that obfuscated password, and the user should not be prompted for the password. The
solution is to create a GT.M pinentry function (packaged in pinentry-gtm.sh and pinentry.m).

If you are using Gnu Privacy Guard version 2, you need to set the environment variable GTMXC_gpgagent to point to the
location of gpgagent.tab. By default, GT.M places gpgagent.tab in the $gtm_dist/plugin/ directory. gpgagent.tab is an external
call table that pinentry-gtm.sh uses to create a a GT.M pinentry function.

When the gen_keypair.sh script is executed, it creates a file gpg-agent.conf in the GnuPG directory (~/.gnupg or specified by the
environment variable $GNUPGHOME) with the line such as pinentry-program /usr/lib/fis-gtm/V5.4-001_x86/plugin/gtmcrypt/
pinetry-gtm.sh which causes /usr/lib/fis-gtm/V5.4-001_x86/plugin/gtmcrypt/pinetry-gtm.sh to be invoked by GnuPG v2 as the
pinentry program. If the script finds the environment variable $gtm_passwd to be set, and as well as an executable GT.M, it
runs the pinentry.m program which provides GnuPG v2 with the keyring password from the obfuscated password. Otherwise,
it calls /usr/bin/pinentry.

If you are using GnuPG v2 with a .gnupg directory not created by gen_keypair.sh, you should create a gpg-agent.conf as
described here, substituting the directory where GT.M is actually installed.

The GT.M pinentry function should not be used while changing the keyring passphrase, e.g., the passwd subcommand of the
gpg --edit-key command. One way to do this is to temporarily comment out the pinentry-program line in gpg-agent.conf by
placing a "#" in front of the line, e.g.:#/usr/lib/fis-gtm/V5.4-001_x86/plugin/gtmcrypt/pinetry-gtm.sh

GT.M versions prior to V5.4-001 are not compatible with GPG 2.x?.

Installation

The normal GT.M installation script (invoked by sh ./configure executed as root or with sudo sh ./configure in the directory in
which you have unpacked the GT.M distribution) will automatically install GT.M with the reference implementation plug-in.

If the encryption libraries are not part of the automatic search path on your system, you will need to take action specific to your
operating system and directory structure to make them accessible. For example, you may need to set one of the environment
variables $LD_LIBRARY_PATH or $LIBPATH, for example: export LIBPATH="/lib:/usr/lib:/usr/local/lib" and/or run the
ldconfig command.

You must also implement appropriate key management, including ensuring that users have appropriate values for
$gtm_dbkeys.

The $gtm_dist/plugin directory is configured such that you can copy it to a location of your choice to customize your own
encryption plug-in. After testing, simply replace the directory as distributed with your customized directory.

The structure of the $gtm_dist/plugin directory on Linux x86 is as follows:

plugin/
|-- gpgagent.tab
|-- gtmcrypt
| |-- add_db_key.sh
| |-- encrypt_sign_db_key.sh
| |-- gen_keypair.sh
| |-- gen_sym_hash.sh
| |-- gen_sym_key.sh
| |-- gtmcrypt.tab

Database Encryption

391

| |-- import_and_sign_key.sh
| |-- maskpass
| |-- pinentry-gtm.sh
| |-- pinentry.m
| |-- show_install_config.sh
| `-- source.tar
|-- libgtmcrypt_gcrypt_AES256CFB.so
|-- libgtmcrypt_openssl_AES256CFB.so
|-- libgtmcrypt_openssl_BLOWFISHCFB.so
|-- libgtmcrypt.so -> ./libgtmcrypt_gcrypt_AES256CFB.so
|-- o
`-- r

Administration and Operation of Encrypted Databases

Utility programs written in M (such as %GO) run within mumps processes and behave like any other code written in M.
Encryption keys are required if the mumps process accesses encrypted databases. A process running a utility program written
in M that does not access encrypted databases (such as %RSEL) does not need encryption keys just to run the utility program.

Utility programs not written in M (e.g., MUPIP) that need access to encryption keys do not prompt for the password to the key
ring on disk. They require the obfuscated password to be available in the environment. You can use the maskpass program
to set the password in the environment or a mumps wrapper process as discussed earlier to set the obfuscated password in
the environment. In some cases, if a required key is not supplied, or if an incorrect key is specified, the utility program defers
reporting the error at process start up in case subsequent actions don't require access to encrypted data, and instead reports it
when first attempting an encryption or decryption operation.

Since they do not access application data at rest, the GDE and LKE uitlities do not need access to encryption keys to operate
with encrypted databases.

MUPIP and DSE use the same plug-in architecture as mumps processes - gtmcrypt_init() to acquire keys, gtmcrypt_encrypt() to
encrypt, etc.

Utility Programs

GDE

Since the global directory file is never encrypted, GDE does not need access to encryption keys.

Format / Upgrade

The need to support encryption brings an upgrade to the global directory format, whether or not you use encryption. Simply
opening an existing global directory with GDE and closing the program with an EXIT command upgrades the global directory.

Important

FIS strongly recommends you make a copy of any global directory before upgrading it. There is no way to
downgrade a global directory - you need to recreate it.

If you inadvertently upgrade a global directory to the new format and wish to recreate the old global directory, execute the
SHOW ALL command with the new GT.M release and capture the output. Use the information in the SHOW ALL command to

Database Encryption

392

create a new global directory file with the prior GT.M release, or better yet, create a script that you can feed to GDE to create a
new global directory.

-[NO]ENcryption

-[NO]ENcryption is a SEGMENT qualifier. When creating the database file for a segment that is flagged as encrypted, MUPIP
CREATE acquires an encryption key for that file, and puts a cryptographic hash of the key in the database file header.

MUPIP

Except for the following commands where it does not need encryption keys to operate on encrypted databases, MUPIP
needs access to encryption keys to operate on encrypted databases: BACKUP -BYTESTREAM, EXIT, EXTEND, FTOK, HELP,
INTRPT, REPLICATE, RUNDOWN, STOP. MUPIP looks for the password for the key ring on disk in the environment variable
$gtm_passwd, terminating with an error if it is unable to get a matching key for any database, journal, backup or extract file
that contains encrypted data.

Note

MUPIP JOURNAL operations that only operate on the journal file without requiring access to the database -
EXTRACT and SHOW - require only the key for the journal file, not the current database file key.

MUPIP SET operations that require stand-alone access to the database do not need encryption keys; any
command that can operate with concurrent access to the database requires encryption keys.

All other MUPIP operations require access to database encryption keys.

MUPIP EXTRACT -FORMAT=ZWRITE or -FORMAT=GLO and MUPIP JOURNAL -EXTRACT are intended
to produce readable database content, and produce cleartext output even when database and journal files are
encrypted.

Since a MUPIP EXTRACT -FORMAT=BINARY extract file can contain encrypted data from multiple database
files, the extract file contains the hashes for all database files from which extracted data was obtained.

An encrypted database cannot be downgraded to GT.M version 4 (V4) format.

MUPIP CREATE

MUPIP CREATE is the only command that uses the database_filename in the master key file to obtain the key from the
corresponding key_filename. As discussed elsewhere, all other commands use the key from the key ring in memory that
matches the cryptographic hash for the encrypted data. If there are multiple files with the same file name, MUPIP CREATE uses
the key specified in the last database_filename entry with that name in the master key file.

MUPIP JOURNAL

The MUPIP JOURNAL -SHOW command now displays the cryptographic hash of the symmetric key stored in the journal file
header (the output is one long line):

$ mupip journal -show -backward mumps.mjl 2>&1 | grep hash
Journal file hash F226703EC502E9757848 ...
$

Database Encryption

393

MUPIP LOAD

Since an extract may contain the cryptographic hashes of multiple database files from which the data has been extracted,
MUPIP LOAD may require multiple keys even to load one database file. Additionally, the database file into which the data is
being loaded may have a different key from any data in the extract.

DSE

Unless you are acting under the specific instructions of FIS GT.M support, please provide DSE with access to encryption keys
by setting the value of $gtm_passwd in the environment.

DSE operations that operate on the file header (such as CHANGE -FILEHEADER) do not need access to database encryption
keys, whereas DSE operations that access data blocks (such as DUMP -BLOCK) usually require access to encryption keys.
However, all DSE operations potentially require access to encryption keys because if DSE is the last process to exit a database,
it will need to flush dirty global buffers, for which it will need the encryption keys. DSE does not encrypt block dumps. There
is a current misfeature, that access to the database key is needed to look at block 0 (a bitmap). In practical usage this is not a
severe restriction since typically when a bitmap is examined data records are also examined (which require the key anyway).

Please remember that DSE is a low level utility for use by knowledgeable users, and does not check for reasonableness of
commands and values.

The DSE DUMP -FILEHEADER -ALL command shows the database file header, including the encryption hash (the hash is a
very long line):

$ dse dump -fileheader -all 2>&1 | grep hash
Database file encryption hash F226703EC502E9757848EEC733E1C3CABE5AC...
$

Changing the hash in the database file header

Under normal operating conditions, you should not need to change the cryptographic hash of the symmetric key. However,
since there are theoretical attacks against hashes, and because a new cryptographic hash standard (SHA-3) is under
development as of this date, DSE provides the ability to change the hash of the password stored in the database file header if
and when you change the hash library.

The DSE CHANGE -FILEHEADER -ENCRYPTION_HASH function hashes the symmetric key in the key file and replaces the
hash in the database file header with this new value. The procedure to change the hash is:

• With the old hash function linked to your plug-in, ensure that the database is structurally sound with a MUPIP INTEG.
Although changing the hash in the file header makes no change to any data block, you will have more confidence in
your work, and easier troubleshooting in the event of subsequent problems, if you verify database wholesomeness before
proceeding.

• Switch the plug-in to use the new hash function.

• Execute the DSE CHANGE -FILEHEADER -ENCRYPTION_HASH operation.

• Since recovery is not possible with a prior generation journal file with a different hash, if the database is journaled, create a
new journal file without a back-pointer using the MUPIP SET -JOURNAL -NOPREVJNL command. FIS suggests backing up
the database at this time.

• Verify the correctness of the new hash function by reading a global node or with a DSE DUMP -BLOCK command.

Database Encryption

394

As there is no way to change the hash in a journal file header, make sure that you retain access to the hash packages used
for any journal file as long as you want the data in old journal files to be accessible. These old journal files with different
hashes cannot be used for database recovery. The data in them can, however, be accessed with a MUPIP JOURNAL -EXTRACT
command by a MUPIP process using the old hash function.

Changing Encryption Keys

The only way to change the encryption key of a database file is to extract the data and load it into a new database file created
with a different key. Use a logical multi site (LMS) application configuration to change keys while keeping the application
available. For example, if A is initially the initiating (primary) instance and B the replicating (secondary) instance:

1. Bring down instance B and change the database keys with EXTRACT and LOAD. Remember to save the journal sequence
numbers in the original database files, and to set the journal sequence number in all the newly created database files to the
largest number in any original database file.

2. Bring up instance B and let it catch up with A.

3. At a convenient time, switchover. Now application logic executes on B and A is the replicating instance.

4. Bring down instance A and change the database keys with either EXTRACT / LOAD or using a backup from B. Then bring
it back up and let it catch up.

5. To restore the original operating configuration, switchover at a convenient time. Now A again executes application logic
which is replicated to B.

FIS suggests using different encryption keys for different instances, so that if the keys for one instance are compromised, the
application can be kept available from another instance whose keys are not compromised, while changing the encryption keys
on the instance with compromised keys.

Database Creation

Just as there is no way to change the encryption key of a database file, it is not possible to turn on encryption for an
unencrypted database file, or to turn it off for an encrypted database file. Once a database file is created, its encryption
attributes are immutable. To create an encrypted database, use GDE to specify encryption in the global directory file. Then use
MUPIP CREATE to create an encrypted database and MUPIP LOAD to load data into it.

Plugin Architecture & Interface

As noted in the Tested Reference Implementations, GT.M includes a reference implementation that uses widely available
encryption packages. It is your choice: you can decide to use the packages that FIS tested GT.M against, or you can choose to
interface GT.M to another package of your choice. As noted earlier, FIS neither recommends nor supports any specific package
(not even those that we test against) and you should ensure that you have confidence in and support for whichever package
that you intend to use in production. The reference implementation is provided compiled as ready to run object code as well as
source code that you can customize to meet your needs.

Building the reference implementation from source code requires standard development tools for your platform, including C
compiler, make, ld, standard header files, header files for encryption libraries, etc.

This section discusses the architecture of and interface between GT.M and the plugin. You must ensure that any plugin you
provide presents the same interface to GT.M as the reference implementation.

Database Encryption

395

Packaging

The reference implementation by default resides in $gtm_dist/plugin/gtmcrypt.

The reference implementation includes:

1. A $gtm_dist/plugin/gtmcrypt sub-directory with all source files and scripts. The scripts include those needed to build/install
libgtmcrypt.so and "helper" scripts, for example, add_db_key.sh. A brief description of these scripts is as follows:

show_install_config.sh Reports the cryptographic library and cipher that a GT.M process would use, from
$gtm_crypt_plugin, if it has a value and otherwise from the name of the library linked to by
libgtmcrypt.so.

gen_sym_hash.sh Uses show_install_config.sh to identify the currently installed encryption configuration so that it
can generate the appropriate cryptographic hash for the provided symmetric key.

import_and_sign_key.sh Imports and signs one another's public keys.

gen_sym_key.sh Generates a symmetric cipher key for others to use in encrypting a database file.

encrypt_sign_db_key.sh Uses a private key to decrypt the symmetric cipher key , encrypts it with other's public key, and
signs it with the private key.

add_db_key.sh Adds a key to the master key file.

2. The plugin interface that GT.M expects is defined in gtmcrypt_interface.h. Never modify this file - it defines the interface
that the plugin must provide.

3. $gtm_dist/plugin/libgtmcrypt.so6 is the shared library containing the executables which is dynamically linked by GT.M and
which in turn calls the encryption packages. If the $gtm_dist/utf8 directory exists, then it should contain a symbolic link
to ../plugin.

4. Source code is provided in the file $gtm_dist/plugin/gtmcrypt/source.tar which includes the following scripts to compile and
install libgtmcrypt.so.

build.sh Compiles libgtmcrypt.so from the source code and has the following parameters:

• gcrypt or openssl: specifies the cryptographic library

• d or p: Use p for production and d for debugging

• AES256CFB or BLOWFISHCFB (optional): This optional parameter allows you to specify the
cipher with which to build the encryption plugin. The default is AES256CFB.

install.sh Installs libgtmcrypt.so and has the following parameters:

• gcrypt or openssl: specifies the cryptographic library

• AES256CFB or BLOWFISHCFB (optional): This optional parameter allows you to specify the
cipher with which to build the encryption plugin. The default is AES256CFB.

Extensions to the GT.M External Interface

GT.M provides additional C structure types (in the gtmxc_types.h file):

Database Encryption

396

1. gtmcrypt_key_t - a datatype that is a handle to a key. The GT.M database engine itself does not manipulate keys. The plug-
in keeps the keys, and provides handles to keys that the GT.M database engine uses to refer to keys.

2. xc_fileid_ptr_t - a pointer to a structure maintained by GT.M to uniquely identify a file. Note that a file may have multiple
names - not only as a consequence of absolute and relative path names, but also because of symbolic links and also because
a file system can be mounted at more than one place in the file name hierarchy. GT.M needs to be able to uniquely identify
files.

Although not required to be used by a customized plugin implementation, GT.M provides (and the reference implementation
uses) the following functions for uniquely identifying files:

1. xc_status_t gtm_filename_to_id(xc_string_t *filename, xc_fileid_ptr_t *fileid) - function that takes a file name and provides
the file id structure for that file.

2. xc_status_t gtm_is_file_identical(xc_fileid_ptr_t fileid1, xc_fileid_ptr_t fileid2) - function that determines whether two file
ids map to the same file.

3. gtm_xcfileid_free(xc_fileid_ptr_t fileid) - function to release a file id structure.

Operation

Mumps, MUPIP and DSE processes dynamically link to the plugin interface functions that reside in the shared library. The
functions serve as software "shims" to interface with an encryption library such as libmcrypt or libgpgme / libgcrypt.

The plugin interface functions are:

1. gtmcrypt_init()

2. gtmcrypt_getkey_by_name()

3. gtmcrypt_getkey_by_hash()

4. gtmcrypt_hash_gen()

5. gtmcrypt_encrypt()

6. gtmcrypt_decrypt()

7. gtmcrypt_close()

8. and gtmcrypt_strerror()

A GT.M database consists of multiple database files, each of which has its own encryption key, although you can use the
same key for multiple files. Thus, the gtmcrypt* functions are capable of managing multiple keys for multiple database files.
Prototypes for these functions are in gtmcrypt_interface.h.

The core plugin interface functions, all of which return a value of type xc_status_t are:

• gtmcrypt_init() performs initialization. If the environment variable $gtm_passwd exists and has an empty string value,
GT.M calls gtmcrypt_init() before the first M program is loaded; otherwise it calls gtmcrypt_init() when it attempts the first
operation on an encrypted database file.

• Generally, gtmcrypt_getkey_by_hash or, for MUPIP CREATE, gtmcrypt_getkey_by_name perform key acquisition, and place
the keys where gtmcrypt_decrypt() and gtmcrypt_encrypt() can find them when they are called.

http://mcrypt.sourceforge.net/
http://gnupg.org/

Database Encryption

397

• Whenever GT.M needs to decode a block of bytes, it calls gtmcrypt_decrypt() to decode the encrypted data. At the level at
which GT.M database encryption operates, it does not matter what the data is - numeric data, string data whether in M or
UTF-8 mode and whether or not modified by a collation algorithm. Encryption and decryption simply operate on a series of
bytes.

• Whenever GT.M needs to encrypt a block of bytes, it calls gtmcrypt_encrypt() to encrypt the data.

• If encryption has been used (if gtmcrypt_init() was previously called and returned success), GT.M calls gtmcrypt_close() at
process exit and before generating a core file. gtmcrypt_close() must erase keys in memory to ensure that no cleartext keys
are visible in the core file.

More detailed descriptions follow.

• gtmcrypt_key_t *gtmcrypt_getkey_by_name(xc_string_t *filename) - MUPIP CREATE uses this function to get the key for
a database file. This function searches for the given filename in the memory key ring and returns a handle to its symmetric
cipher key. If there is more than one entry for the given filename , the reference implementation returns the entry matching
the last occurrence of that filename in the master key file.

• xc_status_t gtmcrypt_hash_gen(gtmcrypt_key_t *key, xc_string_t *hash) - MUPIP CREATE uses this function to generate
a hash from the key then copies that hash into the database file header. The first parameter is a handle to the key and the
second parameter points to 256 byte buffer. In the event the hash algorithm used provides hashes smaller than 256 bytes,
gtmcrypt_hash_gen() must fill any unused space in the 256 byte buffer with zeros.

• gtmcrypt_key_t *gtmcrypt_getkey_by_hash(xc_string_t *hash) - GT.M uses this function at database file open time to obtain
the correct key using its hash from the database file header. This function searches for the given hash in the memory key
ring and returns a handle to the matching symmetric cipher key. MUPIP LOAD, MUPIP RESTORE, MUPIP EXTRACT, MUPIP
JOURNAL and MUPIP BACKUP -BYTESTREAM all use this to find keys corresponding to the current or prior databases from
which the files they use for input were derived.

• xc_status_t gtmcrypt_encrypt(gtmcrypt_key_t *key, xc_string_t *inbuf, xc_string_t *outbuf) and xc_status_t
gtmcrypt_decrypt(gtmcrypt_key_t *key, xc_string_t *inbuf, xc_string_t *outbuf)- GT.M uses these functions to encrypt and
decrypt data. The first parameter is a handle to the symmetric cipher key, the second a pointer to the block of data to encrypt
or decrypt, and the third a pointer to the resulting block of encrypted or decrypted data. Using the appropriate key (same
key for a symmetric cipher), gtmcrypt_decrypt() must be able to decrypt any data buffer encrypted by gtmcrypt_encrypt(),
otherwise the encrypted data is rendered unrecoverable7. As discussed earlier, GT.M requires the encrypted and cleartext
versions of a string to have the same length.

• char *gtmcrypt_strerror() - GT.M uses this function to retrieve addtional error context from the plug-in after the plug-in
returns an error status. This function returns a pointer to additional text related to the last error that occurred. GT.M displays
this text as part of an error report. In a case where an error has no additional context or description, this function returns a
null string.

The complete source code for reference implementations of these functions is provided, licensed under the same terms as GT.M.
You are at liberty to modify them to suit your specific GT.M database encryption needs. Check your GT.M license if you wish
to consider redistributing your changes to others.

Using the V5.4-001 Reference Implementation with Older Releases

Since the interface between GT.M and the encryption libraries is stable, encrypted databases require no special upgrade
procedures beyond any that may be required for ordinary databases when upgrading GT.M versions. Beyond an occasional
need to recompile the plugin and rebuild the shared library, a plugin other than the reference implementation should also
continue to operate with new GT.M versions. This stable interface also means that the encryption plugins from newer GT.M

Database Encryption

398

versions can be retrofitted to older GT.M versions. This section describes interfacing the reference plugin bundled with
V5.4-001 to an older GT.M version that supports encryption, such as V5.4-000A; adapt it to your needs should you wish to use a
plugin from one version of GT.M with another version.

Note

Since the reference plugin bundled with V5.4-001 supports GPG v2 as well as v1, and since its key
management is more robust from that bundled with older versions of GT.M that support encryption, FIS
suggests that you consider such a retrofit if you have chosen to deploy encrypted databases on older versions
of GT.M with the reference implementation.

The instructions provided in this section are expert friendly and intended for someone familiar with UNIX/Linux and GT.M.
All commands are examples, rather than intended to be executed as written. Adapt them to your specific needs and DO NOT
BLINDLY EXECUTE THEM VERBATIM.

Installation

To obtain the V5.4-001 reference implementation:

1. To go the GT.M project website on Source Forge.

2. Download the gtmcrypt_V54001.tar.gz file. from the V5.4-001 release of GT.M-x86-Linux-src.

gtmcrypt_V54001.tar.gz contains the source files for the reference plugin distributed with GT.M V5.4-001. (Depending on when
you downloaded it, it may have a pre-release version.)Before you begin:

• Ensure that you have a working C compiler (cc).

• Ensure that you have root access.

• The instructions provided in this section are for installing the V5.4-001 prerelease reference implementation on Ubuntu Linux
on an x86_64 system. Other platform should be similar.

To install the new database encryption plug-in on an older GT.M release, perform the following steps:

1. Unpack the distribution files in a temporary directory, for example, /tmp/tmp3 and change to the src sub-directory within.

mkdir /tmp/tmp3tar zxvf gtmcrypt_V54001.tar.gz -C /tmp/tmp3cd /tmp/tmp3/src

2. Run the build.sh script specifying the encryption library (gcrypt or openssl) and the build type (d for debug; p for
production). The script needs the environment variable $gtm_dist to be defined, and, depending on the way ICU is compiled
on your system, may well need $gtm_icu_version to be defined as well.

export gtm_dist=/usr/lib/fis-gtm/V5.4-000A_x86_64
export gtm_icu_version=4.2./build.sh gcrypt p

3. As root, make a backup copy of the existing plugin directory.

sudo cp -a $gtm_dist/plugin{,_sav_`date +%Y%m%d%H%M%S`}

4. As root, delete the Korn shell scripts and old source tarball in the existing plugin directory.

sudo rm -f $gtm_dist/plugin/gtmcrypt/{*.ksh,source.tar}

http://www.sourceforge.net/projects/fis-gtm

Database Encryption

399

5. As root, run the install script (executing via sudo will not work here, since it does not pass the $gtm_dist environment
variable to the shell script).

export gtm_dist=/usr/lib/fis-gtm/V5.4-000A_x86_64
./install.sh

6. Edit the gpgagent.tab file to specify the correct pathname to the libgtmcrypt.so shared library, and as root, copy the
distributed shell scripts and gpgagent.tab file.

cd ..
sudo cp *.sh gpgagent.tab $gtm_dist/plugin/gtmcrypt/

7. Set ownership and permissions appropriate to your installation.

sudo chown -R bin.gtm $gtm_dist/plugin
sudo chmod -R o-rwx,a-w $gtm_dist/plugin

8. Your new database encryption plugin should now be ready for use!

400

Chapter 13. GT.CM Client/Server

Revision History

Revision V5.5-000/6 19 July 2012 Corrected the example of starting a GT.CM
server.

Revision V5.5-000/4 6 June 2012 First published version.

Introduction

GT.CM is the network client/server database software for GT.M. GT.CM on UNIX allows access to GT.M databases residing on
a server, by client processes running on multiple nodes on a network.

GT.CM consists of a Server and a Client. The Server is a network object that performs database operations on behalf of GT.M
Client processes, running on other nodes of the network. GT.CM uses TCP task-to-task communication facilities for the link
between a client GT.M process and a server. GT.CM on UNIX operates properly between supported platforms independent of
the native byte ordering The GT.CM client is packaged within the GT.M run-time system.

Since GT.CM on UNIX uses TCP whereas GT.CM on OpenVMS uses DECnet for communication, GT.CM operability between
UNIX and OpenVMS is not supported.

When a GT.M process requires access to a database on another node, it sends a request across the network to a GT.CM Server
process running on that node, and the Server accesses the database. The process requesting access to a database through
GT.CM is referred to as a Client process. The node from which the data is requested is referred to as the Server node.

The use of GT.CM is largely transparent to the GT.M application code. The only visible change in the application.s environment
is the addition of error messages delivered in case of problems in network operations.

Note

GT.M transaction processing (TP) is not supported via GT.CM, and accessing GT.CM served databases within
an M TRANSACTION may cause application level inconsistency in the data.

Note

GT.CM servers do not invoke triggers. This means that the client processes must restrict themselves to
updates which don't require triggers, or explicitly call for the actions that triggers would otherwise perform.
Because GT.CM bypasses triggers, it may provide a mechanism to bypass triggers for debugging or complex
corrections to repair data placed in an inconsistent state by a bug in trigger logic.

In the event of recovery from system crashes, application level database consistency cannot be guaranteed for data residing in
databases (M global variable namespaces) accessed via different GT.CM servers or distributed between GT.CM and local access.

Overview

A GT.M program uses Global Directory to reference a global variable (gvn) or resource name for the object of a database lock
operation (nref) residing on a remote node. When a file in the Global Directory specifies a remote node name that does not

GT.CM Client/Server

401

match the name of the node on which the process is running, GT.M maps the segment to a database file on the remote node
using the GT.CM client. The two main components of GT.CM are:

1. GT.CM Server and

2. GT.CM Client

GT.CM Server

The GT.CM server accepts requests from GT.CM clients, processes the operation requested by the clients on the server database
and sends messages back to the clients with a status and if appropriate, along with the results of the requested operation.

GT.CM Client

The GT.CM client sends messages containing the operation type (SET, KILL, $ORDER, etc), and operation specific data (eg.
gvn to be SET, or KILLed) to the GT.CM server through a communication channel over a network. The client generally waits
for response from the server and initiates error processing based on the status contained in the response. The format of the
messages exchanged between the server and client is as defined by the FIS-developed GNP protocol.

If a client process needs to specify the port, and, optionally the TCP address to be used for the server side of the communication
with a particular node, it must have an environment variable of the form GTCM_[<node-name>] which defines the information
in the form [<IP address>:]<port number>. For a server running on a machine with multiple IP addresses, if the IP address is
not specified, GT.M uses the system default.

Note

GT.CM can communicate between systems having different endian architectures.

GT.CM Server Startup and Shutdown

This section describes the starting up and shutting down procedure of GT.CM server.

GT.CM Server Startup

A GT.CM server must be operating on every node of a network from which data is requested during distributed database
operation, including server nodes and nodes with both client and server processes. There are two ways by which the GT.CM
server can be invoked.

1. By explicitly starting the GT.CM server to listen to a specified port number, or by defaulting the port number.

2. Invoking the GT.CM server to listen at a standard port number assigned to the GNP protocol (e.g., in /etc/services file).

The GT.CM server executable (gtcm_gnp_server) should be placed in the directory referenced by the environment variable
$gtm_dist.

A process starting the GT.CM server must have the environment variables required to run GT.M.

Here is an example on how to start a GT.CM server:

$gtm_dist/gtcm_gnp_server -log=GTCM.log -service=6789

GT.CM Client/Server

402

This starts the GT.CM server in the background so that it listens at port 6789 for requests from GT.CM clients. The detailed
log information of the server is written in the GTCM.log file. If -log is not specified, log information is written in $gtm_log/
gtcm_gnp_server.log file. On nodes with multiple IP addresses issue the following command to configure the GT.CM server to
listen at a port specific to an IP address:

-service=192.160.105.212:6789

GT.CM Server Shutdown

To shutdown the GT.CM server, identify the process id of the GT.CM server to be shutdown and issue the following command:

$gtm_dist/mupip stop <GT.CM server PID>

This causes the GT.CM server to shutdown normally.

Types of Operations

The GT.CM client sends messages to the GT.CM server requesting the type of operation to be performed.

GT.CM server can recognize the following types of operations and process the specified operations on the "local" database.

• SET

• KILL

• GET

• DATA

• ORDER

• REVERSE ORDER

• QUERY

• LOCK

• UNLOCK

• ZALLOCATE

• ZDEALLOCATE

The MERGE, SET $PIECE() and SET $EXTRACT() facilities are currently implemented by the client using the operations from
the above set.

Error Messages

Errors can be classified into the following categories:

• Database Errors

• Protocol Errors

GT.CM Client/Server

403

• Session Establishment Errors

Each type of valid operation may issue an error from any of the above categories in case of a failure. Database errors include
application errors and database integrity errors; both types of errors are detected by the GT.M runtime system. The GT.CM
server does not deal with database errors directly, but passes them back to the client requesting the operation that detected the
error. GT.M handles any database errors delivered through the network by GT.CM in a way similar to the way it treats errors
detected when GT.CM is not involved.

When GT.CM is in use, GT.M may deliver errors resulting from network problems. Errors detected by the network interface
are passed to the component accessing the interface at the time of error. In recovering from a network related error, GT.CM
sacrifices all LOCKs owned by the client process that receives a network error. This should be taken into account if such a
process attempts to resume operations involving a database served through the lost connection.

Examples of Database Errors:

Undefined global, Global reference content not valid.

Examples of Protocol Errors:

Message format not valid, Operation type not valid.

Examples of Session Establishment Errors:

GNP version not supported, GNP session not established.

Examples

The following is an example illustrating the transparency of the GT.CM Client/Server Architecture while using GT.M.

On NODE1:

Map the local segment to remote file.

When the file specification in the Global Directory on the local node specifies a remote node name, GT.M maps the segment to
a database on the remote node using GT.CM.

To specify a node name in a Global Directory file specification, use the format on NODE1:

$ GDE
GDE> ch -seg DEFAULT -file=NODE2:/testarea/gtm/database/data.dat
GDE> exit

This example creates a local Global Directory, mapping all global names to the database file /testarea/gtm/database/data.dat.
Note that some of the key-words have been truncated to permit the example to appear on a single line.

On NODE2:

Create a database file on server Node2:

1. Change directory (cd) to the specified location (that is /testarea/gtm/database)

2. Create a global directory

$ GDE

GT.CM Client/Server

404

GDE> change -segment DEFAULT -file=data.dat
GDE> exit

3. Create the database file (data.dat).

$ mupip create

4. Start the GT.CM server.

Note that the global directory created on the remote node in this example is only used by mupip create, and never used by
either the client or the server.

On NODE1:

On NODE1, invoke GT.M and perform the following operations:

$setenv GTCM_NODE2 6789
$GTM
GTM> s ^x=1
GTM> k ^x
GTM> s ^y=10
GTM> h

All these updates should be reported in the NODE2:/testarea/gtm/database/data.dat file.

405

Appendix A. GT.M's IPC Resource Usage

Revision History

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

In GT.M's database engine, processes cooperate with one another to manage the database. To effect this cooperation, GT.M
processes use UNIX Interprocess Communication (IPC) resources to coordinate and control access to the database and journal
files, implement M LOCKs, and for database replication. This appendix helps you understand GT.M's IPC resource utilization.

This appendix includes two sections.

• The first section contains an exercise to identify "orphan" shared memory segments (those with no attached processes) in
a multi-site replication configuration. Usually orphan segments appear due to certain abnormal terminations (for example,
kill -KILL or a process crash situation) and create an out-of-design state for GT.M IPC resources where the last process may
not be able to clean up the shared memory segment. If you know the IPC resources GT.M uses, then you can easily find the
abnormal IPC resources when something does not seem right.

• The second section describes role of the gtmsecshr daemon process GT.M uses to manage M locks and clean up IPC
resources. This section also includes guidelines to fine-tune gtmsecshr for smooth operation.

Examining GT.M's IPC Resources

GT.M uses UNIX IPC resources as follows:

• For each database region, GT.M uses a shared memory segment (allocated with shmat()) for control structures and to
implement M Locks. For journaled databases, the journal buffers reside in that shared memory segment. With the BG
database access method, global buffers for the database also reside there. Note that use of the online help system by a process
opens a database file with the BG access method. The first process to open a database file creates and initializes the shared
memory segment, and the last process to exit normally cleans up and deletes the shared memory segment. However, under
certain abnormal terminations of the last process (for example, if it is terminated with a kill -KILL), that last process may
not be able to clean up the shared memory segment, resulting in "orphan" shared memory segments (those with no attached
processes).

• For database regions which use the MM access method, the file system manages an additional shared memory segment
(allocated with mmap()) to memory map the database file. GT.M does not explicitly allocate this shared memory. Because
UNIX allocates shared memory segment when GT.M opens a database file, and releases it when the process terminates, such
shared memory segments allocated by mmap() are never orphaned.

• When replicating, GT.M implements the journal pool on the primary in a shared memory segment. On the secondary, GT.M
uses a shared memory segment for the receive pool.

• GT.M operations such as creating a shared memory segment for a given database file should be performed only by one
process even if more than one process opens the database file at the same time. GT.M uses sets of public UNIX semaphores
to insure these operations are single-threaded. GT.M uses other sets of public semaphores to setup and tear down shared
memory segments allocated with shmat().

GT.M's IPC Resource Usage

406

• Public semaphore ids may be non-unique. Private semaphore ids are always unique for each database.

• The semaphore with keys starting 0x2b and 0x2c are startup and rundown semaphores. A GT.M process uses them only
while attaching to or detaching from a database.

• The number of processes and the number of semaphore attached to an IPC resource may vary according to the state of your
database. Some shared memory regions have 0 processes attached to them (the nattch column). If these correspond to GT.M
database regions or to global directories, they are most likely from improper process termination of GT.M (GT.M processes
show up as " mumps " in a ps command) and GT.M utility processes; source server, receiver server, or update processes
(which appear as " mupip "); or other GT.M utilities (" mupip ", " dse ", or " lke ").

• An instance has one journal pool, and, if a replicating instance, one receiver pool too. Note that you might run multiple
instances on the same computer system.

• For simple GT.M operation (that is, no multisite replication), there is no journal pool or receive pool.

The following exercise demonstrates how GT.M utilizes IPC resources in a multisite database replication configuration. The
task is to set up a replicated GT.M database configuration on two servers at 2 different locations.

The steps of this task are as follows:

1. Create 2 databases-America and Brazil-on 2 different servers (Server_A and Server_B) and deploy them in a multisite
database replication configuration so that America is the primary site and Brazil is the secondary site. Ensure that no
GT.M processes exist on either server.

2. In Server_A and in the directory holding database files for America give the following commands (note that because
the default journal pool size is 64MB, a value of 1048576 bytes - GT.M's minimum size of 1MB for this exercise):

$ export gtm_repl_instance=multisite.repl
$ mupip replicate -instance_create -name=America
$ mupip set -replication=on -region "*"
$ mupip replicate -source -start -buf=1048576 -secondary=Server_B:1234 -log=A2B.log -instsecondary=Brazil

3. Now execute the following command:

$ gtm_dist/ftok mumps.dat multisite.repl

4. This command produces the "public" (system generated) IPC Keys (essentially hash values) for mumps.dat and its
replication instance multisite.repl. It produces a sample output like the following:

 mumps.dat :: 721434869 [0x2b0038f5]
multisite.repl :: 721434871 [0x2b0038f7]

5. The keys starting with 0x2b (Hexadecimal form) are the keys for the semaphores used by replication instance America
with the high order hexadecimal 0x2b replaced by 0x2c for the replication instance file (GT.M's standard prefix for
semaphores for journal pools is 0x2c and that for database files is0x2b). You can observe this with the ipcs command:

------ Semaphore Arrays --------
key semid owner perms nsems
0xd74e4524 196608 welsley 660 1
0x2c0038f7 983041 welsley 777 3
0x00000000 1015810 welsley 777 5
0x2b0038f5 1048579 welsley 777 3
0x00000000 1081348 welsley 777 3

GT.M's IPC Resource Usage

407

Note

You can expect files in separate file systems to share the same public ftok. This is a normal behavior for
large systems with multiple installations and does not affect GT.M operations in any way. This is because
GT.M does not assume the semaphore has a one-to-one relationship with the resource and startup/shutdown
operations are relatively rare, so the interference among resources have a minimal or no impact. However,
the private semaphore (with the 0 key) is unique for a database and is used while a process is actively using
the resource.

6. Execute the following command and note down the shared memory id and private semaphore id on instance
America.

$ mupip ftok mumps.dat

This command identifies the "private" (GT.M generated) semaphores that a process uses for all "normal" access. The
sample output of this command looks like the following:
File :: Semaphore Id :: Shared Memory Id :: FileId

mumps.dat :: 1081348 [0x00108004] :: 2490370 [0x00260002] :: 0xf53803000000000000fe000000000000ffffffd2

7. Now, execute the following command and note down the shared memory and private semaphore id for journal pool.

$ mupip ftok -jnl multisite.repl

The sample output of this command looks like the following:
File :: Semaphore Id :: Shared Memory Id :: FileId

multisite.repl :: 1015810 [0x000f8002] :: 2457601 [0x00258001] :: 0xf73803000000000000fe000000000000ffffffd2

Note that the Semaphore id 1015810 and Shared Memory ID 2457601 are in the sample output of the ipcs -a
command below.

8. Now execute the command ipcs -a to view the current IPC resources. This command produces an output like the
following:

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 0 root 777 122880 1
0x00000000 2457601 welsley 777 1048576 1
0x00000000 2490370 welsley 777 2633728 1
0x00000000 2523139 welsley 600 393216 2 dest
0x00000000 2555908 welsley 600 393216 2 dest
0x00000000 1048583 welsley 600 393216 2 dest
0x00000000 1081352 welsley 600 393216 2 dest
0x00000000 1114121 welsley 666 376320 2
0xd74e4524 1146890 welsley 660 64528 0
0x00000000 1933323 welsley 666 62500 2
0x00000000 1966092 welsley 666 1960000 2

------ Semaphore Arrays --------
key semid owner perms nsems
0xd74e4524 196608 welsley 660 1
0x2c0038f7 983041 welsley 777 3
0x00000000 1015810 welsley 777 5
0x2b0038f5 1048579 welsley 777 3

GT.M's IPC Resource Usage

408

0x00000000 1081348 welsley 777 3

------ Message Queues --------
key msqid owner perms used-bytes messages

Using the following formula, where n is the number of regions, to calculate GT.M's IPC resources in a multisite
replication configuration:

IPCs = (n regions * (1 shm/region + 1 ftok sem/region + 1 private sem/region))
+ 1 sem/journal-pool + 1 sem/receiver-pool

In this case, America has one region and no receiver-pool so:

1 region * 3 IPCs/region + 1 IPC/journal-pool = 4 IPCs

Therefore, assuming that instance America has 1 region, the total IPC utilized by GT.M is: 4 [1 * 3 + 1 +0]. Note that
there is no receiver pool for instance America.

Note

For MUPIP RECOVER operations the total number of IPC resources are 3n (As there is no Journal Pool or
Receiver Pool) where n is the number of regions.

9. Now connect to Server_B and give the following commands in the directory holding database files for Brazil:

$ export gtm_repl_instance=multisite1.repl
$ mupip replicate -instance_create -name=Brazil $ mupip rundown -region "*"
$ mupip set -journal="enable,before,on" -replication=on -region "*"
$ mupip replicate -source -start -passive -buf=1048576 -log=B2dummy.log -inst=dummy
$ mupip replicate -receive -start -listenport=1234 -buf=1048576 -log=BFrA.log

Now execute the command:

$gtm_dist/ftok mumps.dat multisite1.repl

This command produces the "public" (system generated) IPC Key of mumps.dat and its replication instance
multisite1.repl. It produces a sample output like the following:

 mumps.dat :: 722134735 [0x2b0ae6cf]
multisite1.repl :: 722134737 [0x2b0ae6d1]

Note that keys starting with 0x2b in the output of the ipcs -a command are the public IPC keys for the semaphores of the
database file on replication instance Brazil.

10. Then, execute the following command and note down the shared memory id and private semaphore id on instance
Brazil.

$ mupip ftok mumps.dat

This command identifies the "private" (GT.M generated) semaphores that a process uses for all "normal" access. The
sample output of this command looks like the following:

File :: Semaphore Id :: Shared Memory Id :: FileId
--
mumps.dat :: 327683 [0x00050003] :: 11665410 [0x00b20002]:: 0xcfe63400000000000a0000000000000000000000

11. Now, execute the following command and note down the shared memory and private semaphore id for journal pool.

GT.M's IPC Resource Usage

409

$ mupip ftok -jnl multisite1.repl

The sample output of this command looks like the following:

File :: Semaphore Id :: Shared Memory Id :: FileId

multisite1.repl :: 262145 [0x00040001] :: 11632641[0x00b18001]:: 0xd1e63400000000000a0000000000000000000

Note that the Semaphore id 262145 and Shared Memory ID 11632641 are in the sample output of the ipcs -a
command below.

12. Now, execute the command ipcs -a to view the IPC resources of Brazil.

This command produces a sample output like the following:

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 11632641 gtmuser 777 1048576 3
0x00000000 11665410 gtmuser 777 2629632 2
0x00000000 11698179 gtmuser 777 1048576 2

------ Semaphore Arrays --------
key semid owner perms nsems
0x2c0ae6d1 229376 gtmuser 777 3
0x00000000 262145 gtmuser 777 5
0x2b0ae6cf 294914 gtmuser 777 3
0x00000000 327683 gtmuser 777 3
0x00000000 360452 gtmuser 777 5

------ Message Queues --------
key msqid owner perms used-bytes messages

Brazil has 1 region and its receiver server is listening to America, therefore as per the formula for calculating GT.M IPC
resources, the total IPCs utilized by GT.M is: 5 [1 * 3 + 1 + 1].

gmtsecshr

The GT.M installation script installs gtmsecshr as owned by root and with the setuid bit on. gtmsecshr is a helper program
that enables GT.M to manage interprocess communication and clean up interprocess resources. It resides in the $gtm_dist/
gtmsecshrdir subdirectory which is readable and executable only by root. gtmsecshr is guarded by a wrapper program. The
wrapper program protects gtmsecshr in the following ways:

• It restricts access to gtmsecshr in such a way that processes that do not operate as root cannot access it except though the
mechanism used by the wrapper.

• Environment variables are user-controlled input to gtmsecshr and setting them inappropriately can affect system operation
and cause security vulnearabilities. While gtmsecshr itself guards against this, the wrapper program provides double
protection by clearing the environment of all variables except gtm_dist, gtmdbglvl, gtm_log, and gtm_tmp and
truncating those when they exceed the maximum allowed length for the platform.

• gtmsecshr logs its messages in the system log. These messages can be identified with the GTMSECSHR facility name as
part of the message. GT.M processes communicate with gtmsecshr through socket files in a directory specified by the
environment variable gtm_tmp.

GT.M's IPC Resource Usage

410

gtmsecshr automatically shuts down after 60 minutes of inactivity. Normally, there is no need to shut it down, even
when a system is making the transition between a secondary and a primary. The only occasions when gtmsecshr must be
explicitly shut down are when a GT.M version is being removed - either a directory containing the GT.M version the running
gtmsecshr process belongs to is being deleted, or when a new GT.M version is being installed in the same directory as an
existing one.

Note

FIS strongly recommends against installing a new GT.M version on top of an existing GT.M version.

To terminate a gtmsecshr process, use a KILL-15 after shutting down all GT.M processes and running down all database
regions in use by GT.M in that directory.

Important

FIS strongly recommends that all GT.M processes that use a given version of GT.M use the same settings
for the gtm_log and gtm_tmp environment variables. gtmsecshr inherits these values from the GT.M
process that starts it. Not having common values for gtm_tmp and gtm_log for all processes that use a
given version of GT.M can have an adverse impact on performance.

If there are multiple GT.M versions active on a system, FIS recommends different values of gtm_tmp and gtm_log be used for
each version. This makes system administration easier.

Caution

A given database file can only be open by processes of a single version of GT.M at any given time.
Contemporary releases of GT.M protect against concurrent access to GT.M files by processes executing
different versions of GT.M. Since historical versions of GT.M did not protect against this condition, FIS
recommends procedural safeguards against inadvertent concurrent access by processes of multiple versions
on systems on which old versions of GT.M are installed and active, since such concurrent usage can cause
structural damage to the database.

411

Appendix B. Monitoring GT.M Messages

Revision History

Revision V6.0-000/1 21 November 2012 Added a table of replication message identifiers
that are logged in the operator log.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Monitoring GT.M Messages

This section covers information on monitoring GT.M messages. There are several types of messages.

• The GT.M run-time system sends messages (such as when a database file extends) to the system log. These are not trapped
by the application error trap.

• Compilation errors generated by GT.M are directed to STDERR. These are not trapped by the application error trap. You can
avoid them by compiling application code before deploying it in production, or log them by running mumps processes with
STDERR directed to a file.

• Errors trapped by the application and logged by the application. These are outside the purview of this discussion.

A system management tool will help you automate monitoring messages.

GT.M sends messages to the system log at the LOG_INFO level of the LOG_USER facility. GT.M messages are identified by
a signature of the form GTM-s-abcdef where -s- is a severity indicator and abcdef is an identifier. The severity indicators
are: -I- for informational messages, -W- for warnings, -E- for errors and -F- for events that cause a GT.M process to terminate
abnormally. Your monitoring should recognize the important events in real time, and the warning events within an appropriate
time. All messages have diagnostic value. It is important to create a baseline pattern of messages as a signature of normal
operation of your system so that a deviation from this baseline - the presence of unexpected messages, an usual number of
expected messages (such as file extension) or the absence of expected messages - allows you to recognize abnormal behavior
when it happens. In addition to responding to important events in real time, you should regularly review information and
warning messages and ensure that deviations from the baseline can be explained.

Some message identifiers are described in the following table:

Component Instance
File or
Replication
Journal
Pool

Receiver Pool Identifier

Y N/A SRCSRVR
Source Server

N N/A MUPIP

Receiver Server Y N/A RCVSRVR

Monitoring GT.M Messages

412

Component Instance
File or
Replication
Journal
Pool

Receiver Pool Identifier

N N/A MUPIP

Y N/A UPD
Update Process

N N/A MUPIP

N/A Y UPDREAD
Reader Helper

N/A N UPDHELP

N/A Y UPDWRITE
Writer Helper

N/A N UPDHELP

In addition to messages in the system log, and apart from database files and files created by application programs, GT.M creates
several types of files: journal files, replication log files, gtmsecshr log files, inter-process communication socket files, files from
recovery / rollback and output and error files from JOB'd processes. You should develop a review and retention policy. Journal
files and files from recovery / rollback are likely to contain sensitive information that may require special handling to meet
business or legal requirements. Monitor all of these files for growth in file numbers or size that is materially different than
expectations set by the baseline. In particular, monitoring file sizes is computationally inexpensive and regular monitoring -
once an hour, for example - is easily accomplished with the system crontab.

While journal files automatically switch to new files when the limit is reached, log files can grow unchecked. You should
periodically check the sizes of log files and switch them when they get large - or simply switch them on a regular schedule.

1. gtmsecshr log file - gtm_secshr_log in the directory $gtm_log (send a SIGHUP to the gtmsecshr process to create a new
log file).

Important

Starting with V6.0-000, GT.M logs gtmsecshr messages in the system log and ignores the environment
variable gtm_log.

2. Source Server, Receive Server, and Update Process log files. For more information, refer to Section : “Changing the Log
File” (page 239) in the Database Replication chapter.

Since database health is critical, database growth warrants special attention. Ensure every file system holding a database file has
sufficient space to handle the anticipated growth of the files it holds. Remember that with the lazy allocation used by UNIX file
systems, all files in a system complete for its space. GT.M issues an informational message each time it extends a database file.
When extending a file, it also issues a warning if the remaining space is less than three times the extension size. You can use
the $VIEW() function to find out the total number of blocks in a database as well as the number of free blocks.

As journal files grow with every update they use up disk faster than database files do. GT.M issues messages when a journal
file reaches within three, two and one extension size number of blocks from the automatic journal file switch limit. GT.M also
issues messages when a journal file reaches its specified maximum size, at which time GT.M closes it, renames it and creates
a new journal file. Journal files covering time periods prior to the last database backup (or prior to the backup of replicating
secondary instances) are not needed for continuity of business, and can be deleted or archived, depending on your retention

Monitoring GT.M Messages

413

policy. Check the amount of free space in file systems at least hourly and perhaps more often, especially file systems used for
journaling, and take action if it falls below a threshold.

GT.M uses monotonically increasing relative time stamps called transaction numbers. You can monitor growth in the database
transaction number with DSE DUMP -FILEHEADER. Investigate and obtain satisfactory explanations for deviations from the
baseline rate of growth.

After a MUPIP JOURNAL -ROLLBACK (non replicated application configuration) or MUPIP JOURNAL -RECOVER -
FETCHRESYNC (replicated application configuration), you should review and process or reconcile updates in the broken and
unreplicated (lost) transaction files.

In a replicated environment, frequently (at least hourly; more often suggested since it takes virtually no system resources),
check the state of replication and the backlog with MUPIP REPLICATE -CHECKHEALTH and -SHOWBACKLOG. Establish a
baseline for the backlog, and take action if the backlog exceeds a threshold.

When a GT.M process terminates abnormally, it attempts to create a GTM_FATAL_ERROR.ZSHOW_DMP_* file containing
a dump of the M execution context and a core file containing a dump of the native process execution context. The M execution
context dump is created in the current working directory of the process. Your operating system may offer a means to control
the naming and placement of core files; by default they are created the current working directory of the process with a name
of core.*. The process context information may be useful to you in understanding the circumstances under which the problem
occurred and/or how to deal with the consequences of the failure on the application state. The core files are likely to be
useful primarily to your GT.M support channel. If you experience process failures but do not find the expected files, check file
permissions and quotas. You can simulate an abnormal process termination by sending the process a SIGILL (with kill -ILL or
kill -4 on most UNIX/Linux systems).

Caution

Dumps of process state files are likely to contain confidential information, including database encryption
keys. Please ensure that you have appropriate confidentiality procedures as mandated by applicable law and
corporate policy.

GT.M processes issued with the JOB command create .mje and .mjo files for their STDERR and STDOUT respectively. Analyze
non-empty .mje files. Design your application and/or operational processes to remove or archive .mjo files once they are no
longer needed.

Use the environment variable gtm_procstuckexec to trigger monitoring for processes holding a resource for an unexpectedly
long time. $gtm_procstuckexec specifies a shell command or a script to execute when any of the following conditions occur:

• An explicit MUPIP FREEZE or an implicit freeze, such as for a BACKUP or INTEG -ONLINE that lasts longer than one
minute.

• MUPIP actions find kill_in_prog (KILLs in progress) to be non-zero after a one minute wait on a region.

• BUFOWNERSTUCK, INTERLOCK_FAIL, JNLPROCSTUCK, SHUTDOWN, WRITERSTUCK, MAXJNLQIOLOCKWAIT,
MUTEXLCKALERT, SEMWT2LONG, and COMMITWAITPID operator messages are being logged.

The shell script or command pointed to by gtm_procstuckexec can send an alert, take corrective actions, and log information.

Note

Make sure user processes have sufficient space and permissions to run the shell command / script.

414

Appendix C. Compiling ICU on GT.M supported platforms

Revision History

Revision 2 2 December 2011 Changed the instructions for compiling ICU 4.4
on AIX 6.1

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Compiling ICU

This appendix includes sample instructions to download ICU, configure it not to use multi-threading, and compile it for various
platforms. Note that download sites, versions of compilers, and milli and micro releases of ICU may have changed ICU since the
embedded dates when these instructions were tested making them out-of-date. Therefore, these instructions must be considered
examples, not a cookbook.

Although GT.M uses ICU, ICU is not FIS software and FIS does not support ICU. The sample instructions for installing and
configuring ICU are merely provided as a convenience to you.

All GT.M versions prior to V5.3-004 require exactly ICU 3.6, however, V5.3-004 (or later) accept ICU 3.6 or later.

Compiling ICU 4.4 on AIX 6.1

As of November 2011, ICU version 4.4 can be compiled on AIX with the following configuration:

Operating System: AIX

Version: AIX 6.1 64-bit

Compilers: IBM XL C/C++ 10, GNU make 3.80

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Set the environment variable OBJECT_MODE to 64.

3. Download the source code of ICU version 4.4 for C from http://site.icu-project.org/download

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-4_4-src.tgz | tar -xf -
cd icu/source
./runConfigureICU AIX --disable-threads --enable-renaming=no --with-library-bits=64 CC=xlc
gmake
gmake -k check
gmake install

Compiling ICU on GT.M supported platforms

415

5. Set the environment variable LIBPATH to point to the location of ICU. AIX uses the environment variable LIBPATH to
search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. To install ICU in a different directory, use --
prefix=<install_path> with the runConfigureICU command.

Compiling ICU 4.2 on AIX 6.1

As of December 2009, ICU version 4.2 can be compiled on AIX with the following configuration:

Operating System: UNIX

Version: AIX 6.1 64-bit

Compilers: IBM XL C/C++ 10, GNU make 3.80

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Set the environment variable OBJECT_MODE to 64.

3. Download the source code of ICU version 4.2 for C from http://site.icu-project.org/download

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-4_2_1-AIX6_1-VA9.tgz | tar -xf -
cd icu/source
./configure CC=/usr/vac/bin/cc CXX=/usr/vacpp/bin/xlc++ --disable-threads --disable-renaming
gmake
gmake check
gmake install

5. Set the environment variable LIBPATH to point to the location of ICU. AIX uses the environment variable LIBPATH to
search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed on /usr/local directory.

Compiling ICU 4.2 on AIX 5.3

As of December 2009, ICU version 4.2 could be compiled on AIX with the following configuration:

Operating System: AIX

Version: AIX 5.3 (PowerPC 64-bit)

http://site.icu-project.org/download

Compiling ICU on GT.M supported platforms

416

Compilers: VisualAge 6, GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 3.6 for C from http://site.icu-project.org/download

3. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
./configure --disable-renaming --disable-threads --enable-debug CC=cc CFLAGS=-q64
gmake
gmake check
gmake install

4. Set the environment variable LIBPATH to point to the location of ICU. AIX uses the environment variable LIBPATH to
search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. To install ICU in a different directory, use --
prefix=<install_path> with the runConfigureICU command.

Compiling ICU 3.6 on AIX 5.2

As of January 2007, ICU version 3.6 could be compiled on AIX with the following configuration:

Operating System: AIX

Version: AIX 5.2 (PowerPC 64-bit)

Compilers: VisualAge 6, GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 3.6 for C from http://icu.sourceforge.net/download/3.6.html#ICU4C

3. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU AIX --disable-64bit-libs --disable-threads
gmake
gmake check

http://icu.sourceforge.net/download/3.6.html#ICU4C

Compiling ICU on GT.M supported platforms

417

gmake install

4. Set the environment variable LIBPATH to point to the location of ICU. AIX uses the environment variable LIBPATH to
search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed on /usr/local directory. If you need to install ICU on a different directory type:

• runConfigureICU AIX --prefix=<install_path> --disable-64bit-libs --disable-threads

• Then, execute the gmake commands, and set the environment variable LIBPATH to point to the
appropriate location.

Compiling ICU 4.2 on HP Integrity IA64 HP-UX 11.31

As of November 2009, ICU version 4.2 could be compiled on HP Integrity IA64 HP-UX with the following configuration:

Operating System: UNIX

Version: IA64 HP-UX 11.31

Compilers: HP C/aC++ B3910B A.06.15, GNU make (3.81)

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU (in this example version 3.6 for C from http://icu.sourceforge.net/).

3. At the shell prompt, run the following commands:

gunzip -d < icu4c-4_2_1-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
./runConfigureICU HP-UX/ACC --disable-renaming --disable-threads --with-library-bits=64
gmake
gmake check
gmake install

4. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. HP-UX uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. To install ICU in a different directory, use --
prefix=<install_path> with the runConfigureICU command.

Compiling ICU on GT.M supported platforms

418

Compiling ICU 3.6 on HP Integrity IA64 HP-UX 11.31

As of November 2009, ICU version 3.6 could be compiled on HP Integrity IA64 HP-UX with the following configuration:

Operating System: UNIX

Version: IA64 HP-UX 11.31

Compilers: HP C/aC++ B3910B A.06.15, GNU make (3.81)

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU (in this example version 3.6 for C from http://icu.sourceforge.net/
download/3.6.html#ICU4C).

3. At the shell prompt, run the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU HP-UX/ACC --disable-threads
gmake
gmake check
gmake install

4. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. HP-UX uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. If you install ICU in a different directory, type:

• runConfigureICU HP-UX/ACC --prefix=<install_path> --disable-threads

• Then run the gmake commands, and set the environment variable LD_LIBRARY_PATH to point to the
appropriate location.

Compiling ICU 3.6 on HP PA-RISC HP-UX 11.31 (11iv3)

As of November 2009, ICU version 3.6 could be compiled on HP PA-RISC HP-UX with the following configuration:

Operating System: UNIX

Version:HP-UX 11.31 (11iv3)

Compiler: cc HP C/aC++ B3910B A.06.12, aCC HP C/aC++ B3910B A.06.15, GNU Make 3.81

http://icu.sourceforge.net/download/3.6.html#ICU4C
http://icu.sourceforge.net/download/3.6.html#ICU4C

Compiling ICU on GT.M supported platforms

419

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU (in this example, version 3.6 for C from http://icu.sourceforge.net/
download/3.6.html#ICU4C)

3. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU HP-UX/ACC --disable-64bit-libs? --enable-rpath --disable-threads
gmake
gmake check
gmake install

4. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. HP-UX uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in /usr/local. If you install ICU in a different directory, type:

• runConfigureICU HP-UX/ACC --prefix=<install_path> --enable-64bit-libs? --enable-rpath --
disable-threads

• Then execute the gmake commands, and set the environment variable LD_LIBRARY_PATH to point to
the appropriate location.

Compiling ICU 3.6 on HP PA-RISC HP-UX 11.11

As of January 2007, ICU version 3.6 could be compiled on PA-RISC HP-UX with the following configuration:

Operating System: UNIX

Version: HP-UX 11.11

Compilers: aCC A.03.50, cc B.11.11.08, GNU make (3.77+)

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 3.6 for C from http://icu.sourceforge.net/download/3.6.html#ICU4C

3. Add the following line in the configuration file source/config/mh-hpux-acc to include the appropriate C++ runtime libraries:

DEFAULT_LIBS = -lstd_v2 -lCsup_v2 -lcl

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -

http://icu.sourceforge.net/download/3.6.html#ICU4C

Compiling ICU on GT.M supported platforms

420

cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU HP-UX/ACC --disable-64bit-libs --disable-threads
gmake
gmake check
gmake install

5. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. HP-UX uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. If you need to install ICU on a different directory type:

• runConfigureICU HP-UX/ACC --prefix=<install_path> --disable-64bit-libs --disable-threads

• Then execute the gmake commands, and set the environment variable LD_LIBRARY_PATH to point to the
appropriate location.

Compiling ICU 4.2 on Red Hat Enterprise Linux 4 Update 2

As of December 2009, ICU version 4.2 could be compiled on x86_64 Linux with the following configuration:

Operating System: x86_64 Linux

Version: Red Hat Enterprise Linux 4 Update 2

Compilers: gcc 3.4.4, GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 4.2 for C from http://site.icu-project.org/download.

3. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
./runConfigureICU Linux --disable-renaming --disable-threads --with-library-bits=64
gmake
gmake check
gmake install

4. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. Linux uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries to be loaded.

This installs ICU in the /usr/local directory.

Compiling ICU on GT.M supported platforms

421

Note

By default, ICU is installed in the /usr/local directory. To install ICU in a different directory, use --
prefix=<install_path> with the runConfigureICU command.

Compiling ICU 3.6 on Red Hat Enterprise Linux 4 Update 2

As of January 2007, ICU version 3.6 could be compiled on x86 Linux with the following configuration:

Operating System: x86 Linux

Version: Red Hat Enterprise Linux 4 Update 2

Compilers: gcc 3.4.4, GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 3.6 for C from http://icu.sourceforge.net/download/3.6.html#ICU4C

3. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU Linux --disable-64bit-libs --disable-threads
gmake
gmake check
gmake install

4. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. Linux uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries to be loaded.

This installs ICU in the /usr/local directory.

Note

By default, ICU is installed on /usr/local directory. If you need to install ICU on a different directory type:

• runConfigureICU Linux --prefix=<install_path> --disable-64bit-libs --disable-threads

• Then execute the gmake commands, and set the environment variable LD_LIBRARY_PATH to point to
the appropriate location.

Compiling ICU 4.4 on Solaris 9 (SunOS 5.9)

As of December 2009, ICU version 4.2 could be compiled on Solaris with the following configuration:

Operating System: Solaris

http://icu.sourceforge.net/download/3.6.html#ICU4C

Compiling ICU on GT.M supported platforms

422

Version: Solaris 9 (SunOS 5.9)

Compilers: Sun Studio 8 (Sun C++ 5.5), GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 4.2 for C from http://site.icu-project.org/download

3. Add the following line in the configuration file source/config/mh-solaris to include the appropriate C++ runtime libraries:

DEFAULT_LIBS = -lCstd -lCrun -lm -lc

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-4_2_1-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
./configure --with-library-bits=64 --enable-threads=no LDFLAGS="-lCstd -lCrun"
gmake
gmake check
gmake install

5. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. Solaris uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries to be loaded.

ICU is now installed in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. To to install ICU in a different directory, use --
prefix=<install_path> with the runConfigure command.

Compiling ICU 4.2 on Solaris 9 (SunOS 5.9)

As of December 2009, ICU version 4.2 could be compiled on Solaris with the following configuration:

Operating System: Solaris

Version: Solaris 9 (SunOS 5.9)

Compilers: Sun Studio 8 (Sun C++ 5.5), GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 4.2 for C from http://site.icu-project.org/download

3. Add the following line in the configuration file source/config/mh-solaris to include the appropriate C++ runtime libraries:

DEFAULT_LIBS = -lCstd -lCrun -lm -lc

Compiling ICU on GT.M supported platforms

423

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-4_2_1-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
./configure --disable-renaming --disable-threads --enable-64bit-libs
gmake
gmake check
gmake install

5. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. Solaris uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries to be loaded.

ICU is now installed in the /usr/local directory.

Note

By default, ICU is installed in the /usr/local directory. To to install ICU in a different directory, use --
prefix=<install_path> with the runConfigure command.

Compiling ICU 3.6 on Solaris 9 (SunOS 5.9)

As of January 2007, ICU version 3.6 could be compiled on Solaris with the following configuration:

Operating System: Solaris

Version: Solaris 9 (SunOS 5.9)

Compilers: Sun Studio 8 (Sun C++ 5.5), GNU make (3.77+), ANSI C compiler

Installation Instructions

1. Ensure that system environment variable PATH includes the location of all the compilers mentioned above.

2. Download the source code of ICU version 3.6 for C from http://icu.sourceforge.net/download/3.6.html#ICU4C>

3. Add the following line in the configuration file source/config/mh-solaris to include the appropriate C++ runtime libraries:

DEFAULT_LIBS = -lCstd -lCrun -lm -lc

4. At the shell prompt, execute the following commands:

gunzip -d < icu4c-3_6-src.tgz | tar -xf -
cd icu/source/
chmod +x runConfigureICU configure install-sh
runConfigureICU Solaris --disable-64bit-libs --disable-threads
gmake
gmake check
gmake install

5. Set the environment variable LD_LIBRARY_PATH to point to the location of ICU. Solaris uses the environment variable
LD_LIBRARY_PATH to search for dynamically linked libraries to be loaded.

ICU is now installed in the /usr/local directory.

http://icu.sourceforge.net/download/3.6.html#ICU4C

Compiling ICU on GT.M supported platforms

424

Note

By default, ICU is installed in the /usr/local directory. If you need to install ICU on a different directory type:

• runConfigureICU Solaris --prefix=<install_path> --disable-64bit-libs --disable-threads

• Then execute the gmake commands, and set the environment variable LD_LIBRARY_PATH to point to the
appropriate location.

425

Appendix D. Building Encryption Libraries

Revision History

Revision V5.5-000/10 28 September 2012 In Section : “Solaris 9 and 10 (SPARC) ” (page
428), removed a redundant step.

Revision V5.4-002B 24 October 2011 Conversion to documentation revision history
reflecting GT.M releases with revision history for
each chapter.

Building Encryption Libraries

FIS neither encourages nor supports the use of any specific encryption library. In order to be helpful, here is how we created
the libraries for testing GT.M in the development environment.

Ubuntu 8.04 LTS (x86_64)

Packages were installed from standard repositories using the package manager.

Red Hat Enterprise Linux 5.4 (x86_64)

All packages except libgpgme were installed from Red Hat Network. libgpgme was built from source after specifying ./
configure CC=gcc CFLAGS=-m64

Red Hat Enterprise Linux 5.5 (x86)

Packages were installed from standard repositories using the package manager.

Red Hat Enterprise Linux 5.3 (IA64)

All packages except libgpgme were installed from Red Hat Network. libgpgme was built from source after specifying ./
configure CC=gcc

IBM z/OS (zSeries)

Warning: The configure scripts for the GnuPG libraries do not generate shared libraries, only static archive libraries. Owing to
this limitation, the archive libraries are unpacked and recompiled back into dynamically linked libraries. The following example
uses libgpg-error as the target. FIS suggests that you create a temporary directory for each DLL.

1. Unpack the archive : ar -x /usr/local/lib/libgpg-error.a

2. Link the archive objects into a DLL: xlc -qascii -q64 -W l,DLL -o libgpg-error.dll *.o

3. Copy the DLL and side deck file into the destination (assumed to be /usr/local/lib): cp libgpg-error.dll libgpg-error.x /usr/
local/lib

Building Encryption Libraries

426

GPG-ERROR

Apply the patch libgpg-error-1.7.patch to libgpg-error sources. Then run the configuration and installation steps.

1. ./configure CC=xlc CFLAGS="-qchars=signed -qascii -q64 -qlanglvl=extc99 -qexportall -qrent -qnocsect -W
l,DLL -D_XOPEN_SOURCE=600 -D_ENHANCED_ASCII_EXT=0xFFFFFFFF -D_IEEEV1_COMPATIBILITY -
D_OPEN_MSGQ_EXT" LD=xlc LDFLAGS="-qascii -q64 -W l,DLL" CXX=xlc++ --enable-shared --prefix=/usr/local

2. make && make check

3. (as root) make install

Follow the instructions above to turn the archive library into a dynamically linked library.

GCRYPT

Apply the patch libgcrypt-1.4.4.patch to the libgcrypt sources. Before running the configure and installation steps, you need
to place some symbolic links in the sources. Compiling libgpgcrypt on z/OS runs afoul of a limitation of the XLC compiler's
include header search path and system headers. Issue the following commands, verbatim, to overcome this limitation:

cd mpi
ln -s ../src/mpi.h .
ln -s ../src/memory.h .
cd -
cd cipher
ln -s ../src/mpi.h .
cd -

Then:

1. ./configure CC=xlc CFLAGS="-qchars=signed -qascii -q64 -qlanglvl=extc99 -qexportall -qrent -qnocsect -W l,DLL
-D_XOPEN_SOURCE=600 -D_ENHANCED_ASCII_EXT=0xFFFFFFFF -D_IEEEV1_COMPATIBILITY

2. make && make check

3. (as root) make install

Follow the instructions from above to turn the archive library into a dynamically linked library.

GPGME

Apply the patch gpgme-1.1.8.patch to the gpgme sources. Then run the configuration and installation steps.

• ./configure CC=xlc CFLAGS="-qchars=signed -qascii -q64 -qlanglvl=extc99 -qexportall -qrent -qnocsect -W l,DLL
-D_XOPEN_SOURCE=600 -D_ENHANCED_ASCII_EXT=0xFFFFFFFF -D_IEEEV1_COMPATIBILITY

• make && make check

• (as root) make install

Follow the instructions from above to turn the archive library into a dynamically linked library.

Building Encryption Libraries

427

GNUPG

Apply the patch gnupg-1.4.9.patch to the GnuPG sources. Before running the configure and isntallation steps, you need to place
some symbolic links in the sources. Compiling libgpgcrypt on z/OS runs afoul of a limitation of the XLC compiler's include
header search path and system headers. Issue the following commands, verbatim, to overcome this limitation:

cd mpi
ln -s ../include/mpi.h .
ln -s ../include/memory.h .
cd -

Then:

• ./configure CC=xlc CFLAGS="-qchars=signed -qascii -q64 -qlanglvl=extc99 -qexportall -qrent -qnocsect -W
l,DLL -D_XOPEN_SOURCE=600 -D_ENHANCED_ASCII_EXT=0xFFFFFFFF -D_IEEEV1_COMPATIBILITY -
D_OPEN_MSGQ_EXT" LD=xlc LDFLAGS="-qascii -q64 -W l,DLL" CXX=xlc++ --without-pth --without-libassuan --
without-ksba --prefix=/usr/local

• make && make check

• (as root) make install

IBM AIX 5.3 (pSeries)

GPG-ERROR

./configure CC=cc CFLAGS=-q64 ($OBJECT_MODE=64)

CRYPTO (From OpenSSL)

These instructions build OpenSSL which provides libcrypto.

./Configure aix64-cc shared # Note: it is an upper case C

.make
(as root) make install

GPGME

GPGME requires a source level fix to use the proper malloc() that requires an include for stdlib.h in the include section of
version.c. Then:

./configure CC="xlc -q64" --disable-asm ($OBJECT_MODE=64)/ or CC=cc CFLAGS=-q64

GNUPG

GPG on AIX requires the setuid bit to be set. This can be done via chmod u+s /path/to/gpg. Please see http://www.gnupg.org/
documentation/faqs.en.html#q6.1

./configure CC="xlc -q64" --disable-asm ($OBJECT_MODE=64) or CC=cc CFLAGS=-q64

http://www.gnupg.org/documentation/faqs.en.html#q6.1
http://www.gnupg.org/documentation/faqs.en.html#q6.1

Building Encryption Libraries

428

Solaris 9 and 10 (SPARC)

Set $LD_LIBRARY_PATH to include /usr/lib/sparcv9 AND /usr/ucblib/sparcv9 for both Solaris 9 and 10. Solaris seems to default
to the 32-bit version of ucblib at runtime, unless the 64-bit path is ahead of the 32-bit in $LD_LIBRARY_PATH. However, using
-R/usr/lib/sparcv9 -R/usr/ucblib/sparcv9/ as a CFLAG at build time hard-codes the path into the library, removing the need for
$LD_LIBRARY_PATH.

GPG-ERROR

./configure CC=/opt/SUNWspro/bin/cc CFLAGS="-m64 -R/usr/lib/sparcv9 -R/usr/ucblib/sparcv9/"

GCRYPT

./configure CC=/opt/SUNWspro/bin/cc CFLAGS="-m64 -R/usr/lib/sparcv9 -R/usr/ucblib/sparcv9/" --disable-asm
 --with-gpg-error-prefix=/usr/local

GPGME

GPGME requires a source level fix to use the proper malloc() that requires an include for stdlib.h in the include section of
version.c.

./configure CC=/opt/SUNWspro/bin/cc CFLAGS="-m64 -R/usr/lib/sparcv9 -R/usr/ucblib/sparcv9/" --disable-asm --
with-gpg-error-prefix=/usr/local

GNUPG

./configure CC=/opt/SUNWspro/bin/cc CFLAGS="-m64 -R/usr/lib/sparcv9 -R/usr/ucblib/sparcv9/" --disable-asm

HP-UX 11.31 (IA64)

Depending on which user runs the configure command, you may or may not have to specify the --with-gpg-error-prefix flag.

GPG-ERROR

./configure CC=/usr/bin/cc CFLAGS=+DD64

GCRYPT

./configure CC=/usr/bin/cc CFLAGS=+DD64 --with-gpg-error-prefix=/usr/local

GPGME

GPGME requires a source level fix to use the proper malloc() that requires an include for stdlib.h in the include section of
version.c.

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX787.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX788.txt

Building Encryption Libraries

429

./configure CC=/usr/bin/cc CFLAGS=+DD64 --with-gpg-error-prefix=/usr/local

GNUPG

./configure CC=/usr/bin/cc CFLAGS=+DD64 --with-gpg-error-prefix=/usr/local

SUSE Linux Enterprise Server 11 (x86_64)

Packages were installed from standard repositories using the package manager. The libgcrypt packages have been upgraded
using openSUSE 11.2 packages.

SUSE Linux Enterprise Server 11 (s390x)

Packages were installed from standard repositories using the package manager.

SUSE Linux Enterprise Server 10 (s390x)

Packages were installed from standard repositories using the package manager.

To uprade the GPG package using the source RPM version 1.4.9-6.1 from openSUSE 11:

1. Download and install gpg-1.4.9-6.1 src

rpm.wget
 ftp://ftp.pbone.net/mirror/ftp5.gwdg.de/pub/opensuse/repositories/home%3A/keutterling/openSUSE_11.0/src/
gpg-1.4.9-6.1.src.rpm
sudo rpm -i gpg-1.4.9-6.1.src.rpm

2. Install the required dependencies for building GPG. You can get those from the official SLES 10 CDs/DVD.

sudo rpm -i db42-4.2.52-20.2.s390x.rpm openssl-devel-0.9.8a-18.36.s390x.rpm
 cyrus-sasl-devel-2.1.21-18.11.41.s390x.rpm
openldap2-2.3.32-0.35.23.s390x.rpm openldap2-devel-2.3.32-0.35.23.s390x.rpm

3. Build GPG 1.4.9 RPM.

rpmbuild -bb /usr/src/packages/SPECS/gpg1.spec

4. Upgrade to the new GPG RPM.

sudo rpm -U /usr/src/packages/RPMS/s390x/gpg-1.4.9-6.1.s390x.rpm

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX789.txt
http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX790.txt

430

Appendix E. GT.M Security Philosophy

Revision History

Revision V5.5-000/5 17 July 2012 Fixed a typo (stand-along -> stand-alone) in
“Recommendations” (page 432).

Revision V5.5-000/3 2 May 2012 First published revision.

Philosophy

The general GT.M philosophy is to use the security of the underlying operating system, and to neither subvert it nor extend it.
The purpose of this document is to discuss the implications of, excepations to, and limitations of this philosophy (the "security
model"). This appendix reflects GT.M as of V5.5-000.

Note
GT.M is not intended to operate robustly on a machine that is potentially subject to direct attack, such as a
firewall, or a machine operating in a "DMZ."

Normal User and Group Id Rule

GT.M processes run with normal UNIX1 user and group ids. GT.M has no database daemon that needs to run with elevated
privileges. Process code written in M will be able to read a database file if and only if the process has read permission for that
database file, and to update that database file if and only if the process has read/write permission for that database file.2

There are two exceptions to this rule. Also, special mention is made of GT.M triggers, which require awareness of their
behavior even though they comply with the Normal User and Group Id Rule.

Exceptions

Exceptions to the Normal User and Group Ids Rule exist for:

• Shared Memory when the Buffered Global (BG) access method is used, and

• gtmsecshr.

Shared Memory Exception for BG

With the BG access method, each open database file has a shared memory segment associated with it. This shared memory
contains a pool of disk blocks (the global buffers) as well as associated control structures (for example, for concurrency control).
Even a process that has read-only permission to the database file requires read-write access to the associated shared memory
in order to use the control structures. It is therefore possible for a cached disk block in shared memory to be modified by one
process and for the actual write of that dirty block to disk to be performed by another. Thus, a "rogue" process with read-
only access to the database file but read-write access to shared memory can modify the cached copy of a disk block and effect

1The term "UNIX" refers to platforms on which GT.M uses a POSIX API to access the underlying operating system.
2The concept of write-only access to a database file is not meaningful for GT.M

GT.M Security Philosophy

431

a permanent change to the database when that block is written to disk by another process that has read-write access to the
database file.

Comments on the Shared Memory Exception for BG:

• This only applies if a mumps process contains non-M code. If a mumps processes has only M code, the GT.M run-time
environment will not allow a process to modify a database for which it lacks write permission.

• This only applies if a database file has mixed read-only and read-write access, that is, some mumps processes have read-
only access and others have read-write access. If all processes have read-only access, although the database may appear to be
temporarily modified when copies of blocks in shared memory are modified, the database file on disk cannot be permanently
modified because no process will have the required permission to flush dirty blocks to disk.

• Where processes that contain C code and have read-only database access must co-exist with processes that have read-write
access, GT.M will only "keep honest processes honest." [See below for recommendations where read-only access is required
by processes that cannot be considered trustworthy.]

gtmsecshr Exception

Processes with normal user and group ids do not have adequate permissions to effect necessary GT.M interprocess
communication and cleanup after abnormal process termination. A process called gtmsecshr runs as root in order to effect the
following functionality:

• Interprocess communication, including sending SIGALARM and SIGCONT between processes where normal UNIX
permissions do not permit such signals to be sent.

• Cleanup after processes that terminate abnormally, including removing semaphores, shared memory segments, and flushing
database file headers (but not database blocks) from shared memory segments to disk.

Whenever a GT.M process lacks adequate permissions to effect any of the above operations, it automatically invokes
gtmsecshr if it is not already running. A complete list of gtmsecshr functionality appears in “gtmsecshr commands” (page
433) .

In order to run as root, and to be invoked by a process that has normal user and group ids, the invocation chain for gtmsecshr
requires an executable image that is owned by root and which has the setuid bit turned on in its file permissions.

Once started and running, gtmsecshr records information in a log file gtm_secshr_log (in a directory specified by
$gtm_log), creating it if it does not exist. $gtm_log is inherited from the environment of the GT.M process (mumps, mupip
or dse) that first invokes the gtmsecshr process. If the environment variable $gtm_log is undefined, if its value is longer than
GT.M can handle, or if it is defined to a value that is not an absolute pathname (starting with a /), $gtm_log is assumed to be
the directory /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX, Solaris).

Communication between GT.M processes and gtmsecshr uses socket files in $gtm_tmp, which is also inherited from the
GT.M process that first invokes gtmsecshr. If the environment variable $gtm_tmp is undefined, if its value is longer than
GT.M can handle, or if it is defined to a value that is not an absolute pathname (starting with a /), $gtm_tmp is assumed to be
the directory /tmp (AIX, GNU/Linux, Tru64 UNIX) or /var/tmp (HP-UX, Solaris).

The gtmsecshr process receives messages via a socket file owned by root with a name of the form gtm_secshrnnnnnnnn, the
nnnnnnnn being replaced by the hexadecimal ftok value of the gtmsecshr executable file. This value is reported by the GT.M
ftok utility on the gtmsecshr file, for example, $gtm_dist/ftok $gtm_dist/gtmsecshr

GT.M processes receive responses from gtmsecshr via socket files owned by the userid of the process with names of the
form gtm_secshrnnnnnnnn, where nnnnnnnn is a hexadecimal version of the client's process id, padded with leading

GT.M Security Philosophy

432

zeroes. When a client process terminates abnormally, or is killed before it cleans up its socket file, it is possible for a subsequent
client with the same process id but a different userid to be unable to delete the leftover socket file. In this case, it tries to
send a message to gtmsecshr using a slightly modified client socket file of the form gtm_secshrnnnnnnnnx where x
starts with "a" whose corresponding socket file does not already exist or is removable by the current client process (if all
suffixes "a" through "z" are unavailable, the client process errors out with a "Too many leftover client socket files"
message). gtmsecshr recognizes this special modified socket file name, and as part of servicing the client's request deletes the
gtm_secshrnnnnnnnn socket file and all gtm_secshrnnnnnnnnx files that exist. The client process expects this file removal
and creates a new gtm_secshrnnnnnnnn file for subsequent communications with gtmsecshr.

• When there is no gtmsecshr process running, by starting one up with incorrect values of $gtm_log and $gtm_tmp, a
gtmsecshr process can be made to create a file called gtm_secshr_log in any directory. Having incorrect values can also
interfere with normal GT.M operations until the incorrect gtmsecshr process times out and terminates, because GT.M
processes and gtmsecshr will be unable to communicate with one another.

• gtmsecshr can be made to delete client socket files by a rogue process. If a socket file is deleted under a running GT.M
process, gtmsecshr will be unable to reply to the process. It will timeout, create another and proceed. Thus, while GT.M
performance of a single process may temporarily be slowed, system operation will not be disrupted.

Triggers

A GT.M trigger is a code fragment stored in the database file that all processes performing a matching update to a global
variable in that file execute automatically, for example, to maintain cross-reference indexes and referential integrity. Any
process that has read-write permission for a database file can change the triggers in that database file, which can in turn force
other processes updating that database to execute the changed triggers.

Recommendations

Based on the security model, the following are recommended best practices for securing GT.M.

1. Secure the machine on which GT.M operates behind layers of defenses that permit only legitimate accesses.

2. Restrict access to a system on which GT.M runs to those who legitimately need it.

3. If not all users who have access to a system require the ability to run GT.M, limit access to GT.M to a group to which
all users who need access belong, and remove world access to GT.M.3. If such a group is called gtmusers, the following
command executed as root will accomplish this, if access was not restricted when GT.M was installed: chgrp -R gtmusers
$gtm_dist ; chmod -R o-rwx $gtm_dist

4. Ensure that database file ownership (user and group), UNIX user and group ids, and permissions at the UNIX level match
the intended access. If finer grained access controls than those provided by user and group ids and permissions are needed,
consider using, where appropriate and available, security products layered on top of the operating system.

5. Under typical conditions, GT.M shared resources - journal files, shared memory, and semaphores - have the same group
ids and access permissions as their database files, but may not be owned by the same userid, since the process creating the
shared resource may have a different userid from the one that created the database. There are two edge cases to consider:

• Where the owner of the database file is not a member of the group of the database file, but is a member of the group
GT.M's libgtmshr.so file. In this case, if a process with a userid other than the owner were to create a shared resource,
a process with the userid of the owner would not have access to them. Therefore, GT.M uses the group id of the
libgtmshr.so file if the process creating the shared resource is also a member of that group. In this case it would also
restrict access to the resource to members of that group. If the process creating this resource is not a member of the

GT.M Security Philosophy

433

libgtmshr.so group, the group id of the shared resource remains that of the creating resource but the permissions allow
world access. FIS advises against using a database file whose owner is not a member of the group of that file.

• Where the owner of the database file is neither a member of the group nor a member of the group of libgtmshr.so. In
this case, GT.M uses world read-write permissions for the shared resources. FIS advises against the use of a database file
whose owner is neither a member of the group of the file nor a member of the group of libgtmshr.so.

6. The Mapped Memory (MM) access method does not use a shared memory segment for a buffer pool for database blocks
- shared memory is used only for control structures. Therefore, consider using MM if there are processes that are are not
considered trustworthy but which need read-only access to database files.4

7. If MM cannot be used, and processes that are not considered trustworthy need read-only access to database files, run those
processes on a replicating instance specifically set up for that purpose.

8. If a database file does not change during normal operation (for example, it contains configuration parameters), make its
permissions read only for everyone. On rare occasions when they need to be changed, shut down the application to get
stand-alone access, temporarily make it read-write, make the changes, and then make it read-only once more.

9. GT.M by default uses a wrapper for gtmsecshr. Source code for the wrapper is published. If processes that startup
gtmsecshr cannot be trusted or coerced to have the correct values of $gtm_log and $gtm_tmp, modify the source code to
set $gtm_log and $gtm_tmp to required values, recompile and reinstall your modified wrapper.

10. Consider implementing layered security software if it exists for your platform, for example, SELinux, Trusted Solaris,
Trusted AIX.

Note

FIS neither endorses nor has tested any specific layered security product.

gtmsecshr commands

Commands Action Comments

WAKE_MESSAGE Sends SIGALRM to specified process. Used to inform receiving process that a
resource (such as a critical section) it awaits
has become available.

CONTINUE_PROCESS Sends SIGCONT to specified process. Used to awake a process that has been
suspended while holding a resource. a

CHECK_PROCESS_ALIVE Test sending a signal to specified process. b Used to determine if a process owning a
resource still exists; if not, the resource is
available to be grabbed by another process
that needs it.

REMOVE_SEM Remove a specified POSIX semaphore. Used to remove an abandoned semaphore
(for example, if the last attached process
terminated abnormally).

REMOVE_SHMMEM Remove a specified shared memory segment. Used to remove an abandoned shared
memory segment. Before removing the
segment, gtmsecshr checks that there are no
processes attached to it.

GT.M Security Philosophy

434

Commands Action Comments

REMOVE_FILE Remove a specified file. Used to remove an abandoned socket
file (for example, as a result of abnormal
process termination) used for interprocess
communication on platforms that do not
support memory semaphores (msems);
unused on other platforms. Before removal,
gtmsecshr verifies that the file is a socket
file, in directory $gtm_tmp, and its
name matches GT.M socket file naming
conventions.

FLUSH_DB_IPCS_INFO Writes file header of specified database file
to disk.

The ipc resources (shared memory and
semaphore) created for a database file are
stored in the database file header. The first
process opening a database file initializes
these fields while the last process to use
the database clears them. If neither of them
has read-write access permissions to the
database file, they set/reset these fields in
shared memory and gtmsecshr will write the
database file header from shared memory to
disk on their behalf.

aPlease do not ever suspend a GT.M processes. In the event GT.M finds a process suspended while holding a resource, it is sent a SIGCONT.
bThis function is no longer needed and will be removed soon.

Shared Resource Authorization Permissions

GT.M uses several types of shared resources to implement concurrent access to databases. The first GT.M process to open a
database file creates IPC resources (semaphores and shared memory) required for concurrent use by other GT.M processes, and
in the course of operations GT.M processes create files (journal, backup, snapshot) which are required by other GT.M processes.
In order to provide access to database files required by M language commands and administration operations consistent
with file permissions based on the user, group and world classes, the shared resources created by GT.M may have different
ownership, groups and permissions from their associated database files as described below. As an example of the complexity
involved, consider a first process opening a database based on its group access permissions. In other words, the database file is
owned by a different userid from the semaphores and shared memory created by that first process. Now, if the userid owning
the database file is not a member of the database file's group, a process of the userid owning the database file can only have
access to the shared resources if the shared resources have world access permissions or if they have a group that is guaranteed
to be shared by all processes accessing the database file, even if that group is different from the database file's own group.
Again, although FIS strongly recommends against running GT.M processes as root, a root first process opening the database file
must still be able to open it although it may not be the owner of the database file or even in its group - but it must ensure access
to other, non-root processes. Some things to keep in mind:

• Even a process with read-only access to the database file requires read-write access to the shared memory control structures
and semaphores.

• Creating and renaming files (for example, journal files) requires write access to both the files and the directories in which
they reside.

• If you use additional layered security (such as Access Control Lists or SELinux), you must ensure that you analyze these
cases in the context of configuring that layered security.

GT.M Security Philosophy

435

GT.M takes a number of factors into account to determine the resulting permissions:

• The owner/group/other permissions of the database file

• The owner of the database file

• The group of the database file

• The group memberships of the database file's owner

• The owner/group/other permissions of the libgtmshr file

• The group of the libgtmshr file

• The effective user id of the creating process

• The effective group id of the creating process

• The group memberships of the creating process' user

The following table describes how these factors are combined to determine the permissions to use:

Database File
Permissions

Opening process
is owner of

database file?

Owner is member
of group of

database file?

Opening process
is a member
of database
file group?

Opening process
is not owner

but a member
of database
file group?

Execution of
GT.M restricted

to members
of a group?

Group of Resource IPC Permissions File Permissions

-r*-r*-r*- - - Y - -

Group of database file -rw-rw-rw -r*-r*-r*

-rw-rw-r* - - N - -

Current group of process -rw-rw-rw -rw-rw-rw

-rw-rw-rw - - N - -

Current group of process -rw-rw-rw -rw-rw-rw

-rw-rw-rw Y Y - - -

Group of database file -rw-rw-rw -r*-r*----

-r*-r*---- Y N - - N

Current group of process -rw-rw-rw- -rw-rw-rw-

-r*-r*---- Y N - - Y

Group to which GT.M is restricted -rw-rw---- -rw-rw----

-r*-r*---- - Y - Y -

Group of database file -rw-rw---- -r*-r*----

-r*-r*---- - N - Y N

GT.M Security Philosophy

436

Database File
Permissions

Opening process
is owner of

database file?

Owner is member
of group of

database file?

Opening process
is a member
of database
file group?

Opening process
is not owner

but a member
of database
file group?

Execution of
GT.M restricted

to members
of a group?

Group of Resource IPC Permissions File Permissions

Group of database file -rw-rw-rw- -rw-rw-rw-

-r*-r*---- - N - Y Y

Group to which GT.M is restricted -rw-rw---- -rw-rw----

----r*---- - N - Y -

Group of database file -rw-rw---- ----r*----

-r*------- Y - - - -

Current group of process -rw------- -rw-------

• The resulting group ownership and permissions are found by matching the database file permissions, then determining
which question columns produce the correct "Y" or "N" answer; "-" answers are "don't care".

• An asterisk ("*") in the Database File Permissions matches writable or not writable. An asterisk in the Resulting File
Permissions means that GT.M uses the write permissions from the database file.

• GT.M determines group restrictions by examining the permissions of the libgtmshr file. If it is not executable to others, GT.M
treats it as restricted to members of the group of the libgtmshr file.

• Group membership can either be established by the operating system's group configuration or by the effective group id of the
process.

• A GT.M process requires read access in order to perform write access to database file - a file permission of write access
without read access is an error.

• GT.M treats the "root" user the same as other users, except that when it is not the file owner and not a member of the group,
it is treated as if it were a member of the group.

437

Appendix F. GTMPCAT - GT.M Process/Core Analysis Tool

Revision History

Revision V6.0-001/2 10 April 2013 In “Usage” (page 438), added information
about the --cmdfile option of --interactive.

Revision V6.0-001 27 February 2013 First published version.

Overview

gtmpcat is a diagnostic tool for FIS to provide GT.M support. It gathers extensive diagnostic context from process dump (core)
files and from running processes. This diagnostic information permits FIS to respond more quickly and successfully with root
cause analysis of issues for which you engage with GT.M support.

Important

The local variables of a GT.M process may contain restricted information, such as protected health care or
financial data. Under your direction, gtmpcat either ignores (the default) or accesses the contents of local
variables.

The gtmpcat program is itself written using GT.M and requires:

• GT.M V5.3-004 or later when run in M mode (may misrepresent UTF-8 information if present), or

• GT.M V5.4-002 or later when run in UTF-8 mode

However, gtmpcat can analyze core files and processes from GT.M V5.1-000 or later - there need not be a relationship between
the GT.M release used to run gtmpcat, and the GT.M release of a core file or process analyzed by gtmpcat.

gtmpcat requires the presence of an appropriate system debugger (for example, gdb on Linux (x86 and x86_64) and HPUX-
IA64 or dbx on AIX and Sun SPARC Solaris). In operation, gtmpcat attaches to a system debugger, and directs it to extract
information from a core file or live process.

This appendix discusses gtmpcat and how to use it.

Caution

Albeit small, there is a non-zero risk of premature process termination when attaching to a live process with
a debugger which is what gtmpcat does when it is not directed to a core file. This risk cannot be eliminated.
If problem diagnosis requires attaching to a live process, FIS recommends attaching to an expendable process,
or to one in a testing environment. Use gtmpcat on a production process when you have considered all your
options and carefully determined that is the best alternative.

GTMPCAT - GT.M Process/Core Analysis Tool

438

Usage

gtmpcat consists of two routine files -- a platform-independent main program (gtmpcat.m), and an initialization file, which is
specific to the CPU architecture, operating system and GT.M version. Both the main program and the appropriate initialization
file must be available in the $gtmroutines search path. Run gtmpcat as follows:

$gtm_dist/mumps -run gtmpcat <options> corename|processid

As it executes, gtmpcat provides a running account of its actions on its stdout, as well as a detailed report in a file whose name
it provides on stdout at the end of its processing.

Option values are separated from option flags by whitespace. The options are:

Options Abbr Description

--asver <V6.X-XXX> -a Specify an explicit GTM version for the core/process, if it is not the same as that
specified by the -version option (which in turn defaults to that of the gtmpcat
process). Note that GT.M versions are not abbreviated, for example, V6.0-001, not
V60001.

--cmdfile </path/to/file-
name>

-c Specifies the path of the file containing interactive mode commands. It is ignored
unless specified with --interactive (i).

--debug * -d Enable interactive debugging of gtmpcat itself. On encountering an error, gtmpcat
executes a BREAK command before gtmpcat either continues or exits depending
on the error severity and whether an error resume point is defined. This enables
some interactive debugging. Also, for a successful run, a ZSHOW dump is created
with the name gtmpcat-DEBUG.zshowdump.txt. This file is overwritten/recreated
as needed. The default is -nodebug.

--debuglines * n/a Enables debugging of the lines written to and read from the debugger. Used for
debugging gtmpcat. The default is --nodebuglines.

--devicedetail * -e Include a separate section in the report to show the actual control blocks in use
and their addresses.

--ignoreunexprslt * -u When a GTM version is built with debugging flags, GTM can output extra lines
when, for example, starting up and/or displaying the results of simple commands
like .Write $Zversion.. As part of determining what version a particular install
directory has, gtmpcat executes the Write $ZVersion command in a mumps
process. If this command prints extra lines, it can cause gtmpcat initialization to
fail. This option can be used to ignore the extra lines returned. The default is --
noignoreunexprslt .

--interactive * -i Tells gtmpcat to enter interactive mode, as described below. Use this only under
the direction of FIS GT.M Support. The default is --nointeractive .

--localvar * -l Include local variables, both the current local vars plus any saved (NEW'd) vars
on the M stack (either explicit or implicit) in the report. Since the local variables
of a process are likely to contain protected (confidential) information that is being
processed, the default is ---nolocalvar to omit them. Before sharing a gtmpcat
report with anyone, you must determine whether the report contains protected
information and whether the recipient is permitted to view the information in the
report. GT.M Support at FIS does not accept protected information.

GTMPCAT - GT.M Process/Core Analysis Tool

439

Options Abbr Description

--lockdetail * n/a Include a detailed dump of M lock related control blocks showing the block
addresses and relationships. The default is --nolockdetail. This option is useful
only to debug GT.M itself.

--lvdetail * n/a Include a detailed dump of the actual local variable structures. As this option can
produce a report with protected information in local variable subscripts, please
review the warnings above in the -localvar option. The default is --nolvdetail. This
option is useful only to debug GT.M itself.

--memorydump * -m Includes a memory map dump of all allocated storage. Only available when the
core file or process is running GT.M V5.3-001 or later, and then only if $gtmdbglvl
is non-zero in the process. The default is -nodump. Use this only under the
direction of FIS GT.M Support.

--mprof * -p Enable M-profiling across the gtmpcat run. After loading the initialization file,
gtmpcat turns on M-profiling, Just before gtmpcat completes execution, it turns
off M-profiling and dumps the result in a global called ^trace. This option requires
a GT.M database and global directory be available.

--msdetail n/a Includes additional fields from the M stack-frame. The default is --msdetail.

--mumps n/a the core or process is a mumps executable (default).

--mupip n/a the core or process is a mupip executable.

--output <file/directory> -o Specifies the desired output file/directory. If the value given is a directory (relative
or absolute), the default file name is created in the given directory. If the value is a
file, that is the file-name used to hold the report.

--tracedump -t Read and format the internal GTM trace table. Default is --notracedump. This is
useful only to debug GT.M itself.

--version <location of
the GT.M version of the
core/process>

-v Specifies the directory with the GT.M version of the core/process. The default is
the version used by gtmpcat itself, that is, in $gtm_dist.

• Abbr specifies the single character abbreviation for an option. You can combine two or more options using their single character
abbreviations with a common "-" prefix and no white space in between. Specify values in the same order in which you combine the
abbreviations. For example, -lov output.txt /usr/lib/fis-gtm/V6.0-001_x86_64 means --localvar --output output.txt --version /usr/lib/fis-
gtm/V6.0-001_x86_64.

• * specifies options that can be negated. To negate a single character abbreviation, use its upper case equivalent or use the full option
name prefixed by "no" . For example, -P means --nomprof.

When gtmpcat runs, it needs to know how the structures and fields for a given version of GT.M are defined. There is one of
these initialization files for each OS, architecture, and GT.M version. Once gtmpcat knows the architecture and GT.M version of
the process/core, it invokes the proper initialization file to define the layout of everything it is interested in. The format of the
gtmpcat initialization file is:

gtmpcat<OS>On<architecture><gtmversion>.m

GTMPCAT - GT.M Process/Core Analysis Tool

440

For example, the name of gtmpcat initialization file on Linux x86_64 running GT.M V6.0-000 is
gtmpcatLinuxOnX8664V60000.m

Interactive Mode

gtmpcat has an interactive mode. Instead of producing a report, the interactive mode acts as a front-end that enhances the use
of the debugger from the underlying OS.

Caution

As interactive mode is still under development, it is likely to have rough edges. For example, M terminal IO
is limited to that provided by GT.M . you can edit input using the left and right arrow keys but command
retrieval is limited to the last command entered (with the up arrow key, and the down arrow key has no
effect).

The help gtmpcat command describes currently supported commands . Any command that is not recognized in this mode, or
any command prefixed with a "\" char, is sent to the native debugger and its output displayed on the console.

All of the information from the reports is available in this mode. Each "section" of the report can be printed, either the entire
report or one or more at a time with the report command.

There are commands that give additional information not available in the standard report. For example:

• cache: The cache command gives information similar to the DSE CACHE command.

• dmp: The dmp command dumps a data structure, given just its address as long as the structure is defined in the initialization
file.

• dmparray: The dmparray command can dump an array of control blocks in a formatted fashion. The array of control blocks
are typdef structures defined in the GT.M header files and whose layouts are defined in GTMDefinedTypesInit.m1.

• dmplist: The dmplist command can dump a linked list of blocks terminating when a maximum number of such blocks is
processed or if the list cycles around to the beginning or if it hits a NULL forward link.

441

Appendix G. Packaging GT.M Applications

Revision History

Revision V6.0-003/1 19 February 2014 First published version.

GT.M provides the mumps -run shell command to invoke application entryrefs directly from the shell. GT.M recognizes
a number of environment variables to determine the starting characteristics of a process; these are described in the
documentation and summarized in “Environment Variables” (page 17). In order to ensure that environment variables are set
correctly, you should create a shell script that appropriately sets (and clears where needed) environment variables before
invoking GT.M. When users should not get to the shell prompt from the application (either for lack of skill or because they
are not sufficiently trusted), or when the application needs more access to the shell command line than that provided by the
$ZCMDLINE ISV, you may need to package a GT.M application using techniques beyond, or in additional to, invocation from a
shell script.

Since GT.M is designed to integrate with the underlying OS, you should consider the entire range of services provided by
operating systems when packaging a GT.M applications. For example, you can use the host based access control provided by
TCP wrappers, or various controls provided by xinetd (including per_source, cps, max_load protection, only_from, no_access,
and access_times).

This appendix has two examples that illustrate techniques for packaging GT.M applications, neither of which excludes the
other.

1. “Setting up a Captive User Application with GT.M” (page 441), such that when captive users login, they are immediately
taken to the application, have no access to the shell or programmer prompt, and when they exit, are logged off the system.

2. “Invoking GT.M through a C main() program” (page 442): in addition to providing another technique for creating captive
applications, invoking through a C main() is the only way that application code has access to the original argc and argv of a
shell command used to start the application (the $ZCMDLINE ISV provides an edited version of the command line).

Setting up a Captive User Application with GT.M

This section discusses wholesome practices in setting up a GT.M based application on UNIX/Linux such that, when "captive"
users log in to the system, they are taken directly into the application, and when they exit the application, they are logged off
the system. Unless part of the application design, a captive user should not get to a shell or GT.M prompt.

The example in “Sample .profile” (page 442) is for /bin/sh on GNU/Linux, and may need to be adapted for use with other
shells on other platforms.

At a high level, preventing a captive user from getting to a shell or GT.M prompt involves:

• trapping signals that may cause the login shell to give the user interactive access, for example, by pressing <CTRL-Z> to
suspend the mumps application;

• preventing a mumps process from responding to a <CTRL-C> until the application code sets up a handler; and

• preventing an error in the application, or a bug in an error handler, from putting a captive user into direct mode.

Packaging GT.M Applications

442

Note that other users on the system who have appropriate privileges as managed by the operating system can still interfere
with captive users. In order to secure a system for captive applications, you must protect it from untrusted other users. Users
should only have credentials that permit them the level of access appropriate to their level of trustworthiness, thus: untrusted
users should not have credentials to access a system with captive applications.

Defensive configuration implies setting up layers of defenses, so that an error in one layer does not compromise the system.

Sample .profile

After initialization common to all users of a system, a login shell sources the .profile file in the user's home directory. A
captive user's .profile might look something like this, where "..." denotes a value to be provided.

trap "" int quit # terminate on SIGINT and SIGQUIT
stty susp \000 # prevent <CTRL-Z> from sending SIGSUSP

set environment variables needed by GT.M and by application, for example
export gtm_dist=...
export gtmgbldir=...
export gtmroutines=...
export gtm_repl_instance=...
export gtm_tmp=...

disable mumps ^C until application code sets up handler
export gtm_nocenable=1
override default of $ZTRAP="B"
export gtm_etrap='I 0=$ST W "Process terminated by: ",$ZS,! ZHALT 1'

set other environment variables as appropriate, for example
export EDITOR=... # a preferred editor for ZEDIT
export TZ=... # a timezone different from system default
export HUGETLB_SHM=yes # example of a potential performance setting

export PATH=/usr/bin:/bin # only the minimum needed by application
export SHELL=/bin/false # disable ZSYSTEM from command prompt

execute captive application starting with entryref ABC^DEF then exit
exec $gtm_dist/mumps -run ABC^DEF

Note the use of exec to run the application - this terminates the shell and disconnects users from the system when they exit the
GT.M application.

If an incoming connection is via an Internet superserver such as xinetd, some of these are not applicable, such as disabling
<CTRL-C> and <CTRL-Z>.

Invoking GT.M through a C main() program

There are several circumstances when it is desirable to invoke a GT.M application with a top-level C main() program rather
than with mumps -run. Examples include:

• A need to ensure correct values for environment variables, and a shell script cannot be used (for example, when there is a
specific operational need to install an application with the setuid bit).

• Programs that show up on a process display with meaningful names (like friday instead of mumps -run monthstarting
friday, in the following example).

Packaging GT.M Applications

443

To compile and run the monthstarting.zip example, perform the following steps:

1. Download monthstarting.zip.

monthstarting.zip contains monthstarting.m, month_starting.c, and monthstarting.ci. To download monthstarting.zip,

click on .You can also download monthstarting.zip from http://tinco.pair.com/bhaskar/gtm/doc/books/ao/
UNIX_manual/downloadables/monthstarting.zip.

2. Run the monthstarting.m program that lists months starting with the specified day of the week and year range.

$ mumps -run monthstarting Friday 1986 1988
FRI AUG 01, 1986
FRI MAY 01, 1987
FRI JAN 01, 1988
FRI APR 01, 1988
FRI JUL 01, 1988
$

Notice that this program consists of a main program that reads the command line in the intrinsic special variable
$ZCMDLINE, and calls calcprint^monthstarting(), providing as its first parameter the day of the week to be reported.

This step is optional as there is no need to explicitly compile monthstarting.m because GT.M autocompiles it as needed.

3. On x86 GNU/Linux (64-bit Ubuntu 12.04), execute the following command to compile month_starting.c and create an
executable called friday.

$ gcc -c month_starting.c -I$gtm_dist
$ gcc month_starting.o -o friday -L $gtm_dist -Wl,-rpath=$gtm_dist -lgtmshr

For compiling the month_starting.c program on other platforms, refer to the Integrating External Routines chapter of
GT.M Programmer's Guide

4. Execute the following command:

$./friday 1986 1988
FRI AUG 01, 1986
FRI MAY 01, 1987
FRI JAN 01, 1988
FRI APR 01, 1988
FRI JUL 01, 1988
$

5. You can also execute the same program with the name monday. In doing so, the program displays months starting with
Monday.

$ ln -s friday monday
$./monday 1986 1988
MON SEP 01, 1986
MON DEC 01, 1986
MON JUN 01, 1987
MON FEB 01, 1988
MON AUG 01, 1988
$

downloadables/monthstarting.zip
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/pg_UNIX_screen.pdf

Packaging GT.M Applications

444

The month_starting.c program accomplishes this by calling the same GT.M entryref calcprint^monthstarting(), and
passing in as the first parameter the C string argv[0], which is the name by which the program is executed. If there are
additional parameters, month_starting.c passes them to the M function; otherwise it passes pointers to null strings:

/* Initialize and call calcprint^monthstarting() */
if (0 == gtm_init()) gtm_ci("calcprint", &status, argv[0], argc>1 ? argv[1] : "", argc>2 ? argv[2] :
 "");

Prior to calling the GT.M entryref, the C program also needs to set environment variables if they are not set: gtm_dist to
point to the directory where GT.M is installed, gtmroutines to enable GT.M to find the monthstarting M routine as well as
GT.M's %DATE utility program, and GTMCI to point to the call-in table:

/* Define environment variables if not already defined */
 setenv("gtm_dist", "/usr/lib/fis-gtm/V6.1-000_x86_64", 0);
 if (NULL == getenv("gtmroutines"))
 {
 tmp1 = strlen(getenv("PWD"));
 strncpy(strbuf, getenv("PWD"), tmp1);
 strcpy(strbuf+tmp1, " ");
 tmp2 = tmp1+1;
 tmp1 = strlen(getenv("gtm_dist"));
 strncpy(strbuf+tmp2, getenv("gtm_dist"), tmp1);
 tmp2 += tmp1;
 if (8 == sizeof(char *))
 {
 tmp1 = strlen("/libgtmutil.so");
 strncpy(strbuf+tmp2, "/libgtmutil.so", tmp1);
 tmp2 += tmp1;
 }
 strcpy(strbuf+tmp2, "");
 setenv("gtmroutines", strbuf, 1);
 }
 setenv("GTMCI", "monthstarting.ci", 0);

 if (0 == gtm_init()) gtm_ci("calcprint", &status, argv[0], argc>1 ? argv[1] : "", argc>2 ? argv[2] : "");
 gtm_exit(); /* Discard status from gtm_exit and return status from function call */

Note that on 32-bit platforms, the last element of gtmroutines is $gtm_dist, whereas on 64-bit platforms, it is $gtm_dist/
libgtmutil.so. If you are creating a wrapper to ensure that environment variables are set correctly because their values
cannot be trusted, you should also review and set the environment variables discussed in “Setting up a Captive User
Application with GT.M” (page 441).

All the C program needs to do is to set environment variables and call a GT.M entryref. A call-in table is a text file that maps
C names and parameters to M names and parameters. In this case, the call-in table is just a single line to map the C function
calcprint() to the GT.M entryref calcprint^monthstarting():

calcprint : gtm_int_t* calcprint^monthstarting(I:gtm_char_t*, I:gtm_char_t*, I:gtm_char_t*)

Defensive Practices

The following practices, some of which are illustrated in “Sample .profile” [442], help provide layered defenses:

http://tinco.pair.com/bhaskar/gtm/doc/books/ao/UNIX_manual/screen/ao_UNIX800.txt

Packaging GT.M Applications

445

1. Setting the gtm_noceenable environment variable to a value to specify that <CTRL-C> should be ignored by the
application, at least until it sets up a <CTRL-C> handler. As part of its startup, the application process might execute:

USE $PRINCIPAL:(EXCEPTION="ZGOTO"_$ZLEVEL_":DONE":CTRAP=$CHAR(3):CENABLE)

to set up a handler such as:

DONE: QUIT ; or HALT or ZHALT, as appropriate

2. Providing a value to the gtm_etrap environment variable, as illustrated “Sample .profile” (page 442). This overrides
GT.M's default value of "B" for $ZTRAP, which puts the application into direct mode. Of course, in a development
environment, going to direct mode may be the correct behavior, in which case there is no need to set gtm_etrap.

3. Providing a value to the gtm_zinterrupt environment to override the default of "IF $ZJOBEXAM()" which causes the
process to create a text file of its state in response to a MUPIP INTRPT (or SIGUSR1 signal). Such a text file may contain
confidential information that the process is actively computing. Note that a user can only send INTRPT signals as permitted
by the configuration of system security for the user. If your application uses INTRPT signals, review the code they invoke
carefully to ensure processes respond appropriately to the signal. If any response produces an output file, be sure they have
write access to the destination; restrict read access to such files appropriately. The “Sample .profile” (page 442) example
does not illustrate an alternative value for gtm_interrupt.

4. Setting the SHELL environment variable to /bin/false disables the ZSYSTEM command, which if executed without an
argument takes the user to a shell prompt. While a correctly coded application might not have a ZSYSTEM without an
argument, setting SHELL to a value such as /bin/false, as illustrated above, protects an added layer of defense against a
possible application bug. Of course, if an application uses the ZSYSTEM command, then an executable SHELL is required. If
your application uses ZSYSTEM to run a command, consider whether a PIPE device might provide a better alternative.

5. Setting the PATH environment explicitly to only those directories that contain executable files that the mumps process will
need to execute, with a ZSYSTEM command or a PIPE device.

6. Because some text editors include functionality to run a shell in an edit buffer, setting the EDITOR variable to an editor
which does not have such functionality is a way to block shell access in the event the application uses the ZEDIT command
to edit a text file. Note that if an application allows users to edit text files, they can also edit GT.M program source files,
and application configuration should ensure that such program files cannot be accessed by the $ZROUTINES of the process
unless that is the desired behavior.

Other

Depending on application requirements, other packaging technologies for consideration include:

1. Choosing a restricted shell for login of a captive user, such as rbash, instead of /bin/sh (for example, see http://
en.wikipedia.org/wiki/Restricted_shell).

2. Setting up a chroot environment for an application used by captive users (for example, see http://en.wikipedia.org/wiki/
Chroot).

3. Using TCP wrappers to filter incoming requests (for example, see http://www.360is.com/03-tcpwrappers.htm).

4. Configuring mandatory access controls, such as SELinux (for example, http://opensource.com/business/13/11/selinux-policy-
guide).

http://en.wikipedia.org/wiki/Restricted_shell
http://en.wikipedia.org/wiki/Restricted_shell
http://en.wikipedia.org/wiki/Chroot
http://en.wikipedia.org/wiki/Chroot
http://www.360is.com/03-tcpwrappers.htm
http://opensource.com/business/13/11/selinux-policy-guide
http://opensource.com/business/13/11/selinux-policy-guide

446

Glossary
I
In-flight transactions in-flight transactions are those transactions that have been committed (or hardened, or made

Durable) on an originating instance (or a propagating instance) but not yet transmitted to a
replicating instance.

O
Originating Instance An originating instance is an instance that processes business logic and generates logical

updates to the database.

R
Replicating Instance A replicating instance is an instance that does not execute business logic or generate database

updates. It receives logical database updates from an originating instance or another replicating
instance and applies them to its database.

Receiving Instance Within the context of a replication connection between two instances, a replicating instance
that receives updates from a source instance is referred to as receiving instance or receiver side.
For example, in an B<-A->C replication configuration, both B and C can be referred to as a
receiving instance.

S
Source Instance Within the context of a replication connection between two instances, an originating instance

is referred to as source instance or source side. For example, in an B<-A->C replication
configuration, A is the source instance for B and C.

Supplementary Instance A supplementary instance is an instance that processes business logic, generates logical updates
to the database, and at the same time receives updates from another instance.

447

Index
Symbols
@ command

in GDE, 43

A
Abandoned_kills qualifier

in DSE, 290
Access_method qualifier

buffered global, memory mapped, 58
changing, 59
in GDE, 58
with MUPIP SET, 110

Action qualifiers, 150
Activate qualifier

with MUPIP REPLICATE, 237
Active_processes show option, 157
Add command

example, 45
examples, 282, 286
in DSE, 281
in GDE, 43

Adjacency qualifier
with MUPIP INTEG, 90

After qualifier
with MUPIP JOURNAL, 161

Alignsize journal option, 143
All command

in DSE, 283
All qualifier

in DSE, Dump, 301
in LKE, 254, 257

All show option, 157
Allocation journal option, 144
Allocation qualifer

in GDE, 59
Always fence option, 165
Apply_after_image qualifier

with MUPIP JOURNAL, 163
Autorollback qualifier

specifying , 244
AUTOSWITCHLIMIT

journal option in GDE, 57
Autoswitchlimit journal option, 144

B
b*-tree, 272

Global Variable Tree, 272

Backup command, 71
examples, 77

Backward qualifier
in DSE, Shift, 317
with MUPIP JOURNAL, 154, 160

backward recovery, 154
definition, 133

Before qualifier
with MUPIP JOURNAL, 161

BEFORE_IMAGES
journal option in GDE, 57
journaling type of, definition, 135

Before_images option, 145
Begin qualifier

with MUPIP LOAD, 100
BINARY, 83
bitmaps

local, 271
master, 272

Bkupdbjnl qualifier
with MUPIP BACKUP, 73

Blk_size qualifier
in DSE, 290

Block qualifier
in DSE, 282, 288
in DSE, Dump, 302
in DSE, Find, 306
in DSE, Integrit, 309
in DSE, Map, 309
in DSE, Overwrite, 312
in DSE, Remove, 315
in DSE, Restore, 316
in DSE, Save, 316
with MUPIP INTEG, 82, 91

Blocks_free qualifier
in DSE, 291

BLock_size qualifer
in GDE, 59

Brief qualifier
with MUPIP INTEG, 91

Broken Transaction file, 157
definition, 136

Brokentrans qualifier
with MUPIP JOURNAL, 163

Broken_transaction show option, 157
Bsiz qualifier

in DSE, 289
Buffer_flush command

in DSE, 287
Buffer_flush qualifier

Index

448

in DSE, 284
Buffer_size journal option, 145
Buffsize qualifier

with MUPIP REPLICATE, 231
Busy qualifier

in DSE, Map, 309
in DSE, Range, 313

Bypass qualifier
with Jnl_file qualfier, 142

Bytestream qualifier
in DSE, 291
with MUPIP BACKUP, 74

C
Cache command

examples, 299
in DSE, 298

Chain qualifier
with MUPIP JOURNAL, 163

Change command
example, 47
examples

in DSE, 296
in DSE, 287
in GDE, 46

Change qualifier
with MUPIP REPLICATE, 229

Changelog qualifier
with MUPIP REPLICATE, 239, 248

Changing the Log File
log interval setting , 240, 248

Checkhealth qualifier
with MUPIP REPLICATE, 239

Checktn qualifier
with MUPIP JOURNAL, 164

Clear command
in LKE, 253

Close command
in DSE, 299

closing database, 108
CMPC qualifier

in DSE, 290
Cmplvl qualifier

with MUPIP REPLICATE, 235
Collation qualifier

in GDE, 63
Collation_default qualifier

in GDE, 54
Command qualifier

-File, 50

example, 52
rebuild Global Directory , 50

Comment qualifier
in DSE, Save, 317

Commitwait_spin_count qualifier
in DSE, 292

Control qualifiers, 150
Corrupt_file qualifier

in DSE, 291
Count qualifier

in DSE, Dump, 302
in DSE, Remove, 315

Create command, 79
examples, 79

Crit qualifier
in DSE, 302
in DSE, Find, 307
in DSE, Range, 313
in DSE, Save, 317
in LKE, 254, 258

Critical command
in DSE, 299

Critical section
in DSE, 299

Critinit qualifier
in DSE, 284

Current_tn qualifier
in DSE, 292

Cutover
definition, 192

D
Data qualifier

in DSE, 282
in DSE, Overwrite, 312

database crash
immediately after, 325

database integrity, 324
preventive, 326

database integrity check, 88
Database qualifier

in DSE, 291
with MUPIP BACKUP, 74

database repair, 202
determining cause, 327
repair decision tree, 334
safety guidelines, 329
with MUPIP, 327

Db qualifier
with MUPIP FTOK, 88

Index

449

Dbfilename qualifier
with Jnl_file qualifier, 142

Deactive qualifier
with MUPIP REPLICATE, 238

deadlock
resolving, 263

Decimal qualifier
in DSE, 304

Decimal to Hexadecimal
in DSE, Evaluate, 304

Declocation qualifier
in DSE, 292

Delete command
example, 47
in GDE, 47

Detail qualifier
with MUPIP REPLICATE, 229

Direction qualifiers, 150
Disable journal option, 145
Downgrade command, 80

examples, 80
Downloadable Replication Examples

A->B, 205
A->P, 206

DSE, 279
Cache, 298
changing, 287
changing DSE region, 307
Command Summary, 319
Critical, 299
Dump, 301
Evaluate, 304
Exit, 305
Find, 305
Integrit, 308
invoke, 279
Map, 309
Open, 311
Overwrite, 312
Page, 312
Range, 313
Remove, 314
Restore, 315
Save, 316
Shift, 317
Spawn, 318
syntax, 281
Wcinit, 318

Dump command
in DSE, 301

Dynamic_segment qualifier
in GDE, 54

E
Editinstance qualifier

with MUPIP REPLICATE, 229
Enable journal option, 145
Enabling/Disabling Detailed Logging

log interval setting , 240, 249
Encryption, 363

alternatives, 366
building libraries, 425
changing encryption keys, 394
changing hash, 393
definitions, 367
example, 376
installing , 390
master key, 392
reference implementation, 387

architecture, 394
installing seperately, 398
using with older releases, 397

role of keys, 364
Encryption qualifer

in GDE, 60
Encryption_hash qualifier

in DSE, 292
End qualifier

with MUPIP LOAD, 100
Endiancvt command

outdb qualifier, convert endian format, 80
Enviroment variables

EDITOR, 17
GTMCI, 23
gtmcompile, 23
gtmcrypt_config, 24
gtmcrypt_FIPS, 24
gtmgbldir, 24
gtmroutines, 24
gtmtls_passwd_<label>, 24
GTMXC_gpgagent, 24
gtm_badchar, 18
gtm_baktmpdir, 18
gtm_chset, 18
gtm_chset_locale, z/OS only, 18
gtm_collate_n, 18
gtm_crypt_plugin, 18
gtm_custom_errors, 18
gtm_dbkeys, 18
gtm_db_startup_max_wait, 18

Index

450

gtm_dist, 18
gtm_env_translate, 19
gtm_extract_nocol, 19
gtm_fullblockwrites, 19
gtm_gdscert, 19
gtm_gvdupsetnoop, 19
gtm_icu_version, 19
gtm_ipv4_only, 19
gtm_jnl_release_timeout, 19
gtm_keep_obj, 20
gtm_lct_stdnull, 20
gtm_local_collate, 20
gtm_max_sockets, 20
gtm_memory_reserve, 20
gtm_nocenable, 20
gtm_non_blocked_write_retries, 20
gtm_noundef, 20
gtm_obfuscation_key, 21
gtm_passwd, 21
gtm_patnumeric, 21
gtm_pattern_file, 21
gtm_principal, 21
gtm_principal_editing, 21
gtm_procstuckexec, 21
gtm_prompt, 21
gtm_quiet_halt, 22
gtm_repl_instance, 22
gtm_repl_instsecondary, 22
gtm_retention, 22
gtm_side_effects, 22
gtm_snaptmpdir, 22
gtm_stdxkill, 22
gtm_sysid, 22
gtm_tprestart_log_delta, 20
gtm_tprestart_log_first, 20
gtm_trigger_etrap, 23
gtm_ver, 24
gtm_zdate_form, 23
gtm_zinterrupt, 23
gtm_zlib_cmp_level, 23
gtm_zmaxtptime, 23
gtm_zquit_anyway, 23
gtm_ztrap_form, 23
gtm_ztrap_new, 23
LC_ALL, 24
LC_CTYPE, 24
LD_LIBRARY_PATH, 24
old_gtmroutines, 24
old_gtm_dist, 24
summary, 17

tmp_gtm_tmp, 24
tmp_passw, 24
TZ, 24

Environment variables
gtm_etrap, 19
gtm_tpnotacidtime, 23
gtm_trace_gtm_name, 23

Epoch_interval option, 145
Error_limit qualifier

with MUPIP JOURNAL, 164
estimate global variable size, 114
Evaluate command

examples, 305
in DSE, 304

Exact qualifier
in LKE, 254

Exclude qualifier
with MUPIP REORG, 104

Exhaustive qualifier
in DSE, Find, 306

Exit command
in DSE, 305
in GDE, 47
in LKE, 260
with MUPIP, 81

Extend command, 81
examples, 82

Extend qualifier
RESTORE, 107

Extension_count qualifer
in GDE, 60

Extension_count qualifier
used by MUPIP RESTORE, 107
with MUPIP SET, 111

Extention journal option, 146
Extention_count qualifier

used by MUPIP EXTEND, 81
Extract command, 82

examples, 85
Extract formats

GLO, in DSE, 302
ZWR, in DSE, 303

Extract formats, BINARY, GO, ZWR, 83
Extract qualifier

with MUPIP JOURNAL, 153

F
Fast qualifier

with MUPIP INTEG, 91
Fence options

Index

451

with MUPIP JOURNAL, 165
Fences qualifier

with MUPIP JOURNAL, 164
Fetchresync qualifier

example, 249
examples, 163
specifying port number, 249
with MUPIP JOURNAL, 162

file header, 265
changing attributes, 290
elements, 266

File qualifier
in DSE, Open, 311
with MUPIP INTEG, 91
with MUPIP RUNDOWN, 109
with MUPIP SET, 110, 141, 226

Fileheader qualifier
in DSE, 290
in DSE, Dump, 302

Filename journal option, 146
File_name qualifer

default file name is, 61
in GDE, 60

Fill_factor qualifier
with MUPIP LOAD, 100
with MUPIP REORG, 104

Filter qualifier
with MUPIP REPLICATE, 231

Filters
change schema, 219
definition, 188
example, 231
specifying, 231
stopping source , 239
stopping source filter, 239, 244

Find command
examples, 307
in DSE, 305

Fixing damanged spanning node
example of, 354

Flush_time qualifier
in DSE, 292
with MUPIP SET, 111

Format qualifier
with MUPIP EXTRACT, 83
with MUPIP LOAD, 99

Forward qualifier
in DSE, Shift, 317
with MUPIP JOURNAL, 153, 160

Forward Recovery

definition, 132
forward recovery, 153
Free qualifier

in DSE, Map, 310
Freeblock qualifier

in DSE, Find, 306
Freeze command, 86

examples, 87
Freeze qualifier

in DSE, 284, 293
with MUPIP EXTRACT, 84

From qualifier
in DSE, Range, 313
in DSE, Restore, 316

FTOK
examining IPCs, 405

Ftok command, 88
examining IPCs, 405

Full qualifier
with MUPIP INTEG, 92
with MUPIP JOURNAL, 165

Fully_upgraded qualifier
in DSE, 293

G
Gblname qualifier

in GDE, 63
GDE

command syntax, 42
GDS, 265

blocks, 273
compression count, 275
keys, 274

characteristics, 275
uses of, 275

records, 274
spanning nodes, 274

Glo qualifier
in DSE, 302

Global Directory
Abbreviations, 38
Command Summary, 64
creating, 35
Customizing, 39
definition, 32
examining, 36
examples of mapping, 41
How to customize

Add a Journaling Information Section, 39
Identify, 35

Index

452

invoke GDE, 39
mapping, 36
mapping guidelines, 40
overview, 34
Qualifier Summary, 66

Global qualifier
examples, 167
with MUPIP JOURNAL, 167

Global_buffers_count qualifier
with MUPIP SET, 111

Global_buffer_count qualifier
definition, 61
in GDE, 61

GO, 83
GT.M, 1

configuring huge pages for GT.M on Linux, 29
encrypting, 363
gdedefaults, 17
general database management, 67
gtm, 17
installation prerequisites, 4
installing, 4
installing with gtminstall, 10
installing with Unicode support, 26
run, 27
setting an environment for, 13
using gtmbase, 17
using gtmprofile, 13
Utility, DSE, 3
Utility, GDE, 2
Utility, LKE, 3
Utility, MUPIP, 2

gtmroutines
libgtmutil.so, 26

gtmsecshr
considerations, 25
definition, 409
gtm_secshr_log, 20
log files, 412
temporary files, 22

Gvstats qualifier
in DSE, 302

Gvstatsreset qualifier
in DSE, 293

H
Header qualifier

in DSE, 302, 302
Header show option, 157
Help command

in GDE, 48
Helper Processes

definition, 187
Reader, 187
Updproc, in DSE, 303
with MUPIP REPLICATE , 247, 248
Writer, 187

Hexadecimal qualifier
in DSE, 304

Hexadecimal to Decimal
in DSE, Evaluate, 304

Hexlocation qualifier
in DSE, 293

Hint qualifier
in DSE, Find, 306

History records, 189
huge pages

improving performance with, 29

I
ICU

compiling, 414
used by, 26

Id qualifier
with MUPIP JOURNAL, 168

Index qualifier
in DSE, Range, 313

Index_fill_factor qualifier
with MUPIP REORG, 105

Init qualifier
in DSE, 300

Initialize qualifier
with MUPIP REPLICATE , 245

Instance Freeze
definition, 193
with GDE, 56
with MUPIP REPLICATE, 232
with MUPIP SET, 112

Instance_create qualifier
with MUPIP REPLICATE, 228

Instsecondary qualifier
with MUPIP REPLICATE, 233, 238, 238, 239, 240, 241

Inst_freeze_on_errort qualifier
with MUPIP SET, 112

Integ command, 88
examples, 96
fixing error, 325

Integrit command
in DSE, 308

Interactive qualifier

Index

453

in LKE, 255
with MUPIP JOURNAL, 165

interrupt process, 98
Interrupt_recov qualifier

in DSE, 293
Intrpt command, 98

J
Jnlfile qualifier

with MUPIP SET, 141
Jnlpool qualifier

with MUPIP FTOK, 88
with MUPIP REPLICATE, 229

Journal command, 150
build a MUPIP JOURNAL command, 150

Journal Extract
format, 168

Journal options, 143
in general database management, 112

Journal Pool, 186
selecting, 229

Journal qualifier
Allocation, 53
Allocation option, 57
Autoswitch option, 57
Before_image option, 57
Buffer_size option, 57
Extension option, 57
File_name, 57
File_name option, 57
in GDE, 56
in general database management, 112

Journaling, 130
autoswitch limit, 131
backup strategy, 136
backward recovery, initiate, 154
BEFORE_IMAGE, 135
benefits, 136
choosing between, 135, 200
forward recovery, initiate, 153
Identify journaling actions, 142
identify journaling targets, 141
initialize database recovery, 153
initialize database recovery for replicated database, 155
NOBEFORE_IMAGE, 135
previous generation journal files, 131, 164
rollback to a common synchronization point, 162
rolled_bak*, 155
specifying error limit, 164
storing database update information, 131

K
Key qualifier

in DSE, 282
in DSE, Find, 307

Keyrange qualifier
with MUPIP INTEG, 92

Key_max_size qualifier
in DSE, 293

Key_size
example, 55

Key_size qualifier
in GDE, 55

Kill_in_prog qualifier
in DSE, 294

L
Label qualifier

with MUPIP EXTRACT, 84
Level qualifier

in DSE, 289
libgtmutil.so, 26

installing, 7
List qualifier

in DSE, Save, 317
Listenport qualifier

specifying , 244
LKE, 252

CLEAR, 253
Command Summary, 261
EXIT, 260
invoking, 252
M Lock space, 271
SHOW, 257
syntax, 253

LMS
application architecture, 190
architecture, 186
choosing between journaling type, 200
cutover, 192
message delivery application, 191
transaction processing application, 190

Load command, 98
examples, 101

load data from extract file, 98
Lock qualifier

in LKE, 254, 258
Lock usage, 262
LOCKs command

example, 48
in GDE, 48

Index

454

Lock_space qualifier
in GDE, 61
with MUPIP SET, 111

Log command
example, 49
in GDE, 49

Log qualifier
with MUPIP EXTRACT, 84
with MUPIP REPLICATE, 231

Log_interval qualifier
Starting the Receiver Server, 244
with Changelog (Receiver Server), 248
with Changelog (Source Server), 240
with MUPIP REPLICATE, 231
with Statslog (Receiver Server), 249
with Statslog (Source Server), 240

Lookback_limit options
with MUPIP JOURNAL, 161

Lookback_limit qualifier
with MUPIP JOURNAL, 161

Lost qualifier
in DSE, Range, 313

Lost Transaction file
definition, 136
format, 243
processing, 241
processing after, 242, 242
specifying file , 166

Lost transaction file
creating, 250

Losttncomplete qualifier
specifying , 242

Losttrans qualifier
with -ROLLBACK, 250
with MUPIP JOURNAL, 166

Lower qualifier
in DSE, Range, 313

M
manage triggers, 116
Map command

in DSE, 309
Map qualifier

with MUPIP INTEG, 92
Master qualifier

in DSE, Map, 310
Maxkeysize qualifier

with MUPIP INTEG, 93
Monitoring

messages and errors, 411

MUPIP
BACKUP, 71

example, 73
Commands Summary, 121
CREATE, 79
DOWNGRADE, 80
ENDIANCVT, 80
EXIT, 81
EXTEND, 81
Extract, 82
FREEZE, 86
FTOK, 88
INTEG, 88
INTRPT, 98
JOURNAL, 150
LOAD, 98
REORG, 102
REPLICATE, 226
RESTORE, 107
RUNDOWN, 108
SET, 109, 140
SIZE, 114
Standalone and concurrent, 69
STOP, 116
TRIGGER, 116
UPGRADE, 120

Mutex_slots qualifier
in GDE, 62
with MUPIP SET, 112

N
Name qualifier

example, 54
in GDE, 54
with MUPIP REPLICATE, 228, 229

needrestart qualifier, 242
NETtimeout qualifier

with MUPIP BACKUP (bytestream), 74
Newjnlfiles

with MUPIP BACKUP, 75
NOBEFORE_IMAGES

journaling type of, definition, 135
None fence option, 165
Noreplace qualifier

with MUPIP REPLICATE, 228
Noresync qualifier

with MUPIP REPLICATE , 246
Null_subscripts qualifier, 55

in DSE, 294
Number qualifier

Index

455

in DSE, 305

O
Off qualifier

with MUPIP FREEZE, 87
OFF,ON journal options, 148
Offset qualifier

in DSE, 282, 289, 302
in DSE, Map, 312
in DSE, Remove, 315
in DSE, Shift, 317
with MUPIP REPLICATE, 229

On qualifier
with MUPIP FREEZE, 87

Online qualifier
with MUPIP BACKUP, 75
with MUPIP INTEG, 93

Open command
in DSE, 311

orderly terminate database process, 116
originating instance

propagating, 234
update last known synchronization point, 244

Output qualifier
in LKE, 255, 258

override qualifier
with MUPIP ENDIANCVT, 80

Override qualifier
in DSE, 285, 294
with MUPIP FREEZE, 87
with MUPIP RUNDOWN, 109

Overwrite command
in DSE, 312

Owner qualifier
in DSE, 300

P
Page command

in DSE, 312
Partial_recov_bypass qualifier

with MUPIP SET, 110
Passive qualifier

with MUPIP REPLICATE, 231
perform journaling operations, 150
Pid qualifier

in LKE, 255, 258
Plaintextflassback qualifier

Starting the Source Server, 236
Pointer qualifier

in DSE, 282

Prevjnlfile journal option, 147
Prevjnlfile qualifier

with Jnl_file qualfier, 142
PREVLINK

with Newjnlfiles, MUPIP BACKUP, 75
Process fence option, 165
Processes show option, 158
Propagateprimary qualifier

with MUPIP REPLICATE, 234, 238, 238

Q
Qdbrundown

in DSE, 294
Qdbrundown qualifier

in DSE, 294
in general database management, 112
with GDE, 56

Quit command
in GDE, 49

R
Range command

in DSE, 313
Receiver qualifier

with MUPIP REPLICATE, 243
Receiver Server, 186

add helpers, 247
automatic online rollback , 244
changing logs, 248
checking progress, 249
enable logging, disable logging, 248
specify port to listen, 244
specifying compression level, 235
starting, 243
update process, 246

Record qualifier
in DSE, 282, 289, 303
in DSE, Remove, 315
with MUPIP BACKUP, 75
with MUPIP FREEZE, 87

Record_max_size qualifier
in DSE, 294

Record_size
in DSE, 294
in GDE, 55

Recover qualifier
in DSE, 298
with MUPIP JOURNAL, 153

Recovery, 325
from backup files, 326

Index

456

from journal files, 326
Recvpool qualifier

with MUPIP FTOK, 88
Redirect qualifier

with MUPIP JOURNAL, 166
Reference qualifier

in DSE, 285
Reference_count

in DSE, 294
Region qualifier

in DSE, Find, 307
in DSE, Restore, 316
in GDE, 54
in LKE, 255, 259
Journal qualifier

journal options summary, 58
with MUPIP CREATE, 79
with MUPIP INTEG, 94
with MUPIP REORG, 105
with MUPIP RUNDOWN, 109
with MUPIP SET, 110, 141, 226

Region Qualifiers
with GDE, 56

Reg_seqno qualifier
in DSE, 295

Release qualifier
in DSE, 285, 300

Remove command
in DSE, 314

Remove qualifier
in DSE, 300

Rename command
example, 50
in GDE, 49

Renegotiate_interval qualifier
Starting the Source Server, 237

Renew qualifier
in DSE, 285

Reorg command, 102
examples, 107

reorganize, defragment, optimize, reduce database size , 102
REPLace qualifier

with MUPIP BACKUP, 76
Replace qualifier

with MUPIP REPLICATE, 228
Replicate command

examples, 234
Replicate qualifier

with MUPIP REPLICATE, 230
replicating instance

accepting SI stream, 245, 246
identify, 230, 233
if previously used, 246
initializing SI stream, 245

Replication
architecture, 186
changing replication state, 226
Filters, 188
implementation procedures, 203
LMS Group

SI Group, 175
Replication instance file, 189
rolling upgrades, 203
specifying compression level, 235

Replication instance file
definition, 189

Replication Instance file
display, change, 229

Replication qualifier
with MUPIP SET, 143, 226

Replication state options
Off, 226
On, 227
Was_on, 227

Replinstance qualifier, 189
with MUPIP BACKUP, 76

Repl_state qualifier
with Jnl_file qualifier, 142

Reserved_bytes qualifier
in GDE, 62
with MUPIP SET, 113

Reset qualifier
in DSE, 300

Restart Codes, 359
Restore command, 107

examples, 108
in DSE, 315

Restore_all qualifier
in DSE, Map, 310

restoring incremental backup, 107
Resume qualifier

with MUPIP REORG, 105
with MUPIP REPLICATE , 245

Resync qualifier
with MUPIP REPLICATE, 250

Resync_seqno qualifier
in DSE, 295

Resync_strm qualifier
with -ROLLBACK, 250

Resync_tn qualifier

Index

457

in DSE, 295
Reuse qualifier

with MUPIP REPLICATE , 246
rollback

to a journal stream sequence number, 250
Rollback qualifier, 249

with MUPIP JOURNAL, 155
rolled_bak* files, 155

definition, 134
Rootprimary, 192

example, 234
specifying, 233

Rootprimary qualifier
with MUPIP REPLICATE, 233, 238, 238

Rundown command, 108

S
Save command

in DSE, 316
Secondary qualifier

with MUPIP REPLICATE, 230
Segement qualifier

in GDE, 58
Seize qualifier

in DSE, 301
Select qualifier

with MUPIP EXTRACT, global specification, 84
with MUPIP REORG, 105
with MUPIP TRIGGER, 117

Selection qualifiers, 150
Sequence Number qualifiers, 150
Set command, 109, 140

examples, 113
in replication, 226
journaling examples, 149

SEtgd command
example, 50
in GDE, 50

setting database characteristics, 109
setting journaling characteristics, 140
Shift command

in DSE, 317
SHow command

-template
example, 51

in GDE, 50
Show command

in LKE, 257
Show options

display journaling information, 157

Show qualifier
with MUPIP JOURNAL, 157
with MUPIP REPLICATE, 229, 230

Showbacklog qualifier
with MUPIP REPLICATE, 241

Shutdown qualifier
with MUPIP REPLICATE, 237

Sibling qualifier
in DSE, Find, 307

Sieze qualifier
in DSE, 285

Since qualifier
with MUPIP BACKUP, 76
with MUPIP JOURNAL, 162

Size qualifier, 114
with MUPIP REPLICATE, 229

Snapshot files
with MUPIP INTEG, 93

Source qualifier
with MUPIP REPLICATE, 230

Source Server, 186
changing logs, 239, 240
checking progress, 241
deactivating, 238
enable logging, disable logging, 240
identify, 230
log interval setting , 231
logging, 231
Passive

activating, 237, 238, 238, 238, 239
shut down, 237
specifying compression level, 235
specifying Journal Pool size, 231
start in passive mode, 231
starting, 230
starting, active mode, 230
stopping, 241, 241, 241
timeout specifying, 237

Spanning Nodes
special subscript, 274

Spawn
in LKE, 261

Spawn command
in DSE, 318

Star qualifier
in DSE, 282
in DSE, Range, 313

Start qualifier
with MUPIP REPLICATE, 230

Starting the Receiver Server

Index

458

setting the logging interval, 244
Starting the Source Server

enabling TLS/SSL replication, 236, 236, 237, 246
Statistics show option, 158
Statslog qualifier

with MUPIP REPLICATE, 240
Stdin qualifier

with MUPIP LOAD, 101
Stdnullcoll qualifier, 56
Stdout qualifier

with MUPIP EXTRACT, redirect to stdout, 85
Stop qualifier, 116
Stopsourcefilter qualifier

with MUPIP REPLICATE, 239, 244
Strm_num qualifier

in DSE, 295
Strm_reg_seqno qualifier

in DSE, 295
Subscript qualifier

with MUPIP INTEG, 94
Supplementary qualifier

Instance_create qualifier, 228
with MUPIP REPLICATE, 228

SYNC_IO
with Newjnlfiles, MUPIP BACKUP, 75

Sync_io option, 147

T
Template command

example, 53
maintains sets of region and segment , 53

Time qualifiers, 150
Timeout qualifier

with MUPIP REPLICATE, 241
with MUPIP REPLICATE, shutdown qualifier, 237

Timers_pending qualifier
in DSE, 295

TLS Replication
, 194

TLSID qualifier
Starting the Receiver Server, 236, 246

Tn qualifier
in DSE, 289

Tn_reset qualifier
with MUPIP INTEG, 95

To qualifier
in DSE, Range, 313

Total_blks qualifier
in DSE, 295

Transaction qualifier

with MUPIP BACKUP -BYTESREAM, 77
with MUPIP INTEG, 95
with MUPIP JOURNAL, 168

Trigger command, 116
examples, 118

Triggerfile qualifier
with MUPIP TRIGGER, 116

Triggers
add, 118
delete, 119
modify, 118

Trigger_flush qualifier
in DSE, 295

Truncate qualifier
with MUPIP REORG, 106

U
Update Process, 186

starting, 246
stopping, 248

Updateonly qualifier, 246
with MUPIP REPLICATE , 248

Updateresync qualifier
with MUPIP REPLICATE , 244

Updnotok
specifying, 235

Updnotok qualifier
with MUPIP REPLICATE, 235

Updok
specifying, 234

Updok qualifier
with MUPIP REPLICATE, 234

Updproc qualifier
in DSE, 303

Upgrade command, 120
examples, 120

Upper qualifier
in DSE, Range, 314

User qualifier
with MUPIP JOURNAL, 168

V
V4 to V5 upgrade, 120
Value qualifier

with MUPIP REPLICATE, 229
Verbose qualifier

with MUPIP JOURNAL, 166
Verify command

in GDE, 53
Verify qualifier

Index

459

in DSE, 298
with MUPIP JOURNAL, 159

Version qualifier
in DSE, Remove, 315
in DSE, Restore, 316
with MUPIP DOWNGRADE, 80
with MUPIP SET, 113

W
Wait qualifier

in LKE, 259
Wcinit command

in DSE, 318
Wcinit qualifier

in DSE, 286
Writes_per_flush qualifier

in DSE, 295

Y
Yield_limit journal option, 148

Z
ZWR, 83
ZWR qualifier

in DSE, 303

	GT.M Administration and Operations Guide
	Table of Contents
	About This Manual
	Intended Audience
	Purpose of the Manual
	How to Use This Manual
	Overview
	Conventions Used in This Manual

	Chapter 1. About GT.M
	Hardware/Operating System Environment
	Installation
	Security
	Program Development Environment
	Database Subsystem
	GT.M Utility Programs
	GDE
	MUPIP
	LKE
	DSE
	Command Qualifiers

	Database Integrity
	Interprocess Communication

	Chapter 2. Installing GT.M
	Obtaining GT.M Distribution Media
	Before you begin
	Installation Procedure
	Reference Implementation Plugin - Shared Library Dependencies
	Creating a symbolic link from the unversioned .so (libxxxxxx.so) to libxxxxx.so.<ver>
	Recompiling the Reference Implementation Plugin

	gtminstall script

	Chapter 3. Basic Operations
	GT.M Environment Setup
	gtmprofile
	gtmcshrc
	gtmbase
	gdedefaults
	gtm

	Environment Variables
	Configuring and operating GT.M with Unicode™ support (optional)
	M mode and UTF-8 mode
	Compiling ICU

	Starting GT.M
	Configuring huge pages for GT.M x86[-64] on Linux

	Chapter 4. Global Directory Editor
	Global Directory
	GDE Overview
	Identifying the Current Global Directory
	Creating a Default Global Directory
	Mapping Global Variables in a Global Directory
	Examining the Default Global Directory
	Global Directory Abbreviations
	Customizing a Global Directory
	Adding a Journaling Information Section

	Using GDE
	Guidelines for Mapping
	Example of a Basic Mapping

	Global Director Editor Commands
	Specifying File Names in Command Lines
	Font/Capitalization Conventions Used in this Chapter
	@
	Add
	-Name
	-Segment
	-Region
	-Gblname

	Change
	Delete
	Exit
	Help
	LOCks
	LOG
	Quit
	Rename
	SEtgd
	SHow
	Template
	Verify

	Name, Region, and Segment Qualifiers
	Name Qualifiers
	Region Qualifiers
	Segment Qualifiers
	Gblname Qualifiers

	GDE Command Summary
	GDE Command Qualifier Summary

	Chapter 5. General Database Management
	Introduction
	Operations - Standalone and Concurrent Access
	MUPIP

	Commands and Qualifiers
	BACKUP
	-BKupdbjnl
	-Bytestream
	-Database
	-NETtimeout
	-NEWJNLFILES
	-Online
	-Record
	-REPLace
	-REPLInstance
	-Since
	-Transaction
	Examples for MUPIP BACKUP

	CREATE
	-Region
	Examples for MUPIP CREATE

	DOWNGRADE
	-VERSION={V4|V5}
	Examples for MUPIP DOWNGRADE

	ENDIANCVT
	-OVerride
	Examples for MUPIP ENDIANCVT

	EXIT
	EXTEND
	-Blocks
	Examples for MUPIP EXTEND

	EXTRACT
	-FOrmat
	-FReeze
	-LAbel
	-LOg
	-Select
	-STdout
	Examples for MUPIP EXTRACT

	FREEZE
	-OFf
	-ON
	-OVerride
	-Record
	Examples for MUPIP FREEZE

	FTOK
	-DB
	-JNLPOOL
	-RECVPOOL

	INTEG
	-ADjacency
	-BLock
	-BRief
	-FAst
	-FIle
	-FUll
	-Keyranges
	-MAP
	-MAXkeysize
	-Online
	-Region
	-Subscript
	-TN_reset
	-TRansaction
	Examples for MUPIP INTEG

	INTRPT
	JOURNAL
	LOAD
	-FOrmat
	-BEgin
	-End
	-FIll_factor
	-Stdin
	Examples for MUPIP LOAD

	REORG
	-Exclude
	-Fill_factor
	-Index_fill_factor
	-Resume
	-Region
	-Select
	-Truncate
	Examples for MUPIP REORG

	REPLICATE
	RESTORE
	-Extend
	Examples for MUPIP RESTORE

	RUNDOWN
	-File
	-Region
	-Override

	SET
	-Access_method
	-PArtial_recov_bypass
	-File
	-Region
	-Extension_count
	-Flush_time
	-Global_buffers
	-Lock_space
	-INST_freeze_on_error
	-Mutex_slots
	-Journal
	-Qdbrundown
	-REServed_bytes
	-Version
	Examples for MUPIP SET

	SIZE
	STOP
	TRIGGER
	Examples for MUPIP TRIGGER

	UPGRADE
	Example for MUPIP UPGRADE

	MUPIP Command Summary

	Chapter 6. GT.M Journaling
	Introduction
	Journal Files
	Recovery from a Journal File
	Forward Recovery
	Backward Recovery

	rolled_bak* files
	Journal Files Access Authorization
	Triggers in Journal Files
	BEFORE_IMAGE Journaling
	NOBEFORE_IMAGE Journaling
	Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE
	Broken Transaction File
	Lost Transaction File
	Journaling Benefits
	Backup Journal Files
	Select database files for Journaling
	Fencing Transactions
	Deciding Whether to Use Fencing
	Fencing Advantages
	Fencing Disadvantages

	VIEW Keywords
	$VIEW() Keywords

	SET
	SET Object Identifying Qualifiers
	SET Action Qualifiers
	SET -JOURNAL Options

	Examples for MUPIP SET

	JOURNAL
	Journal Action Qualifiers
	-EXtract[=<file-name>|-stdout]
	-RECover
	-ROLLBACK [{-ON[LINE]|-NOO[NLINE]}]
	-SHow=show-option-list
	-[NO]Verify

	Journal Direction Qualifiers
	Journal Time Qualifiers
	Journal Sequence Number Qualifiers
	Journal Control Qualifiers
	Journal Selection Qualifiers

	Journal Extract Formats

	Chapter 7. Database Replication
	Introduction
	Database Transaction Number
	Journal Sequence Number
	Stream Sequence Number
	Examples
	Simple Example
	Ensuring Consistency with Rollback
	Rollback Not Desired or Required by Application Design
	Two Originating Primary Failures
	Replication and Online Rollback

	Limitations - SI Replication
	Replication Architecture
	Helper Processes
	Filters
	Replication Instance File

	Implementing Replication and Recovery
	Application Architecture
	Implement a Message Delivery System

	System Requirements
	Root Primary Status Identification

	Cutover
	Instance Freeze
	TLS/SSL Replication
	Creating a root-level certification authority
	Creating leaf-level certificates
	Creating a configuration file

	Network Link between Systems
	Choosing between BEFORE_IMAGE and NOBEFORE_IMAGE journaling
	Recovery
	Comparison other than Recovery

	Database Repair
	Procedures
	Normal Operation
	Startup
	Multi-Site to Single-Site
	Normal Cutover
	Shutting Down an instance
	Failures
	Dual-Site Failures
	Complex Dual-Site Failure
	Rolling Software Upgrades
	Creating a new instance file without an -updateresync qualifier
	Upgrade Replication Instance File
	Creating a Supplementary Instance
	Starting / Resuming SI Replication
	Changing the Replication Source
	Switchover between instances having triggers
	Schema Change Filters
	Recovering from the replication WAS_ON state
	Setting up a new replicating instance of an originating instance (A->B, P->Q, or A->P)
	Replacing the replication instance file of a replicating instance (A->B and P->Q)
	Replacing the replication instance file of a replicating instance (A->P)
	Setting up a new replicating instance from a backup of the originating instance (A->P)
	Setting up an A->P configuration for the first time if P is an existing instance (having its own set of updates)
	Changing the database schema of a replicating instance (A->B and A->P)
	Setting up a secured TLS replication connection

	Commands and Qualifiers
	Turning Replication On/Off
	Creating the Replication Instance File
	Displaying/Changing the attributes of Replication Instance File and Journal Pool
	Starting the Source Server
	Shutting down the Source Server
	Activating a Passive Source Server
	Deactivating an Active Source Server
	Stopping the Source Filter
	Checking Server Health
	Changing the Log File
	Enabling/Disabling Detailed Logging
	Stopping a Source Server
	Reporting the Current Backlog of Journal Records
	Processing Lost Transactions File
	Lost Transaction File format

	Starting the Receiver Server
	Starting the Update Process
	Stopping the Update Process
	Checking Server Health
	Changing the Log File
	Enabling/Disabling Detailed Logging
	Reporting the Current Backlog of Journal Records
	Rolling Back the Database After System Failures

	Chapter 8. M Lock Utility (LKE)
	Introduction
	To Invoke and Exit LKE
	To establish a Global Directory

	LKE Commands and Qualifiers
	Clear
	SHow
	Exit
	Help
	SPawn

	Summary
	LKE Exercises
	Exercise 1: Preventing concurrent updates using M Locks
	Exercise 2: Rectifying a deadlock situation

	Chapter 9. GT.M Database Structure(GDS)
	Database File Organization with GDS
	Database File Header
	File Header Data Elements
	MLOCK Space

	Local Bitmaps
	Master Bitmap
	Database Structure
	Tree Organization
	GDS Blocks
	GDS Records
	Using GDS records to hold spanning nodes

	GDS Keys
	Compression Count
	Use of Keys
	Characteristics of Keys
	Global Variable Names
	String Subscripts
	Numeric Subscripts

	Chapter 10. Database Structure Editor
	Operating in DSE
	DSE Commands and Qualifiers
	ADD
	Qualifiers of ADD
	Examples for ADD

	ALL
	Qualifiers
	Examples of ADD

	Buffer_flush
	CHange
	CHANGE -BLock Qualifiers
	CHANGE -FIleheader Qualifiers
	Examples for CHANGE

	CAche
	Qualifiers of CACHE
	Examples for CACHE

	CLose
	CRitical
	Qualifiers of CRITICAL
	Examples for CRITICAL

	Dump
	Qualifiers of DUMP
	Examples for DUMP

	EValuate
	Qualifiers of Evaluate
	Examples for EVALUATE

	EXit
	Find
	Qualifiers of FIND
	Examples for FIND

	Help
	Integrit
	Qualifiers of Integrit

	Maps
	Qualifiers for MAP
	Examples

	OPen
	Qualifiers for OPEN
	Examples for OPEN

	OVerwrite
	Qualifiers for OVERWRITE
	Examples for Overwrite

	Page
	RAnge
	Qualifiers of RANGE
	Examples for RANGE

	REMove
	Qualifiers of REMOVE

	REStore
	Qualifiers of RESTORE

	SAve
	Qualifiers of SAVE

	SHift
	Qualifiers of SHIFT

	SPawn
	Examples of SPAWN

	Wcinit

	DSE Command Summary

	Chapter 11. Maintaining Database Integrity
	Verifying Database Integrity
	Regularly Scheduled Verification
	Before or After Major Transfers
	Immediately after Catastrophic Events
	Immediately after Run-Time Database Errors
	Immediately After Database Repairs

	Approaches to Database Recovery
	Recover from Journals
	Restore from Backup
	Repair with DSE
	Preventive Maintenance
	Determining the Cause of the Problem
	MUPIP Recovery
	Follow-up

	Repairing the Database with DSE
	Using the Proper Database File
	Locating Structures with DSE
	Safety in Repairs
	Discarding Data
	Concurrent Repairs
	Terminating Processes
	Recovering data from damaged binary extracts
	CORRUPT Errors
	LDSPANGLOINCMP Errors
	Example–Repairing an error in a binary extract

	Finding and Fixing Database Errors
	C1–Possible Cache Control Problems
	H1–Process Hangs
	H3–Database Access Problems
	H4–Database Cache Problems
	H5–Critical Section Problems
	H6–UNIX Problems
	H7–Disk Hardware Problems
	H8–Application Problems
	Persistent LOCKs
	Deadlocks
	Preventing Deadlocks

	I1–MUPIP INTEG Errors
	Evaluating the Danger Level of a Database Problem
	Requires Immediate Attention
	Can Be Deferred

	I2–GT.M Version Mismatch
	I3–File Header Errors
	I4–File Size Errors
	I5–More Database Access Problems
	I6–Transient Errors
	I7–Database Rundown Problem
	I8–Repair-Induced Problems
	K1–Bad Key
	K2–Keys Misplaced
	K3–Block Doubly Allocated
	K4–Pointer Problems
	K5–Star Key Problems
	K6–Compression Count Error
	K7–Key Warning
	M1–Bitmap Errors
	M2–Bitmap Header Problems
	O1–Bad Block
	O2–Record Errors
	O3–Data Block Errors
	O4–Salvage of Data Blocks with Lost Indices
	O5–Salvage of a damaged spanning node
	P1–Process Damage
	Q1–Restricting Database Access
	R1–GT.M Run-Time Errors
	R2–Structural Database Integrity Errors
	R3–Run-time Database Cache Problems
	R4–Stopped Processes
	R5–No More Room in the File
	R6–GTMASSERT and GTMCHECK Errors
	R7–Interlocked Queue Hardware Problems
	R8–Database Tree Maximum Level Exceeded
	R9–Read-only Process Blocked

	Chapter 12. Database Encryption
	Introduction
	Overview
	Disclaimer
	Limitations of GT.M Database Encryption
	Data Not At Rest Not Protected
	Keys in the Process Address Space / Environment
	Long Lived Keys
	Voluminous Samples of Encrypted Data
	Encryption Algorithms Neither Endorsed Nor Supported by FIS
	No Key Recovery
	Human Intervention Required
	MM Databases

	Alternatives to Database Encryption
	Device IO
	Replication and GT.CM
	FIPS Mode

	Theory of Operation
	Definition of Terms
	Overview
	Warning
	Data in Database and Journal Files
	Symmetric and Asymmetric Ciphers
	Key Ring on Disk
	Master Key File and Key Files
	Memory Key Ring
	Key Validation and Hashing
	Database Operation

	Examples of use
	Key Management

	Tested Reference Implementations
	Special note - Gnu Privacy Guard version 2
	Installation
	Administration and Operation of Encrypted Databases
	Utility Programs
	GDE
	Format / Upgrade
	-[NO]ENcryption

	MUPIP
	MUPIP CREATE
	MUPIP JOURNAL
	MUPIP LOAD

	DSE
	Changing the hash in the database file header

	Changing Encryption Keys
	Database Creation

	Plugin Architecture & Interface
	Packaging
	Extensions to the GT.M External Interface
	Operation

	Using the V5.4-001 Reference Implementation with Older Releases
	Installation

	Chapter 13. GT.CM Client/Server
	Introduction
	Overview
	GT.CM Server
	GT.CM Client
	GT.CM Server Startup and Shutdown
	GT.CM Server Startup
	GT.CM Server Shutdown

	Types of Operations
	Error Messages
	Examples

	Appendix A. GT.M's IPC Resource Usage
	Examining GT.M's IPC Resources
	gmtsecshr

	Appendix B. Monitoring GT.M Messages
	Monitoring GT.M Messages

	Appendix C. Compiling ICU on GT.M supported platforms
	Compiling ICU
	Compiling ICU 4.4 on AIX 6.1
	Installation Instructions

	Compiling ICU 4.2 on AIX 6.1
	Installation Instructions

	Compiling ICU 4.2 on AIX 5.3
	Installation Instructions

	Compiling ICU 3.6 on AIX 5.2
	Installation Instructions

	Compiling ICU 4.2 on HP Integrity IA64 HP-UX 11.31
	Installation Instructions

	Compiling ICU 3.6 on HP Integrity IA64 HP-UX 11.31
	Installation Instructions

	Compiling ICU 3.6 on HP PA-RISC HP-UX 11.31 (11iv3)
	Installation Instructions

	Compiling ICU 3.6 on HP PA-RISC HP-UX 11.11
	Installation Instructions

	Compiling ICU 4.2 on Red Hat Enterprise Linux 4 Update 2
	Installation Instructions

	Compiling ICU 3.6 on Red Hat Enterprise Linux 4 Update 2
	Installation Instructions

	Compiling ICU 4.4 on Solaris 9 (SunOS 5.9)
	Installation Instructions

	Compiling ICU 4.2 on Solaris 9 (SunOS 5.9)
	Installation Instructions

	Compiling ICU 3.6 on Solaris 9 (SunOS 5.9)
	Installation Instructions

	Appendix D. Building Encryption Libraries
	Building Encryption Libraries
	Ubuntu 8.04 LTS (x86_64)
	Red Hat Enterprise Linux 5.4 (x86_64)
	Red Hat Enterprise Linux 5.5 (x86)
	Red Hat Enterprise Linux 5.3 (IA64)
	IBM z/OS (zSeries)
	GPG-ERROR
	GCRYPT
	GPGME
	GNUPG

	IBM AIX 5.3 (pSeries)
	GPG-ERROR
	CRYPTO (From OpenSSL)
	GPGME
	GNUPG

	Solaris 9 and 10 (SPARC)
	GPG-ERROR
	GCRYPT
	GPGME
	GNUPG

	HP-UX 11.31 (IA64)
	GPG-ERROR
	GCRYPT
	GPGME
	GNUPG

	SUSE Linux Enterprise Server 11 (x86_64)
	SUSE Linux Enterprise Server 11 (s390x)
	SUSE Linux Enterprise Server 10 (s390x)

	Appendix E. GT.M Security Philosophy
	Philosophy
	Normal User and Group Id Rule
	Exceptions
	Shared Memory Exception for BG
	gtmsecshr Exception

	Triggers

	Recommendations

	gtmsecshr commands
	Shared Resource Authorization Permissions

	Appendix F. GTMPCAT - GT.M Process/Core Analysis Tool
	Overview
	Usage
	Interactive Mode

	Appendix G. Packaging GT.M Applications
	Setting up a Captive User Application with GT.M
	Sample .profile

	Invoking GT.M through a C main() program
	Defensive Practices
	Other

	Glossary
	Index

